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Abstract: Monitoring the status of culture fish is an essential task for precision aquaculture using a
smart underwater imaging device as a non-intrusive way of sensing to monitor freely swimming
fish even in turbid or low-ambient-light waters. This paper developed a two-mode underwater
surveillance camera system consisting of a sonar imaging device and a stereo camera. The sonar
imaging device has two cloud-based Artificial Intelligence (AI) functions that estimate the quantity
and the distribution of the length and weight of fish in a crowded fish school. Because sonar images
can be noisy and fish instances of an overcrowded fish school are often overlapped, machine learning
technologies, such as Mask R-CNN, Gaussian mixture models, convolutional neural networks, and
semantic segmentation networks were employed to address the difficulty in the analysis of fish
in sonar images. Furthermore, the sonar and stereo RGB images were aligned in the 3D space,
offering an additional AI function for fish annotation based on RGB images. The proposed two-mode
surveillance camera was tested to collect data from aquaculture tanks and off-shore net cages using a
cloud-based AIoT system. The accuracy of the proposed AI functions based on human-annotated
fish metric data sets were tested to verify the feasibility and suitability of the smart camera for the
estimation of remote underwater fish metrics.

Keywords: sonar images; stereo RGB images; Mask R-CNN; gaussian mixture models; convolutional
neural networks; semantic segmentation networks; object detection CNN

1. Introduction

Aquaculture, with the aim of the farmed production of fish or shellfish, has been one
of the great contributors to supplying fish or seafood products for human consumption. In
1974, aquaculture contributed 7% of the fish supply and reached 50% in 2020 [1]. With this
vast increase in production and to cope with the supply–demand due to the increasing pop-
ulation, many aquaculture farms are expanding rapidly. However, these expansions require
effective fish farm management, which is much needed to solve relevant aquaculture issues,
including environmental degradation, disease and parasite outbreaks, labor shortage, and
productivity maximization by efficiently managing its resources. These challenges can be
addressed by integrating fish farm monitoring-based technology with Artificial Intelligence-
based Internet of Things (AIoT). At the same time, machine learning and big-data analytics
make it possible to collect, process, and analyze large volumes of heterogeneous datasets.
When combined, these powerful technologies craft a precision aquaculture framework that
uses sensors, cloud, and analytics to enable real-time, evidence-based decision-making to
optimize operations [2].

Precision aquaculture requires adopting technologies such as information-based man-
agement with big data and models to guide the production process [3] to fully understand
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the environmental and fish conditions in the cage. Its goal is to enable farmers to make
intelligent decisions by providing objective information to improve their capability to mon-
itor and control factors that involve fish production; thus, farming decisions are adjusted
to improve fish health and maximize farm production. Large and modern aquaculture
farms must incorporate technological innovation to automate their processes, minimize
workforce requirements, and maximize their fish feeding process. It enables farmers to
integrate technology and data-driven decisions making, enabling efficient aquaculture
farm management and remote monitoring, especially for farms situated in the open sea.
The use of machine learning and computer vision in Artificial Intelligence (AI), together
with sensors and Internet of Things (IoT) technologies, have been widely used to monitor
fish feeding behavior, disease, and growth as a non-invasive method, thereby enabling
objective observation of the fish farm. Such a mechanism also allows data collection and
real-time image acquisition using reliable wireless communication channels [4] without
relying so much on human intervention [5].

Various sensors such as temperature, position, humidity, flow, and photo optic or
camera sensors have changed how the world accesses data from remote locations. These
devices have bridged the gap in collecting data from the physical environment and trans-
mitting wirelessly to a platform with a network of remote servers for storage, management,
and data processing [6]. Data collection from physical environments can be carried out
by other means such as underwater vehicles [7]. The advancement of cloud computing
and IoT has brought tremendous innovation and improvement to aquaculture farming.
Cloud computing services enable the collection and storage of big data for processing using
AI methodologies capable of predictive analysis to provide informed decision-making
mechanisms for precise aquaculture. It enables a brand-new farming approach [8] that
eases the burden of the farming industry in terms of monitoring.

For aquaculture farms, it is vital to monitor the fish growth and population as an
essential parameter to approximate fish food and assess the overall wellness of the fish
species. To achieve the goal of smart aquaculture, fish counting and body length estimation
using underwater images are essential to estimate the fish growth curve [9,10]. Cameras
as sensors can now be used to capture underwater fish images in an off-shore cage in a
non-intrusive manner that reduces the manual handling of the fish, thus reducing direct
contact that can cause stress, injury, and growth disturbance to the fish species in the cage.
In addition, sonar and stereo cameras for data collection and computer vision can estimate
the fish’s biological information. Sonar and RGB cameras, such as stereo systems, are just
one of the most widely used and studied systems for underwater environment monitoring.

In the underwater environment where the lighting condition is poor or low, RGB
cameras are limited. In contrast, sonar cameras are more robust concerning the issue
of light attenuation and water turbidity that severely affects optical sensors. In terms
of area to cover in capturing the underwater environment, sonar cameras have more
scope and a higher range than stereo cameras, as shown in Figure 1. In addition, a sonar
camera provides a depth reference value for 3D images, further improving the length
or size estimation accuracy. Various studies also dealt with using sonar systems and
their applicability to fish length estimation [11–13]. A 3D sonar camera allows direct
representation of a scene’s 3D information, drastically reducing or no longer requiring
the 3D reconstruction process from 2D views, making it more viable for real-time data
processing [14]. However, the cost of a high-resolution 3D sonar camera is expensive. To
meet the cost concerns of sensors for aquaculture management, in this study, we proposed a
fusion of using a low-cost sonar imaging device and a stereo camera system for aquaculture
fish monitoring.

