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Featured Application: The proposed RL via data-informed Domain Randomization (DDR) is de-

signed to stabilize autonomous underwater vehicles and the platforms of underwater vehicle-

manipulator systems, which are further subject to unknown dynamics and varying payloads.

The approach captures the differences in dynamics between the simulated AUVs and real AUVs,

trains the controller in simulations that are suitable for real AUVs, and avoids the tedious proce-

dures of parameter-tuning. The proposed RL-DDR requires only a few training samples, making

the controller adaptation efficient for real-time applications.

Abstract: Autonomous Underwater Vehicles (AUVs) or underwater vehicle-manipulator systems

often have large model uncertainties from degenerated or damaged thrusters, varying payloads,

disturbances from currents, etc. Other constraints, such as input dead zones and saturations, make

the feedback controllers difficult to tune online. Model-free Reinforcement Learning (RL) has been

applied to control AUVs, but most results were validated through numerical simulations. The

trained controllers often perform unsatisfactorily on real AUVs; this is because the distributions of

the AUV dynamics in numerical simulations and those of real AUVs are mismatched. This paper

presents a model-free RL via Data-informed Domain Randomization (DDR) for controlling AUVs,

where the mismatches between the trajectory data from numerical simulations and the real AUV

were minimized by adjusting the parameters in the simulated AUVs. The DDR strategy extends

the existing adaptive domain randomization technique by aggregating an input network to learn

mappings between control signals across domains, enabling the controller to adapt to sudden changes

in dynamics. The proposed RL via DDR was tested on the problems of AUV pose regulation through

extensive numerical simulations and experiments in a lab tank with an underwater positioning

system. These results have demonstrated the effectiveness of RL-DDR for transferring trained

controllers to AUVs with different dynamics.

Keywords: autonomous underwater vehicles; uncertainty attenuation; reinforcement learning;

domain randomization

1. Introduction

Autonomous Underwater Vehicles (AUVs) and underwater vehicle-manipulator sys-
tems are attracting more attention in marine survey and intervention applications, such
as structure inspection, cleaning and repairing, waste searching and salvage, deepwater
rescuing, sediment sampling, etc. [1–4]. However, possible thruster degeneration and
damage, various payloads, and disturbances from currents inevitably bring tremendous
uncertainties to AUV dynamics models [5]. In addition, other constraints, such as input
dead zones and saturations, make it difficult to tune the controller parameters [6]. This
paper explores the feasibility of model-free reinforcement learning approaches to these
issues in underwater AUV position regulation problems.
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Control problems subject to uncertainties have been investigated over the years. For
example, the adaptive controller can to model the uncertainties online, and forces the
controlled AUV systems to behave as some given reference models [7]. The adaptation is
based on current states and errors as inputs, while long-term optimality is often neglected.
The backstepping controller can guarantee system stability through its design processes
but requires a sufficiently accurate dynamics model [8]. Otherwise, the control gain would
be too large for real systems. The controller based on sliding mode requires sufficient time
to reach the sliding surface and provide robustness [9]. These above-mentioned approaches
may have provable stabilities without considering the dead zones and saturations of the
control inputs.

To be applicable to dynamical systems with input saturations, many existing control
approaches assume that the model mismatch is small. Then, these controllers have sufficient
margins to suppress uncertainties and input constraints, offering stability to the controlled
AUV systems. When applied to real systems, the controller parameters have to be re-tuned
according to the altered dynamical system. More importantly, the assumption of small
differences in dynamics models may not hold for shallow-water AUVs. In underwater
applications, water weeds may tangle one or more thrusters, limiting their maximal thrusts,
and the AUVs may be subject to various payloads. All these factors make the model
uncertainties quite large.

Controllers based on deep learning have been studied in [10]. Classical model-free
RL can overcome the above-mentioned issues of uncertainties, but often relies on a large
number of samples to train controllers from scratch. Millions of interactions between the
controller and the targeted system are time-consuming and may damage the system itself.
Therefore, it is preferable to train a controller in a simulated system and then apply it to
a real AUV system. However, the trained controllers often perform unsatisfactorily on
real AUVs. This is because the distributions of the state and AUV dynamics in numerical
simulations do not match those of real AUVs. Much effort has been devoted to transferring
the controller to a different system, referred to as transfer RL [11]. In the context of transfer
RL, the trained controller is obtained offline from a source domain with source dynamics.
The trained controller is referred to as the source controller. Then, the source controller
is transferred to a target controller and is applied to a target system in an online target
domain, where the target system is often unknown.

The idea of transferring controllers to a different system has been explored in manip-
ulator control [12]. Recently, a model-free transfer RL on AUV control was validated on
numerically simulated AUVs [13]. In the transfer reinforcement learning of robot control,
the source domain and source dynamics are often numerically simulated, while the target
domain and the target dynamics pertain to the real systems [14]. The source controller is
trained for the source dynamics in the source domain and transferred to obtain the target
controller to control the target dynamical system in the target domain. In another type of
transfer reinforcement learning, the source domain and target domain may share the same
dynamics model and state spaces but differ in the definitions of objective functions [15],
which is not discussed in this paper.