Figure 2 shows the framework of our AIoT system where the two camera sensors
(sonar and stereo camera) were deployed and installed in the aquaculture farm to collect
images/videos from the site. In addition, these sensors were equipped with wireless
transmission capabilities to send the collected data to the AI cloud services, where each
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of the trained deep learning and machine learning models performed the necessary AI
function for a specific application.
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Our proposed sensor fusion comprises four steps: data collection from the aquacul-
ture sites using our sonar and stereo camera system sensors, 3D-point cloud estimation,
overlapping detection, and object detection to integrate AI functions; the details of these
are discussed in the subsequent section. In this work, we used the sonar camera system as
the primary sensor device for collecting depth information from the target fish objects to
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perform fish metric estimation, specifically for fish length and fish count. It uses its beam to
collect fish information by sending multiple sound waves to the scene. Thus, it can capture
the real environment’s depth information. Sonars use depth information to form an image
object much different from an optical image.

Although sonar devices, as mentioned earlier, provide bigger coverage, they do not
have texture and color information since they just provide depth information. Due to
refraction, the shape of the captured fish sonar images is affected. Thus, they can only map
macro-features due to their limited resolution [15]. The stereo camera system addresses this
concern or limitations of the sonar camera system. These two devices can work together to
provide a clearer picture of the underwater fish object in the aquaculture cages or ponds.
Since sonar images lack color information, we used the RGB images captured from the
low-cost sonar camera to provide additional functions for fish-type annotation.

One of the challenges of sensor fusion is to detect the common area of each sensor
or their corresponding images, and considering the environment is underwater, more
problems arise. Additionally, the target objects in the sonar and stereo camera systems have
different positions, so a mechanism should be devised to project the same target image
into the same plane. Incorporating transformation in their corresponding rotation and
translation vectors will map the features from sonar to optical coordinate system using
the extrinsic sensor calibration method. Since each sensor’s range is different, the target
object and its corresponding shape should be recognized by both [14]. In this work, we
proposed a method to determine the sensor’s overlapping areas using their corresponding
3D point cloud information so that the sonar images are projected to the stereo images. We
used four markers (four pixels) or points with their corresponding 3D point sets. Both the
sonar and stereo camera systems should be able to detect or distinguish these markers. We
had two phases to integrate plane projection conversion. First, the learning phase obtained
the transformation matrix in rotation and translation based on the marker’s information.
Second, each pixel in the sonar image was transformed into its corresponding pixel in the
stereo image (left image). Then, the result of the transformation was projected into the 2D
space to identify the pixel correspondence for both camera systems. In the testing phase,
for each pixel in the frame of the sonar camera, the transformation matrices were then used
to locate the corresponding pixel in the synchronized frame of the optical camera. Thus,
the common area covered by the sonar and RGB cameras was detected.

The contributions of our paper are the following:

• We proposed an AIoT system that provides sonar and stereo camera fusion that
supports automatic data collection from aquaculture farms and performs artificial
intelligence functions such as fish type detection, fish count, and fish length estimation.
To our knowledge, combining a low-cost sonar and stereo camera system tested in
various aquaculture environments with different AI monitoring functions is a novel
work.

• We designed a methodology to perform sonar and stereo camera system fusion. How-
ever, deploying IoT can be expensive, and to limit the cost of its implementation, we
employed low-cost sensors that do not entail high additional expenses for aquaculture
farmers.

• Using a sonar camera system, we developed our mechanism to estimate the fish’s
length and weight. Additional plugin AI functions can also be deployed in the cloud
to meet the emerging requirements of decision-making for aquaculture management
based on the collected big data sets. Agile development realizes the design of learnable
digital agents to achieve the goal of precision aquaculture.

The paper is structured as follows: Section 2 provides the related works, and Section 3
contains the materials and methods, which detail our approach to addressing the issue
discussed earlier. Sections 4 and 5 include the experimental results and discussion, re-
spectively. Finally, the last section outlines our conclusions and recommendations for
future works.
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2. Related Works

IoT and AI have gained popularity in the past few years due to their efficiency and
promising results in various fields. For example, in aquaculture production, they have
been widely used to improve the accuracy and precision of farming operations, facilitate
autonomous and continuous monitoring, provide a reliable decision support system, and
limit manual labor demand and subjective assessment of fish conditions [16]. In addition,
vision cameras such as stereo and sonar systems are popular for computer vision-based
problems with the capability of image processing, object detection and classification, and
image segmentation.

Imaging sonar systems have been applied to many aquaculture applications, such
as fish counting [17,18], estimation of fish length [11], analysis of fish population [19–21],
fish tracking [22], fish detection [23], monitoring of fish behavior [24], and control of fish
feeding [25]. Hightower et al. [12] used multibeam sonar to determine the reliability of
length estimates of some fish species. The sonar was positioned approximately 0.5 m above
the bottom, and the beam was aimed slightly off the bottom. Additionally, using sonar
image analysis and statistical methodologies, a non-invasive procedure using multibeam
sonar was used to count and size the fish in a pond. Simulation software was developed to
calculate the abundance correction factor, which depends on the transducer beam size based
on the pond size [26]. DIDSON acoustic system with an ultra-high-resolution lens was
used to evaluate the accuracy and precision of estimating length from images of tethered
fish insonified at the side aspect. The device used has a good potential for discriminating
sizes among different species [27]. Lagarde et al. [28] integrated an ARIS acoustic camera
to perform counts and size estimates for European eels. Count estimates were performed
using 58 videos. The acoustic camera was installed in a channel that links a lagoon to
the Mediterranean Sea. It was positioned in the narrowest part of the channel and came
53 m wide and 3.5 m deep. A real-time system for scientific fishery biomass estimator was
proposed by Sthapit et al. [29] using a compact single beam advanced echosounder. The
device, composed of a transducer, processing unit, a keypad, and a display unit, analyzes
ping data continuously. In real-time, it calculates various parameters and simultaneously
displays the echogram results on the screen.

Convolutional Neural Networks, or CNNs, have been applied to process sonar images
for many applications, such as detecting objects on the sea floor [30] and counting fish [31].
As illustrated in Figure 3, some characteristics of the fish schools in sonar images are as
follows:

• Fish schools swim in the three-dimensional space;
• In the sonar image, fish close to the sonar system can often be incomplete, and fish

away from the sonar system become blurrier;
• In sonar images, fish are often overlapped, and the location difference of fish in the

direction perpendicular to the sonar beam is indistinguishable [32];
• Annotators are often required to examine successive sonar images to identify fish

in sonar images because they find fish by the change of the pattern and strength
of echoes.

The stereo camera system has also been extensively used in computer vision. For
example, a DeepVision stereo camera system was used by Rosen et al. [33] for continuous
data collection of fish color images passing inside the extension of the trawl. Out of 1729 fish
captured while trawling, 98% were identified in terms of species. Such a mechanism
increases the scope of the information collected specifically on documenting the fine-scale
distribution of individual fish and species overlap. The information that can be drawn
from this can help interpret acoustic data. The underwater stereo video was also used to
determine population counts and spatial and temporal frequencies, incorporating detection
and identification [34]. Stereo vision is also integrated for video-based tracking [35], fish
volume monitoring [36] or abundance [37], and 3D tracking of free-swimming fish [38].
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Stereo camera systems also have been widely used in fish length estimations [39–42],
using disparity information to provide 3D information about an object [43–45]. In aquacul-
ture, many are now putting their interest and efforts into integrating stereo cameras for fish
length and biomass estimations [40,41,46]. In our previous work, we integrated a low-cost
stereo camera system to perform fish metrics estimation. We used a reliable object-based
matching using sub-pixel disparity computation with video interpolation CNN and tracked
and computed the fish length in each video frame [10].

Through the years, interest in combining various sensors to achieve higher accuracy
and efficiency has been widespread. Many studies regarding sensor fusions have been
successfully integrated and applied in multiple fields, such as camera-lidar integration for
semantic mapping [47], driver aid systems for intelligent vehicles [48,49], target tracking
for robotic fish [50], activity detection of sound sources [51] and avian monitoring [52]. An
underwater acoustic-optic image matching was proposed by Zhou et al. [53]. Their work
combined the advantages of CNN depth features extraction to determine the image visual
attribute conversion; the difference between the acousto-optic images was discarded. Their
matching technique used current advanced learned descriptions in the generated target
image (acoustic) and the original image (optical). The data aggregation method was utilized
in displaying the calibrated matching correspondence between the two types of images.

3. Materials and Methods
3.1. Devices Used and Experimental Environments

Figure 4 shows the sonar equipment we used for the image capture with GARMIN
Panoptix LiveScope System (Garmin Ltd., Taiwan), which includes a sonar screen, a
processor, and a sonar transducer probe. The sonar system uses an Intel NUC minicomputer
(Intel Corporation, Santa Clara, CA, USA) to collect and analyze the sonar images enclosed
with the sonar block box. Meanwhile, we used a low-cost camera to set up our stereo
camera system using two Go Pro Hero 8 devices (GoPro, San Mateo, CA, USA). The two
cameras were mounted in a fixed relative position, as shown in Figure 5a, with a baseline
or camera distance of 11 cm. A waterproof case was used to cover the two Go Pro cameras
to protect them from water damage since they would be submerged in the water during the
data capturing. Next, we calibrated the two stereo cameras using the popular checkboard-
based method, as shown in Figure 5b, since the patterns are distinct and easy to detect. The
calibration checkboard has an A4 paper size with a 2.5 cm grid size. The first step of the
sensor fusion relies on the stereo image rectification process of the left and right images
of the low-cost stereo cameras. One potential problem of a low-cost stereo image camera
system is that it is incomplete or incorrectly synchronized, causing the object’s pose to be
different in the left and right images. As seen in Figure 5c, the checkboard corners serve as
the corresponding points of the left and right images.



Sensors 2022, 22, 7603 7 of 29

Sensors 2022, 22, x FOR PEER REVIEW 7 of 29 
 

 

stereo camera system using two Go Pro Hero 8 devices (GoPro, San Mateo, CA, USA). The 

two cameras were mounted in a fixed relative position, as shown in Figure 5a, with a 

baseline or camera distance of 11 cm. A waterproof case was used to cover the two Go Pro 

cameras to protect them from water damage since they would be submerged in the water 

during the data capturing. Next, we calibrated the two stereo cameras using the popular 

checkboard-based method, as shown in Figure 5b, since the patterns are distinct and easy 

to detect. The calibration checkboard has an A4 paper size with a 2.5 cm grid size. The 

first step of the sensor fusion relies on the stereo image rectification process of the left and 

right images of the low-cost stereo cameras. One potential problem of a low-cost stereo 

image camera system is that it is incomplete or incorrectly synchronized, causing the ob-

ject’s pose to be different in the left and right images. As seen in Figure 5c, the checkboard 

corners serve as the corresponding points of the left and right images. 