The correlation across domains is key to transferring the source controller to the target
domain [16]. Domain-invariant essential features and structures were studied to build and
transfer the controller across domains [17]. The correspondence between domains can be
found by analyzing the unpaired trajectories between two different domains [18].

Another issue for sim-to-real transfer RL is robustness. Domain randomization algo-
rithms vary the parameters of the numerically simulated dynamics models and obtain a
controller through RL [19]. RL based on domain randomization [20] is a popular technique
to reduce domain and dynamics mismatches. Instead of directly adding Gaussian noise
to the outputs of the simulated dynamics models, the noise is added to the parameters
of dynamics models, allowing for more diverse distributions that can cover the actual
distributions of the AUV states and dynamics. The trained controller is robust to the
simulated dynamics, which has a high probability of covering the actual manipulator states
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and dynamics. Therefore, the trained controller has better robustness than classical RL. This
approach has been successful in the control of manipulators, where an accurate dynamics
model is required and a friction model is considered [20].

It is preferable to adjust the parameter noise in the domain randomization according
to the actual data. The adaptive domain randomization approach adjusts the weight of
parameter particles to narrow the gap between simulators and real AUV dynamics [21].
However, the effectiveness of such a strategy is based on an accurate parametric dynamics
model. This assumption may not be suitable for AUVs. Existing AUV models have
more unmodeled dynamics, which are difficult to describe in the simulations via domain
randomization techniques. Therefore, it is desirable to quickly modify the simulator to
behave as a real AUV through a data-driven module. Still, the process of obtaining a
data-enabled module to close the gap between source dynamics and target dynamics may
take a tremendous amount of time. Therefore, it is better if only a few samples of the real
AUVs are required to quickly adapt the source controller.

State-of-the-art algorithms based on feedback control may not be able to deal with
dynamics that are suffering significant changes, such as shifts in control channels or thruster
failures. These changes in dynamics may occur online and jeopardize the AUV system
if the same controller is used. On other hand, reinforcement learning approaches require
extensive interactions between controllers and the targeted AUV and may adapt themselves
to the new dynamics. This paper proposes a transfer RL approach via data-informed
domain randomization (DDR) to efficiently adapt the source controller. The contributions
are as follows.

(i) Data-informed domain randomization. In this paper, the numerical dynamics model
(the source model) is built on a Webots simulator. According to the collected data of a
real AUV, the control inputs and state outputs regarding the source model are quite
different from those of the target model. A neural network is aggregated onto the
Webots source model and is quickly adapted online to match the difference between
the source model and the target model, reducing the gap between the source and
target dynamics.

(ii) Controller adaptation mechanism. Based on the matching from the proposed DDR,
the correlation between the source and target controllers is used to quickly align the
source control signals to the target ones. Since the source task and domain task only
differ in dynamics models, the mismatch is captured by a small neural network that
can be retrained in less than a second with newly collected data.

(iii) Validation through numerical simulations and tank experiments. The proposed RL
via DDR was validated by numerical simulations of AUVs with manually designed
and mismatched dynamics models: these have different thruster configurations and
capabilities. RL via DDR was also tested in a sim-to-real transfer setting, where the
transferred controller was tested for an AUV in a tank and the parameters of the AUV
were varied.

The remainder of this paper has the following structure. The position regulation
problem of an AUV and the transfer RL problem are introduced in Section 2. Section 3
outlines the algorithm of classical RL, followed by the DDR approach, and RL via DDR
in Section 4. Section 5 summarizes the simulation results of transfer RL on the AUVs in
the Webots simulator and results on sim-to-real experiments. At last, the discussion and
conclusions are given in Section 6.

2. Problem Formulation

This paper studies the pose regulation problem of the AUV subject to model un-
certainties and other input constraints, such as dead zones and input saturations. Let
XiYiZi denote the earth-fixed reference frame and XbYbZb denote the body-fixed reference
frame [1], as shown in Figure 1. Axis OiXi and Axis OiYi are in the horizontal plane, Axis
OiZi is the gravity direction. The body-fixed frame XbYbZb is attached to the AUV center
and the ObXb axis coincides with the AUV heading. The ObYb axis is along the starboard
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direction. The AUV pose in the frame ZiYiZi is defined as its position [xi, yt, zi]
T and

attitude [ρ, ψ, θ]T . Similar to many AUVs, the restoring force is often sufficiently large to
maintain its roll ρ and pitch ψ close to zero under all circumstances. The restoring force can
be manually designed by adjusting the distance between the mass center and the buoyancy
center of the AUV.𝑂𝑂𝑖𝑖 𝑋𝑋𝑖𝑖𝑌𝑌𝑖𝑖 𝑍𝑍𝑖𝑖

𝑂𝑂𝑏𝑏 𝑋𝑋𝑏𝑏𝑌𝑌𝑏𝑏 𝑍𝑍𝑏𝑏 𝜏𝜏𝑥𝑥
𝜏𝜏𝑦𝑦 𝜏𝜏𝑧𝑧𝑇𝑇𝑧𝑧

Figure 1. Coordinate frames and control inputs of the AUV.