 

  

Figure 4. Sonar camera device used for data gathering. 

 

 
(a) (b) 

 
(c) 

Figure 4. Sonar camera device used for data gathering.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 29 
 

 

stereo camera system using two Go Pro Hero 8 devices (GoPro, San Mateo, CA, USA). The 

two cameras were mounted in a fixed relative position, as shown in Figure 5a, with a 

baseline or camera distance of 11 cm. A waterproof case was used to cover the two Go Pro 

cameras to protect them from water damage since they would be submerged in the water 

during the data capturing. Next, we calibrated the two stereo cameras using the popular 

checkboard-based method, as shown in Figure 5b, since the patterns are distinct and easy 

to detect. The calibration checkboard has an A4 paper size with a 2.5 cm grid size. The 

first step of the sensor fusion relies on the stereo image rectification process of the left and 

right images of the low-cost stereo cameras. One potential problem of a low-cost stereo 

image camera system is that it is incomplete or incorrectly synchronized, causing the ob-

ject’s pose to be different in the left and right images. As seen in Figure 5c, the checkboard 

corners serve as the corresponding points of the left and right images. 

 

  

Figure 4. Sonar camera device used for data gathering. 

 

 
(a) (b) 

 
(c) 

Figure 5. Set-up of the low-cost stereo camera system: (a) the stereo camera; (b) the correction checkboard
for calibrating; (c) the stereo camera calibration based on the warping of the check-board map.

The experimental site has three locations representing indoor and outdoor environ-
ments and less dense and highly dense fish populations. Figure 6 shows the set-up of
the environment and locations with its corresponding fish species. Fish tank A is 4 m in
length, 1 m in width, and 0.8 m in depth, and the fish instances are small. Fish tank B is an
off-shore cage with 50 m in circumference and 25 m in depth. Lastly, tank C with crowded
fish instances is 5.3 m in length, 4 m in width, and 0.8 m in depth.
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Figure 6. Experimental environments utilized for training various deep learning models for fish
length estimation, fish count estimation, and fish type annotation.

For simultaneous data capture using the two sensors for calibration, we used a laptop
computer as the sonar recording. In contrast, the data captured by the stereo camera
were saved in their respective storage devices. The distance between the sonar and stereo
camera was 50 cm. The Go Pro camera, which acts as the stereo camera system, used the
rg174 signal line to confirm that the target object was captured. In contrast, the sonar was
confirmed by the human operators. The computer device that trains the neural networks
had an Intel i7-107000k 3.8. GHz CPU, NVIDIA GeForce RTX 3090 GPU, and 48 GB memory.

3.2. Sonar and Stereo Camera Fusion

Figure 7 shows the scheme for the sensor fusion that captures underwater images
from a fish pond or a net cage. The 3D point clouds of the common object in the left image
and the sonar image can be used to calculate the transformation matrix using a 3D affine
transformation algorithm [54]. In the training phase, the common object was detected by
applying the pre-trained object detection CNN, e.g., YOLOv4 [55] to both the synchronized
RGB image and the sonar image. As shown in Figure 8, the bounding boxes of the common
object (the brick) were detected from the stereo images and the synchronized sonar image
using YOLOv4.
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3D space, given a point in the left image, its corresponding point in the right image lies on 

its epipolar line. Using a stereo-image-based disparity matching algorithm in finding the 

correspondence of the left image to the right image, take a pixel in the left image and 

search on the epipolar line for that pixel in the right image. The pixel with the minimum 

cost is selected, and the disparity can now be computed. The point is located on the epi-

polar line, which would only require a one-dimensional search where cameras need to be 

aligned along the same axis. To obtain the depth of a stereo image pair, the disparity in-
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Figure 7. The sensor fusion consists of a stereo camera, and a sonar imaging device captures the fish
images from a pond or a net cage. The 3D point clouds of the common object in the left image and
the sonar image can be used to calculate the transformation matrix using a 3D affine transformation
algorithm [54].
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Figure 8. Brick detection and its corresponding four-point marks using YOLOv4 [55] in (a) sonar
image and (b) stereo image pair.

Four markers (A, B, C, D) exist in both sonar and stereo images. Each marked point
has an image coordinate of (u, v). To combine sonar and stereoscopic images using camera
calibration, we used two bricks as the target object and integrated YOLOv4 to mark or
capture the point coordinates provided by the bounding box of the disparity conversion.
For the stereo image, the left and the right images were captured and underwent an image
rectification process to obtain the correct intrinsic and extrinsic parameters using camera
calibration. To find the corresponding points between a stereo pair and plot them into the
3D space, given a point in the left image, its corresponding point in the right image lies on
its epipolar line. Using a stereo-image-based disparity matching algorithm in finding the
correspondence of the left image to the right image, take a pixel in the left image and search
on the epipolar line for that pixel in the right image. The pixel with the minimum cost is
selected, and the disparity can now be computed. The point is located on the epipolar line,
which would only require a one-dimensional search where cameras need to be aligned
along the same axis. To obtain the depth of a stereo image pair, the disparity information
is the difference in the image location of the same 3D point projected using two different
cameras. The disparity of a pixel

→
x = (x, y) in the left image can be computed by obtaining

the difference between
d = x− x′ (1)

where x′ is the x-coordinate of the corresponding pixel in the right image. Once the
disparity value of the pixel

→
x in the left image has been computed, the depth value from

disparity d and its 3D coordinates XO = (xO, yO, zO) can be determined using triangulation:
zO = f ∗ b/d

xO = (x− cx) ∗ zO/f

yO =
(
y− cy

)
∗ zO/f

(2)

where f is the focal length of the camera, b is the baseline, defined as the distance between
the centers of the left and right cameras, and (cx, cy) is the center of the projected 2D plane.