As a result, in this paper, the studied AUV is described by motions of four Degrees Of
Freedom (DOFs), including the linear motions along the ObXb, ObYb, and ObZb directions
and the yaw motion around the ObZb axis. Then, the AUV state pose η with respect to the
earth-fixed frame ZiYiZi is redefined as

ηi , [xi, yi, zi, θi]
T ,

where xi, yi, and zi are the AUV’s position, and θi denotes the AUV’s heading in the
earth-fixed frame. Then, the AUV’s velocity νi in XiYiZi is defined as

νi , η̇i = [ui, vi, wi, ωi]
T ,

where ui, vi, and wi are translational velocities in the x-, y-, and z-axes in the inertial frame,
and ωi is the angular velocity along the z-axis in the inertial frame. Then, the generalized
velocity in XbYbZb is given as

ν = [ub, vb, wb, ωb]
T ,

where
[ub, vb, wb]

T = R(θi)[ui, vi, wi]
T ,

ωb = ωi,

and R(θ + i) denotes the transform from Frame XiYiZi to Frame XbYbZb. Let the generalized
control τ from lumped thrusts in Frame XbYbZb be denoted as τ , [τx, τy, τz, Tz]T , which
may not act through the center of mass. In fact, the mapping between thrusts to the
generalized control τ may not be accurately known, due to manufacturing issues.

The dynamics model of the AUV is often described in the body frame [22] as

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ, (1)

where M denotes the inertia matrix with added mass from motion in the water, D denotes
the coefficient matrix of the drag forces, C denotes the Coriolis matrix, and g is the lumped
vector of gravity and buoyancy. The value of g can be assumed to be constant, while the
values of other matrices are partially determined by the velocities of the AUV and water
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current, and are, therefore, difficult to estimate. The dynamics model in Equation (1) only
captures the main aspects of the actual system under mild conditions, leaving some effects
unmodeled, such as thruster dynamics. The control inputs τ are subject to constraints from
the phenomena of saturations and dead zones, which are, respectively, given by

τ ≤ τ ≤ τ̄

|τ| ≥ τd, (2)

where τ and τ̄ denote the saturation bounds of the control inputs, | · | denotes the absolute
operation, and τd denotes the dead band. Let U denote the set of control that satisfies
Equation (2). However, the feasible set U may not be accurately estimated due to varying
power supply and current conditions.

Problem 1 (Position Regularation Problem). Design a controller that can bring the AUV
starting at ηi(0) to the origin Oi, subject unknown dynamics model (1), and the constraints of the
dead zones and saturations (2).

This paper explores the feasibility of RL techniques to train a controller from numerical
simulations built on Equation (1). The continuous-time model in (1) is converted into a
discrete-time model by Taylor’s first-order expansion, as shown below:

ν(t + 1) = ν(t) + M−1τ(t)∆t−M−1ζ(ν(t), η(t))∆t, (3)

where
ζ(ν(t), η(t)) = C(ν(t))ν(t) + D(ν(t))ν(t) + g(η(t)) (4)

and ∆t is the sampling time. The forward dynamics model in (3) is denoted as Fs.
This model can be simulated with estimates of unknown parameters by the Webots

simulator and the controller can be trained to solve Problem 1 of the simulated system (3).
The controller us outputs the control vector τ(t) at time t, i.e.,

τ(t) = u[ν(t), e(t)],

where eT(t) is the error of position regulation viewed in the body frame and is obtained by

[eT(t), 1]T , TT(ηi)[η
T
i , 1]T .

The transformation matrix T(ηi) transforms a point in the body frame to the earth-
fixed frame. The controller u(·) maps from the AUV velocity and position errors to control
inputs. Let y(t) , [νT(t), eT(t)]T and refer x(t) as the AUV state at time t. It is assumed
that the AUV state can be acquired with small noises at high frequencies.

The controller trained in the source domain Ds under the source dynamics models Fs

(see Equation (3)) is denoted as us, referred to as the source controller. The source controller
would be applied to a target dynamical system Ft in a target domain Dt. The forward
dynamics model Ft presents a real AUV system or a simulated AUV with a different
dynamics model. Since the direct application of us on Ft brings unsatisfactory results, us

has to be transferred to obtain ut for better performance.

Problem 2 (Controller Transfer Problem). Design an approach to learn a source controller us

for the source dynamics Fs and to transfer us to the target dynamical system Ft and obtain a target
controller ut, such that the Problem 1 of the target system Ft can be solved by ut.

Model-free RL can deal with uncertainties and train controllers on deterministic
dynamical systems with various parameters to improve the stability of the trained controller
us the. However, dynamics models from through-parameter randomization may not
cover those in the target domain. To this end, in this paper, a data-informed domain
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randomization approach is developed to solve Problem 2. In the meantime, the model
mismatches between the source and target dynamics models have to be quickly estimated
online to efficiently adjust the controller ut.

3. Reinforcement Learning

This section briefly describes the RL approach to solve Problem 1 of the simulated AUV.
As shown in Figure 2, the learning procedure interacts with the simulator and collects the
trajectories and rewards. The task in Problem 1 is converted to an optimization problem as

max J =
∞

∑
t=1

γtr(t), (5)

where γ is a discount factor that penalizes long-term rewards and the reward function R is
defined as follows.

r(e, v, τ) , −α1
T‖e‖ − α2

T‖ν‖ − α3
T‖τ‖, (6)

where ‖ · ‖ denotes L2-norm. The term e ∈ R
3 is the regulation error on positions, v ∈ R

4

is the AUV’s generalized velocity and it has to be zero when the AUV is at the origin
in Frame XiYiZi, and τ ∈ R4 denotes the control inputs. The weights α1, α2, and α3 are
positive parameters and are defined by users. In this paper, they were chosen such that
α1 ≫ α2 ≫ α3 > 0. The reward function has to be designed or learned to reflect the control
perpurse, which is a hot topic as it affects the convergence process in the learning and
stability performance of the AUV [23].

The optimization of the objective (5) is solved against the equality constraints from
the AUV dynamics model (3) and the inequality constraints from the control dead zones
and saturations (2), outputting the source controller us. These two types of constraints are
simulated in the Webots simulator and are rediscovered by the interaction between RL and
the simulator by the data {xs(t), τs(t), xs(t + 1), rs(t)}t∈It

, where It is the index set.
RL is essentially a exploration-and-exploitation algorithm that updates its controller

through interactions between the learning agent and the simulator (i.e., {xs(t), τs(t),
xs(t + 1), rs(t)}t∈It

). After being fitted in Markovian decision processes, the objective func-
tion is the cumulated rewards and should be maximized. The reward function is defined
in Equation (5) [24]. In the tth iteration, the control inputs τ(t) ∈ U are chosen by the
controller us based on the state xs(t) (i.e., the current regulation error et and velocities
nut). The simulator receives the control inputs τ(t) and outputs the AUV state xs(t) af-
ter a one-step simulation and a reward value defined in Equation (6). The obtained data
{xs(t), τs(t), xs(t + 1), rs(t)}t∈It

are used to update the controller network us and the critic
network Vs, as shown in Figure 2. The critic Vs is essentially the objective function evaluated
at the state xs, conditioned on the controller us, which is not optimal before the convergence
of the learning process. The controller us is then updated by maximizing the critic Vs at given
xs. The procedures are briefly outlined in Algorithm 1.

Webots

Simulator𝜏𝜏𝑠𝑠(𝑡𝑡)
𝐱𝐱𝑠𝑠 𝑡𝑡𝑢𝑢𝑠𝑠

𝑉𝑉𝑠𝑠

𝐱𝐱𝑠𝑠 𝑡𝑡 + 1
𝐱𝐱𝑠𝑠 𝑡𝑡 ,𝑟𝑟𝑠𝑠 𝑡𝑡 ,𝐱𝐱𝑠𝑠 𝑡𝑡 + 1

Figure 2. Learning mechanism of reinforcement learning.
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While there are many methods to train the controller network, this paper adopts the
Soft Actor-Critic (SAC) [25], which is an open-source off-policy learning algorithm. As
reported by many researchers, SAC can achieve sufficient results in benchmark problems.

Algorithm 1: Learning Source Controller Network

1 Randomly initialize controller network π
2 Initialize memory buffer M
3 Initialize time step t = 0
4 Sample state xs(t) ∼ p(xs(0))
5 Insert (xs(t+), xs(t + 1), τs(t), rs(t)) into R
6 while step ≤ MaxStep do

7 while M is not full do

8 Perform action τs = us(xs(t))
9 Receive next state xs(t + 1) = Fs(xs(t), τs(t))

10 Receive reward rs(t) = R(xt, ut)
11 Insert (xs(t + 1), τs(t), rs(t)) into M
12 Update t← t + 1
13 if episode is terminated then

14 Reset t = 0
15 Sample xs(t) ∼ p(xs(0))
16 Sample ψ ∼ p(ψ)

17 end

18 end

19 Update us using data in M

20 end

4. Transfer RL via Data-Informed Domain Randomization

In the studied transfer learning of Problem 2, the state space and the control space
between the source domain and the target domain share the same dimensions. This section
explores a method to train a mapping H(xs, τs) that transfers us to obtain ut to match the
difference between the source dynamics and target dynamics. In addition, it is required
that the training of H(xs, τs) relies on a limited number of data, which can be collected
within a few minutes of collection on the real AUV. This section introduces a data-informed
domain randomization approach.

4.1. Data-Informed Domain Randomization

Instead of directly adding Gaussian noise to the outputs of the simulated dynamics
models, the noise is added to the parameters of dynamics models, allowing for more diverse
distributions that can cover the actual distributions of the AUV states and dynamics. In
each training episode, the parameters in the AUV dynamics model (3) include the inertia
matrix M ∈ M, the drag matrix D ∈ D, the Coriolis matrix C ∈ C, the vector g ∈ G
of lumped gravity and buoyancy. The setsM, D, C, and G of these parameters can be
estimated [1]. The parameters are randomly sampled fromM, D, C, and G. Besides, there
are uncertainties regarding the transform matrix from thruster forces to the generalized
force that acts through the AUV’s center of mass. These uncertainties are also added to the
Webots simulator. The control inputs tau are subject to constraints from the phenomena of
saturations and dead zones, which are determined by τ and τ̄ and τd, respectively. These
constraints are also randomly chosen according to an estimated set.