Similarly, the 3D point P3D (r, θ, ϕ) of the spherical coordinates where θ is the azimuth
direction, and ϕ is the spread in the elevation direction and can be expressed in Cartesian
coordinates as follows:

X =

x
y
z

 =

r cos θ cos ∅
r sin θ cos ∅

r sin ∅

 (3)

The 2D point
→
x = (u, v) projected on the sonar image plane is expressed as follows:

→
x =

[
u
v

]
=

1
cos∅

[
x
y

]
=

[
r cos θ
r sin θ

]
(4)

Thus, in the 2D sonar images, the information of the elevation angle and, therefore,
the height of information of the target fish objects cannot be identified. For the target object
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in the underwater environment, critical points refer to the shortest distance points, where
the sonar’s acoustic beams reflect on the object. The critical position in the jth acoustic
beam is expressed as rcp(j) and θcp(j) using the sonar system’s local coordinate, which can
be calculated using:

xLocal
cp (j)

yLocal
cp (j)

zLocal
cp (j)

 =


rcp(j)

√
1− sin2

(
t + s

2
)
− sin2

(
θcp(j)

)
rcp(j) sin

(
θcp(j)

)
rcp(j) sin

(
t + s

2
)

 (5)

where t and s are the imaging sonar’s tilt angle and spreading angle, respectively. Since
the imaging sonar is tilted by an angle t, azimuth angle θcp(j), it differs from the azimuth
angle of the spherical coordinate. Hence, xLocal

cp (j) can be calculated using yLocal
cp (j) and

zLocal
cp (j). The critical point’s position in the global coordinates can be expressed using the

rotation matrix R = RzRyRx and the position of the imaging sonar (xS,W , yS,W , zS,W) in
terms of the world coordinate system is represented using:xW(j)

yW(j)

zW(j)

 =

xS,W

yS,W

zS,W

+ R


xLocal

cp (j)

yLocal
cp (j)

zLocal
cp (j)

 (6)

where R represents a 3D rotation transformation matrix to determine the roll angle, pitch
angle, and yaw angle of the imaging sonar. The 3D point cloud of the sonar scene can be
generated by accumulating the calculated coordinates while scanning [56].

Once the corresponding pixel pairs between the sonar image and the stereo images are
detected, the 3D coordinates of the matched points between sonar and stereo images are com-
puted based on the above 3D coordinates computing scheme. Let XO,A = (xO,A, yO,A, zO,A)
and XS,A = (xS,A, yS,A, zS,A) be the 3D coordinates of the common point A generated
from the stereo images and the sonar image, respectively. Obviously, XO,A 6= XS,A since
they locate point A in different 3D coordinate systems. Let, XW,A = (xA, yA, zA) be the
3D coordinates of the point A in the world coordinate system. Then we can apply the
following 3D transformation to transform XS,A or XO,A into XW,A:

XW,A = RO→W XO,A + TO = RS→W XS,A + TS (7)

where RO→W (RS→W) is the 3D rotation matrix that aligns the z-axis of the optical camera
(sonar camera) coordinate system with the z-axis of the world coordinate system; TO (TS)
is the translation vector that locates the center of the optical camera (sonar camera) in the
world coordinate system. Equation (7) can be rewritten as

XO,A = RS→OXS,A + TS→O (8)

where RS→O = R−1
O→W RS→W and TS→O = R−1

O→W(TS − TO). Equation (8) facilitates the
computation of the transformation matrices RS→O and TS→O by directly matching the set
of 3D points, i.e., A, B, C, D points, of the common object in the optical image against that
in the sonar image.

Figure 9 shows an example of the 1080 × 1092 sonar images captured from a
630 cm× 600 cm fish pond. Thus, each pixel in the sonar image would occupy an area of
0.583 cm× 0.3125 cm in the fish pond. If a sonar pixel occupies w× h cm2 in the fish pond,
the 3D coordinates of the pixel

→
x = (u, v) can be calculated as

X
S,
→
x
=
[
xS − (u ∗ w), yS, v ∗ h

]
(9)

where xS and yS are the x-coordinate and the y-coordinate of the position of the sonar
device in the world coordinate system. The value of yS equals to 0 when we set the origin
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of the world coordinate system to be [0, d, 0] where d is the depth of the sonar device.
In practice, we can obtain the value of d by putting a depth sensor in the center of the
sonar camera.
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Given the pixel coordinates of A, B, C, D in the sonar image, Equation (9) thus
generates the 3D point set [XS,A, XS,B, XS,C, XS,D]. Similarly, the corresponding 3D point
set [XO,A, XO,B, XO,C, XO,D] can be computed based on the four pixels in the stereo images
using the disparity computing algorithm mentioned above. Equation (8) can now be
written as 

XO,A
XO,B
XO,C
XO,D

 = RS→O


XS,A
XS,B
XS,C
XS,D

+ TS→O (10)

To solve the unknown parameters θ = (RS→O, TS→O), we can apply any optimization
scheme to minimize the following loss function:

Lθ =
1
4 ∑

i∈[A,B,C,D]

||XO,i − RS→OXS,i + TS→O||2 (11)

where ||X||2 is the L2 norm of the vector X. Although the object detection CNN for the
common object detection has been proved to be accurate, the 2D coordinates of the detected
matched points in both the sonar image and the stereo images still contain some errors.
This error implies that the resulting 3D point pairs contain noises that reduce the reliability
of the parameters θ. To further improve the quality of the learned parameters, the loss
function for minimization can be rewritten as

Lθ =
1

4N

N

∑
i=1

∑
j∈[Ai ,Bi ,Ci ,Di ]

∣∣∣∣XO,ij − RS→OXS,ij + TS→O
∣∣∣∣

2 (12)

where N is the number of frames used for parameter training.

3.3. Sonar and Stereo Camera Fusion for Fish Metrics Estimation

Figure 10 shows the block diagram of the proposed fish metrics estimation using the
sonar and stereo camera fusion and the cloud-based AI functions. First, as mentioned
above, we can compute the 3D point clouds PS and PO for each captured sonar image IS
and its synchronized stereo image pair IO, respectively. Next, the overlapping detection
module is applied to detect the area of the monitored fish pond or cage both cameras
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watch. Finally, the two 3D point clouds are inputted simultaneously into the overlapping
detection module to identify their correspondence. Figure 11 shows the overlapping area of
each camera system that was converted into the 3D point cloud discussed in the previous
subsection. The two-mode fish count estimation could be an added feature to support the
sonar camera for type-specific fish count estimation if the monitored fish pond or cage
contains multiple types of fish.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 29 
 

 

⎣
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎤

  = ��→�

⎣
⎢
⎢
⎡
��,�

��,�

��,�

��,�⎦
⎥
⎥
⎤

+ ��→� (10)

To solve the unknown parameters � = (��→�, ��→�), we can apply any optimization 

scheme to minimize the following loss function: 

�� =  
1

4
� ||��,� − ��→���,� + ��→�||�

�∈[�,�,�,�]

 (11)

where ||�||� is the L2 norm of the vector X. Although the object detection CNN for the 

common object detection has been proved to be accurate, the 2D coordinates of the de-

tected matched points in both the sonar image and the stereo images still contain some 

errors. This error implies that the resulting 3D point pairs contain noises that reduce the 

reliability of the parameters �. To further improve the quality of the learned parameters, 

the loss function for minimization can be rewritten as 

�� =  
1

4�
� � ||��,�� − ��→���,�� + ��→�||�

�∈[��,��,��,��]

�

�=1
 (12)

where N is the number of frames used for parameter training. 

3.3. Sonar and Stereo Camera Fusion for Fish Metrics Estimation 

Figure 10 shows the block diagram of the proposed fish metrics estimation using the 

sonar and stereo camera fusion and the cloud-based AI functions. First, as mentioned 

above, we can compute the 3D point clouds �� and �� for each captured sonar image �� 

and its synchronized stereo image pair ��, respectively. Next, the overlapping detection 

module is applied to detect the area of the monitored fish pond or cage both cameras 

watch. Finally, the two 3D point clouds are inputted simultaneously into the overlapping 

detection module to identify their correspondence. Figure 11 shows the overlapping area 

of each camera system that was converted into the 3D point cloud discussed in the previ-

ous subsection. The two-mode fish count estimation could be an added feature to support 

the sonar camera for type-specific fish count estimation if the monitored fish pond or cage 

contains multiple types of fish. 

 

Figure 10. The fish metrics estimation uses sonar and stereo camera fusion and cloud-based AI func-

tions. 

Figure 10. The fish metrics estimation uses sonar and stereo camera fusion and cloud-based
AI functions.
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Figure 11. Schematic diagram of overlapping area detection.

The area covered by the optical camera is contained by the sonar device. Once
the transformation parameters θ = (RS→O, TS→O) are obtained, the first step of our
overlapping area detection is to compute the transformed point cloud:

...
PS = RS→OPS + TS→O (13)

Next, we compute the overlapped point cloud:

P̂S = PS ∧
...
PS (14)

For each 3D point X̂
S,
→
x
= (x, y, z) in P̂S, we can then estimate the 2D coordinates of

the pixel
→
x = (u, v) as:

→
x = [(x− xS)/w, z/h] (15)
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where w and h are the width and the height of a pixel in the sonar image, respectively; xS is
the x-coordinate of the position of the sonar device in the world coordinate system. Finally,
the bounding box BS to crop the sonar image is defined by the two corner pixels:

→
x lu =

[
min
→
x i∈P̂S

ui, min
→
x i∈P̂S

vi

]
→
x rb =

[
max
→
x i∈P̂S

ui, max
→
x i∈P̂S

vi

] (16)

3.3.1. Estimation of Fish Standard Length and Weight Using Sonar Image

The distributions of the standard length and weight of fish are essential to assessing
the health and growth of the fish culture. As Figure 12 shows, there are four main steps for
estimating those two distributions:

• Apply Mask R-CNN to identify fish instances in each frame of the input sonar video.
The standard length of an identified fish instance is estimated by the distance between
the two farthest points on this instance.