As illustrated in Figure 3, following the above-mentioned domain randomization
approach, the dashed ellipse denotes the set Fs of the AUV dynamics models that can be
simulated in Webots. The solid ellipse presents the set Ft of the real AUV under various
conditions, such as thruster configurations and payloads. It is highly possible that the
dashed ellipse and the solid ellipse only share a few common dynamics. Therefore, it is
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difficult to guarantee the stability of the AUV if the trained source controller us is directly
applied to the real AUV. us might only be robust to the variations in the AUV dynamics in
Fs ∩ Ft.

ℱ𝑠𝑠 ℱ𝑡𝑡
Figure 3. The overlap between the two domains regarding the states and actions.

However, this method is only applicable to the case where the setFt of target dynamics
(the solid ellipse) is contained by the set Ft of source dynamics (the dashed ellipse), as
shown in Figure 4a. In this case, the trained controller us is robust to the dynamics in
the solid ellipse. The obtained controller us maximizes the expectation of the objective
function (5) over all possible dynamics inFs. In other words, the expectation of the objective
function (5) is not optimized over all possible dynamics in Ft. One way to reduce this gap
is to adjust the parameter distribution so that Fs is close to Ft.

Many adaptive domain adaptation techniques have been studied, and they bias the
distribution of parameters based on the trajectory data collected from the target domain Ds.
The likelihood of the trajectory obtained from various simulated dynamics compared to an
obtained trajectory from the real AUV can be computed and used to update the weights of
the parameter particles. In each episode, particles with different weights are used to sample
parameter values following the particle filter strategy, and to train the source controller us.
This procedure identifies the system parameters and many other similar approaches can be
explored in the future.

ℱ𝑡𝑡ℱ𝑠𝑠
(a)

ℱ𝑡𝑡ℱ𝑠𝑠
(b)

Figure 4. Adaptive domain randomization adjusts the probability distributions of sampling model

parameters and converts the source domain from (a) to (b).

However, the performance of the above strategy heavily relies on the assumption that
Ft ⊂ Fs. While treating unmodelled dynamics as noise, the nominal behavior of the actual
AUV dynamics is contained by the set of source dynamics models. The actual system may
exhibit dynamics that are not covered by Fs. Therefore, this paper proposes the following
data-informed domain randomization (DDR) approach, as shown in Figure 5. It is based
on the assumption that the variation in a given dynamics model can be covered by the
mapping between the control inputs. The mapping G is illustrated as the “G” block of the
diagram in Figure 5.



Appl. Sci. 2023, 13, 1723 9 of 19

Webots

Simulator

Real

AUV

G

𝒯𝒯𝑡𝑡
𝒯𝒯𝑠𝑠𝜏𝜏𝑠𝑠𝜏𝜏𝑡𝑡

𝜏𝜏𝑡𝑡

𝑢𝑢𝑠𝑠𝐱𝐱𝑠𝑠 𝑡𝑡 = 𝐱𝐱𝑡𝑡 𝑡𝑡
Figure 5. The Data-informed Domain Randomization (DDR) adaptation mechanism.

The mapping has a limited number of neurons, only requires a few training samples
and can deal with many changes regarding the real AUV—for example, when one truster is
tangled by seaweeds and its thruster force is degenerated. In other cases, when the external
force from payloads changes, the mapping of the forces can also implicitly estimate the
payloads. The scale between inputs forces and mass and other terms can also be captured
by the mapping G. The mapping between controllers us and ut is then defined as

τs = G(τt). (7)

The goal of the DDR is to reduce the gap between the outputs from the simulated
dynamics model and the trajectories collected from the actual AUV. The loss function in
training is given as ‖Ts − Tt‖, where the trajectory Tt is collected from the actual AUV,
while Ts is obtained from the numerical simulation. Since it might be difficult to find a
close enough trajectory, it is better to create an inverse dynamics model of the simulated
model (3). Therefore, in this paper, an inverse model of (3) was obtained via supervised
training. The obtained inverse dynamics model is denoted as R(ν(t), ν(t + 1), η).

In online applications, the adaptive domain randomization approach aims to reduce
the variance in parameters. When trajectories are obtained from the real AUV, control
signals are also obtained. From the inverse model, the control inputs can be calculated from
Equation (7). The loss function to train G is given as

L(G) , ‖R(ν(t), ν(t + 1), η)− G(τt)‖ (8)

Through learning G, this approach is able to quickly capture the changes in the
dynamics model of the real AUV. The obtained mapping G(τt) is used in the controller
transfer. The desired outputs τs of G can be obtained from R(ν(t), ν(t + 1), η) and the input
to G is τt. During the runtime, a bag l of pairs (τt, τs) is maintained to keep the latest pairs
and has a fixed size of nb = n2

p/2, where np is the number of total unknown weights in the
neural network G. When the value of Equation (8) is within a certain threshold, the AUV
dynamics do not change much and the adaptation based on the gradient is given as

θG = θG + β
∂G

∂θG
. (9)

When the value of Equation (8) is larger than a certain threshold, the bag l is emptied
and quickly collects new data; then, the network G is retrained from scratch. Since the
network G is quite small, this often takes less than a second.

4.2. Controller Transfer across Domains

Finding correspondences between the dynamics and controller across domains is key
to improving the learning efficiency in the target domain [13]. In Problem 2, the position
regulation tasks of the source and target domains are the same, while the robot dynamics
models of the two domains are different. As shown in Figure 6, the successful transfer of
the controller us to the target domain Dt highly depends on the control alignment. The
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proposed transfer RL via DDR has been illustrated in Figure 6. During training, the trajectories
Ts , (xs(t), us(t), xs(t + 1)) and Tt , (xt(t), ut(t), xt(t + 1)) of the AUV were collected
through interactions with the source and target dynamics, respectively. Based on the collected
Ts and Tt, the nerual network H, G, and R are trained in the following order. The network H
is trained and then fixed in training G. Once H and G are obtained, R was trained.

Webots

Simulator

Real

AUV

G

H

𝒯𝒯𝑡𝑡
𝒯𝒯𝑠𝑠𝜏𝜏𝑠𝑠𝜏𝜏𝑡𝑡

𝜏𝜏𝑡𝑡

𝑢𝑢𝑠𝑠

𝐱𝐱𝑡𝑡(𝑡𝑡)

R 𝐱𝐱𝑠𝑠(𝑡𝑡)𝐱𝐱𝑠𝑠(𝑡𝑡 + 1)𝜏𝜏𝑠𝑠

𝜏𝜏𝑡𝑡
𝐱𝐱𝑠𝑠 𝑡𝑡 = 𝐱𝐱𝑡𝑡 𝑡𝑡

Figure 6. Transfer process between the source controller and target controller.

The control alignment depends on H : X × Us 7→ Ut, which is learned together with
G. Different from existing research, these two mappings are learned in the DDR process. In
the forward source dynamics model Fs is trained to build H(xs(t), τs(t)) = xs(t + 1). The
forward model takes in the state xs(t) and the control τs(t) at time t as inputs and outputs
the state at time t + 1. The learning of Fs is conducted offline via supervised learning, based
on the trajectories collected through numerical simulations. The loss function regarding
forward model Fs is given as

min
F
L(F) = ∑

(xs(t),τs(t),xs(t+1))∈Ts

‖xs(t + 1)− F(xs(t), τs(t))‖. (10)

Given forward model Fs, the loss function to train H is defined as

min
H
L(H) = ∑

(xt(t),τt(t),xt(t+1))∈Tt

‖xt(t + 1)− F(xt(t), H(xt(t), τt(t)))‖. (11)

Then, keeping the Fs model fixed, the model R is trained. In addition, the transforma-
tion from ut to us should be reversible. The translated control can be mapped back to the
original domain. This requirement adds a regulation in training R, so the loss function is
given as

min
R
L(R) = Eτt∼p(ut)‖H(τs(t), R(xs(t), xs(t + 1)))− τt‖. (12)

Once these networks are trained, the target controller can be obtained as follows

ut = H{R[x, F(x, us(x))]},

and can be applied to the target dynamics Ft. When the real AUV system is subject to
sudden changes, the mappings G and H are retrained. As shown by the results in Section 5,
only a few data from various episodes are required.

5. Simulation and Experimental Results

The proposed transfer reinforcement-learning-based data-informed domain random-
ization was tested in numerical simulations and experiments on a real AUV in a lab tank. In
both cases, the source domain was the numerical simulations conducted in Webots, where
the mass of the AUV was set as 12 kg. The dynamics model of the simulated AUV is given
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in Equation (3), with neutral buoyancy. As shown in Figure 7, the AUV was equipped
with six thrusters, each of which can output thrust within [−50, 50] N. The dead band was
chosen as [−5, 5] N. As in Section 2, the AUV is able to move in the x, y, and z directions
of the body frame and rotate along the z axis. In addition, the control input is mapped to
PWM signals of four dimensions. An example of the numerical simulation is depicted in
Figure 8, where the origin Oi in the earth-fixed frame is illustrated as a small red ball.

Figure 7. A schematic of the AUV used in numerical simulations and experiments, where 6 thrusters

are indexed from 1 to 6.

A source policy us was trained by RL through interactions with Ft in the source
domain. In each episode, the initial AUV pose and velocities were randomly sampled from
a set, where the positions were within a box of [−10, 10] [m] × [−10, 10] [m] × [−10, 10] [m]
and the velocities were within a box of [−2, 2] [m/s] × [−2, 2] [m/s] × [−2, 2] [m/s]. The
controller network us output the four-dimensional PWM signal vector, which was converted
to a generalized force in the body frame XbYbZb.

Figure 8. AUV simulated in the Webots simulator with the ball represents the targeted origin Os.

In the numerical simulations used to train the source controller, the generalized mass
matrix is given as

M =









m + Xu̇ 0 0 0
0 m + Yv̇ 0 0
0 0 m + Zẇ 0
0 0 0 Iz + Nṙ









, (13)

The coefficient matrix of the drag term is

D =











−Xu − Xu|u||u| 0 0 0

0 −Yv −Yv|v||v| 0 0

0 0 −Zw − Zw|w||w| 0

0 0 0 −Nr − Nr|r||r|











(14)

and the Coriolis matrix C was assumed to be zero. The parameters can be found in Table 1.
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Table 1. Parameters of AUV models in numerical simualtions.