• Apply the EM algorithm [57] to learn a GMM for the distribution of the length of the
identified fish instance. The GMM for the distribution of the length x can be expressed
as follows:

p (x) =
c

∑
i=1

wi N
(

x; µi, σ2
i

)
(17)

where c denotes the weight of the ith Gaussian components, wi denotes the weight of the
ith Gaussian component, and N

(
x; µi, σ2

i
)

denotes the probability density of the Gaussian
distribution with the mean of µi and variance σ2

i . The probability of sample x from the ith
Gaussian components, denoted by p(Gi|x), can be estimated by:

p(Gi|x) =
wi N

(
x; µi, σ2

i
)

∑c
i=1 wi N

(
x; µi, σ2

i
) (18)

The sample x belongs to the ith Gaussian component Gi if p(Gi|x) is the largest among
p(Gi|x), i = 1, . . . , c . Given the number of Gaussian components c, the EM algorithm
can find the parameters wi, µi and σ2

i for each of the c components through maximum-
likelihood estimation. In this paper, a non-Gaussianity criterion Φ (c) was defined in terms
of the standardized skewness, and kurtosis [58] was adopted to determine the number c of
Gaussian components:

Φ (c) =
1
c

c

∑
i=1

∣∣∣∣∣∣
1
|Gi | ∑x∈Gi

(x− µi)
3

σ3
i

∣∣∣∣∣∣+
∣∣∣∣∣∣

1
|Gi | ∑x∈Gi

(x− µi)
4

σ4
i

− 3

∣∣∣∣∣∣
 (19)

The EM algorithm was applied with the number of Gaussian components ranging
from one to five. Then, the GMM with the least non-Gaussianity criterion Φ (c) was selected
for the subsequent analysis.

• Select the Gaussian component Gi∗ with the largest component weight as the compo-
nent comprising a single fish instance. Then, output the statistics of the fish length
in Gi∗ .

• Apply K-nearest neighbor regression with the training set, where the length and
weight of the fish are measured manually to estimate the weight using the fish length
in Gi∗ . This paper set parameter K for the K-nearest neighbor regression to 5.
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3.3.2. Estimation of the Quantity of Fish in an Off-Shore Net Cage Using Sonar Image

The quantity n f ish of fish in an off-shore net cage is estimated using the volume of the
fish school that is swimming on the water surface and grabbing food pellets as follows:

n f ish =
V × δ

Vf ish
(20)

where δ denotes the average fish density of the fish school, and V and Vf ish represent
the volume of the fish school and the volume of the space occupied by a fish instance,

respectively. In this paper, Vf ish is roughly estimated by Vf ish = l f ish ×
l f ish

2 ×
l f ish

2 , which
is the volume of the cuboid covering the space of a fish instance, where l f ish denotes the
average length of the fish instance and is measured beforehand. The volume V and the
average length fish density d of the fish school are estimated by the average normalized
pixel value of the fish region F in the sonar image as follows:

δ =
1

gmax × |F| ∑
x ∈ F

g(x) (21)

where gmax is the maximum pixel value in the fish region and |F | denotes the number of
pixels in F .

There are several ways to scan the fish school to estimate their volume using the sonar
system. For example, it can rotate and sideway scan the fish school. In this paper, for
simplicity purposes, the fish school was analyzed without rotating the sonar beam. The
sonar beam in Figure 13a passes through the fish school in a slantwise position, where the
angle between the sonar beam and the seaplane is θ. Meanwhile, in Figure 13b, the space
of the fish school when the fish is grabbing pellets is enclosed by an irregular prism, and
the volume of the fish school is estimated by the volume of its irregular prism and can be
expressed as:

V = A× d (22)
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where A is the area of the fish regions in the sonar image projected onto the sea plane and
d is the depth information of the fish school.
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Figure 13. Illustration of the net cage and the fish school with the imaging sonar system, where (a) is
the angle between the water and the plane of the sonar beam is θ; and (b) is the feeding fish school
showing is grabbing pellets during feeding which is enclosed by an irregular prism.

The pattern of the fish school in the sonar image when the fish gathers and swims
toward the fish surface to grab the pellets is different compared with when the fish disperses,
as shown in Figure 14. In this work, a CNN is first applied to find the frame in the sonar
video where the fish school gathers and grabs the pellets. Then, the fish region F in the
said frame is identified using a semantic segmentation network; the details of these two
neural networks will be presented later. The area A of the bottom of the prism and the
depth of the fish school can be estimated by:

A =
∣∣F ∣∣× ∆x × ∆y × cos(θ),

d = ymax × ∆y × sin(θ)
(23)

where ymax denotes the bottom row of this region and ∆x and ∆y denote the width and
height of a pixel in centimeters, respectively.
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dispersing; and (c) and (d) show fish swimming toward the water surface to grab feed pellets.

Figure 15 shows how to estimate the quantity of fish in an off-shore net cage. For the
first step, it constructs the input for the subsequent two CNNs by stacking five successive
frames to form a five-channel image. These five frames are the target frame, two preceding,
and two succeeding frames of the target frame. Next, the CNN presented in Section 3.3.3
is applied to determine if the given frame is a fish-gathering frame. If the target frame
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is classified as a fish-gathering frame, the CNN in Section 3.3.4 is applied to segment the
fish region in the target frame. Equations (20), (21), and (22) are then used to estimate
the fish quantity. The neural network architectures of the two CNNs are described in the
succeeding subsections.
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3.3.3. CNN for Detecting the Fish-Gathering Frame

Figure 16 shows the neural network architecture of the CNN for detecting the fish-
gathering frames. The input for the CNN is a five-channel image comprising five successful
sonar image frames. The kernel size of the first ten convolutional layers of the CNN is all
of size 3 × 3 with a corresponding activation function ReLu. Meanwhile, the last three
layers also have a ReLu activation function, and a sigmoid was incorporated into the last
1 × 1 convolution layer.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 29 
 

 

3.3.3. CNN for Detecting the Fish-Gathering Frame 

Figure 16 shows the neural network architecture of the CNN for detecting the fish-

gathering frames. The input for the CNN is a five-channel image comprising five success-

ful sonar image frames. The kernel size of the first ten convolutional layers of the CNN is 

all of size 3 × 3 with a corresponding activation function ReLu. Meanwhile, the last three 

layers also have a ReLu activation function, and a sigmoid was incorporated into the last 

1 × 1 convolution layer. 