Index Parameter Value

1 m + Xu̇ 15.9 kg
2 m + Yv̇ 32.2 kg
3 m + Zẇ 14.5 kg
4 Iz + Nṙ 0.3 kg·m
5 Xu −36.8 kg
6 X|u|u 374.7 kg·s/m

7 Yv −60.6
8 Y|v|v 197.2 kg·s/m

9 Zw −112.2 kg
10 Z|w|w 153.2 kg·s/m

11 Nr −0.32 kg·m
12 N|r|r 0.95 kg·m·s

The target domains differ in the numerical simulation tests and the experimental
tests. In the numerical simulation tests, the target domain and target dynamics were again
simulated in the Webots simulator, subject to parameters and configurations quite different
from the simulated source domain and the source dynamics. The tested scenarios in the
case are referred to as sim-to-sim transfer tests. In the experimental tests, the target domain
and the target dynamics were of the real AUV in the lab tank, the details of which are
introduced later.

5.1. Sim-to-Sim Tests

To test the proposed transfer RL via DDR, three scenarios with manually designed
model mismatches were simulated. These scenarios were manually designed to reflect
possible changes in the real AUV dynamics due to some sudden events. The first scenario
involves changing the pose configurations of two thrusters to create a model mismatch
between the source dynamics model Fs and the target dynamics model Ft. As shown in
Figures 9 and 10, the source controller us was unable to stabilize the AUV with the target
dynamics. This is because the changes in the pose configurations of thrusters with respect to
the center of mass introduce a shift in the mapping, from the thrusts to the generalized. The
mapping from τt to τs was quickly learned by a few episodes of data collection regarding
the target dynamics. During these episodes, the performance of the position regulation in
these episodes was poor and was not analyzed. After that, the mapping H was updated
and the resultant ut was able to stabilize the AUV of the target dynamics, as shown in
Figure 9. To illustrate the effectiveness of transfer RL, the trajectories of the AUV in the
target domain under us and ut are shown in Figure 10. The dashed line represents the
trajectory obtained by us, and the solid line represents the one obtained by ut. Let the error
of position regulation be defined as the L2 norm of the AUV state. The errors of regulating
AUV positions from us and us are shown in Figure 9. The disturbance effects and control
forces are shown in Figure 11.

A common issue is that the characteristics of a thruster may gradually change during
its lifetime or vary suddenly due to certain events. In the second scenario, the gain and
the maximum thrust of some thrusters were manually designed to simulate the case in
which some thrusters were entangled by some seaweeds. As shown in Figure 12, when
the source controller us was tested on the target dynamics Ft, the reduced gain of some
thrusters introduced additional unwanted torque along z axis, making the AUV oscillate its
heading. The mapping from τt to τs was quickly learned over a few episodes. Again, the
performance of the position regulation in these episodes was not analyzed. The trajectories
of the AUV in the target domain under ut and ut are shown in Figure 12. The errors when
regulating AUV positions from us and us are shown in Figure 13.
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Figure 9. Trajectories obtained by us and ut for the AUV of Ft.

Figure 10. Errors of the position regulation obtained by us and ut for the AUV of Ft.
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Figure 11. Disturbance effects and control forces.
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Figure 12. Trajectories obtained by us and ut for the AUV of Ft, he maximal thrusts of the four

horizontal thrusters were modified to 50 N, 80 N, 10 N, and 50 N.

Figure 13. Errors of position regulation obtained by us and ut for the AUV of Ft, where, in the target

dynamics, the maximal thrust of the four horizontal thrusters were modified to 50 N, 80 N, 10 N, and

50 N.

The third scenario simulated an extreme case, where one of the four horizontal
thrusters was damaged and a second thruster suddenly changed its phase in the PWM
driver, causing it to rotate in the opposite direction. In this scenario, classical controllers
such as PID or adaptive controllers may fail, since these methods often assume that the
system reserves the positiveness of the gain matrix. When one of the thrust outputs forces
opposite to the desired direction, the AUV system is easily destabilized. After the mapping
H was updated, the transferred controller ut was able to stabilize the AUV in the target
domain, as shown in Figure 14. The trajectories of the AUV in the target domain under
us and ut are shown in Figure 14. When one of the horizontal thrusters is damaged, the
horizontal motion is still fully actuated in a horizontal plane, allowing for G and H to
be mapped. The position error is shown in Figure 15. After a quick test, the proposed
approach is unstable the AUV if two horizontal thrusters are damaged.



Appl. Sci. 2023, 13, 1723 15 of 19

Figure 14. Trajectories obtained by us and ut for the AUV of Ft, where, in the target dynamics, one

thruster is damaged and another reverses its rotating direction.

Figure 15. Errors of position regulation obtained by us and ut for the AUV of Ft, where, in the target

dynamics, one thruster is damaged and another reverses its rotating direction.

It has been observed that the mapping G can be learned within a few episodes, with
each episode lasting for 20 s. The results from three scenarios show that DDR is able to
transfer the source controller us to the target controller ut, by creating mappings G and H
across the source dynamics and target dynamics.

Then, for each scenario, approximately N = 100 initial AUV states were randomly
sampled and the resultant trajectories of AUV were recorded. The stable performance of
the j trajectory is given as

ηj = E‖ej(t)‖, t ≥ 10[s]. (15)

Then, the average performance is given as

η = 1/N ∑
j=1,...,N

ηj, (16)

and the variance σ can also be obtained. The mean and variance of η with respect to all
above-mentioned scenarios are illustrated in Figure 16a–c and Table 2.
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(a) Scenario one (b) Scenario Two (c) Scenario Three

Figure 16. Mean square error of 100 trajectories of AUV regarding three scenarios.

Table 2. Mean errors from three scenarios.

Scenario Mean Error: ut Mean Error: ut

“Swapping commands to
Thrusters 1 and 2”

0.019 [m] 0.41 [m]

“Manually reducing gain of
the thrusters”

0.028 [m] 0.39 [m]

“ Setting negative gain to
Thruster 1”

0.021 [m] 1.16 [m]

5.2. Sim-to-Real Tests

The proposed data-informed domain randomization approach was applied to an
underwater robot built on BlueRov2 from Blue Robotics, Inc. (Torrance, CA, USA), as shown
in Figure 17a. It is a tethered ROV with six thrusters. With the given thruster configuration,
the ROV is able to translate in three directions, roll, and yaw. The ROV is designed to
have a sufficient restoring force, to keep itself horizontal. The ROV communicates with
a laptop through the Robot Operating System (ROS) and receives thruster commands in
the form of PWM signals. In order to provide real-time state estimation of the ROV, an
underwater optical motion capture system from Nokov was implemented, which also
communicates via ROS and publishes the pose topic in the form of three-dimensional
vectors and quaternions. Since the field of view of cameras is often small in underwater
applications, the motion capture system relies on 12 underwater cameras mounted on the
walls of the tank. In addition, due to the short visibility distance, the reflective markers are
of 30 mm, as shown in Figure 17b.

(a)
(b)

Figure 17. (a) BlueROV2 from Blue Robotivs, Inc.; (b) ROV with four reflective markers of 30 mm.

The cameras emit blue lights (as shown in Figure 18a) and capture the pose of a rigid
frame (as shown in Figure 18b) built on markers at 60 Hz. The motion capture system was
calibrated with an L-shaped calibrator, which consists of four markers placed in the middle
of the pool. The positioning system can reach a sub-centimeter resolution.
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(a) (b)

Figure 18. (a) The motion capture system in operations; (b) The rigid frame built on reflective markers.

The laptop receives the pose estimation from the motion capture system, implements
the proposed RL approach, and sends the control signals to the ROV. The whole system is
referred to as the testbed of the “AUV”. In the future, a sonar-based localization approach
and the proposed transfer RL algorithm will be implemented in the updated hardware of
the ROV, making it an AUV.

The dynamics model of the real AUV (i.e., the target dynamics model) is jointly
determined by the body morphology and AUV velocities. The mass and other parameters
are difficult to estimate. Note that only the dead zones and the saturation of the thrusters
were simulated; however, the complex dynamics of the thrusters were not simulated in the
source dynamics [26]. Therefore, there mismatches between the source dynamics model
and the target model are inevitable. In addition, external disturbances were generated by a
propeller fixed to the tank and an example of external disturbances is shown in Figure 19.
Note that, when testing the algorithm, the AUV was detached from the force-torque sensor
and the disturbance values are unknown.

Figure 19. An example of external disturbances generated by a propeller fixed to the tank.

In one of the experimental tests, the AUV started from the position x(0) = [0.18,−0.46,−0.4]T.
Two trajectories were obtained: one Ts obtained by us and the second Tt obtained by ut. Both
trajectories are illustrated in Figure 20a, where Ts is shown by the red dashed line and Tt by the blue
solid line. The trajectories demonstrated that the transferred controller ut successfully regulated the
AUV position, while the controller us was unable to stabilize the AUV around the origin Ot. The
position regulation errors from both trajectories are shown in Figure 20b. The transferred controller
ut stabilized the AUV in a sphere of radius 0.15 mm at the origin Ot.
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(a) Trajectories (b) Error

Figure 20. An example of trajectory and position regulation error from tank tests.

6. Conclusions

This paper studies the controller transferring problem from a source AUV system to a
(simualted or real) target AUV system and proposes data-informed domain randomization
to reduce the gap between the domains and to improve the efficiency in online adaptation. A
small neural nework builds mapping between source and taget control signals, and enables
the effective adaptation of controllers optimized from the source dynamics to the target
dynamics. The proposed method was extensively tested via numerical simulations of the
position regulation problems. The method was also validated by experiments in a tank with
a positioning system. The proposed transfer RL via DDR relies on the assumption that the
state space and the objective function across domains are the same, making the alignment
easy on the trajectories. In the future, a new module to align states of different dimensions
should be explored. In addition, the positioning system provides high-resolution state
estimation, which is not available for outdoor applications. The effects of noise on the state
estimations should be considered in future studies.
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