 

Figure 16. The neural network architecture for detecting fish-gathering frame. 

3.3.4. Semantic Segmentation Network for Segmenting Fish Regions 

The semantic segmentation networks’ neural network architecture to segment fish 

regions in the sonar image is shown in Figure 17. The neural network is based on the U-

Net architecture [59]. The input of this CNN is a five-channel image comprising five suc-

cessive sonar image frames. In the semantic segmentation network, the transposed con-

volutional layer with strides (2,2) is adopted for up-sampling. The kernel size of the con-

volutional layer and the transposed convolutional layer is 3 × 3. The activation of the last 

later is softmax, and the activation function of the other layers ReLu. 

 

Figure 17. The neural network architecture for segmenting fish regions in the sonar image. 

3.4. Object Detection for Fish Type Identification and Two-Mode Fish Counting 

The fish of the left image of the input stereo image pair is detected by any object 

detection CNN, e.g., the YOLOv4. The object detection results can be used to annotate the 

fish type since the types of fish are given in the training dataset to train the object detection 

CNN. Let �� and ������ be the fish count of the i-th type and the total count of fish de-

tected based on the RGB image. As mentioned above, the sonar image estimates the num-

ber of fish without information on fish types. To deal with the difficulty, our two-mode 

fish counting algorithm estimates the count of the i-th type fish as: 

5
Input

45
Conv2D

45
Conv2D

M axPool ing2D
90

Conv2D
90

Conv2D

M axPool ing2D
90

Conv2D
90

Conv2D

M axPool ing2D
90

Conv2D
90

Conv2D
M axPool ing2D

90
Conv2D

90
Conv2D

GlobalM ax

Pool ing2D

90
Conv2D1x1

90
Conv2D 1x1

1

Conv2D 1x1

5
Input

6464

128128

256256256

512 512 512
512 512 512

3232
32

32

32

32

3232 2

Figure 16. The neural network architecture for detecting fish-gathering frame.

3.3.4. Semantic Segmentation Network for Segmenting Fish Regions

The semantic segmentation networks’ neural network architecture to segment fish
regions in the sonar image is shown in Figure 17. The neural network is based on the U-Net
architecture [59]. The input of this CNN is a five-channel image comprising five successive
sonar image frames. In the semantic segmentation network, the transposed convolutional
layer with strides (2,2) is adopted for up-sampling. The kernel size of the convolutional
layer and the transposed convolutional layer is 3 × 3. The activation of the last later is
softmax, and the activation function of the other layers ReLu.
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3.4. Object Detection for Fish Type Identification and Two-Mode Fish Counting

The fish of the left image of the input stereo image pair is detected by any object
detection CNN, e.g., the YOLOv4. The object detection results can be used to annotate the
fish type since the types of fish are given in the training dataset to train the object detection
CNN. Let ci and ctotal be the fish count of the i-th type and the total count of fish detected
based on the RGB image. As mentioned above, the sonar image estimates the number
of fish without information on fish types. To deal with the difficulty, our two-mode fish
counting algorithm estimates the count of the i-th type fish as:

Ci = Csonar × ci/ctotal (24)

In this study, we focused on the design of the two-mode smart sensor, which consists
of a sonar scanning device and a stereo optical camera. The captured images are sent to the
cloud using a wireless communication network. Although the object detection CNN is not
new, we can design a new CNN architecture for underwater object detection to improve
the accuracy of fish distributions using (24). Note that the functionality of the smart sensor
is incremental since we can add a new AI function into the cloud to provide a new service
for sensor fusion.

4. Experimental Results
4.1. Sonar and Stereo Camera Fusion Results

The fish objects detected in the sonar images are mapped into the stereo camera image
as an area of interest. In Figure 18, we conducted an experiment using the two bricks as
the target object representing the fish to determine the object detection capability of our
proposed method. Of course, sonar images have a wider range than stereo images, and
the positions of the target objects are entirely different. However, based on the detection
results for both camera systems, our approach identified the target objects using different
sonar and stereo image frames.

On the other hand, the fish detection in Figure 19a identified the same number of fish
objects in the sonar image and are all correctly mapped and detected with fish annotated in
the stereo images in Figure 19b.

To ensure that our mechanism detects a correct object in both sonar and stereo images,
we integrated a bounding box that shows the area covered by the stereo image in the sonar
image in Figure 20, where a shows the sonar image with its corresponding area covered in
the stereo image while b shows the entire stereo image area that appears in some part of
the sonar images. The images were taken from our various aquaculture locations.
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Figure 20. Bounding box detection results from the sensor fusion.

4.2. Estimation of Fish Standard Length and Weight Using Sonar Images

Figure 21 shows the fish instances of a sonar image detected by Mask R-CNN. Table 1
shows that the true positive rates of Mask R-CNN for the three experimental environments
were approximately 85, 90, and 75%, respectively. Environment C incurred the lowest
positive rate, which was affected by the crowded environment of the fish cage. The number
values in the image represent the fish length estimation.

Table 1. The true positive rate of Mask R-CNN for different experimental environments.

Environment True Positive Rates

A 85%
B 90%
C 75%
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Figure 21. Fish detection using Mask R-CNN and length estimation results using the sonar camera system.

Table 2, on the other hand, shows the experimental results where the relative errors
of the average length and weight can be reduced by applying GMMs. The length and
weight of each fish in the tank were measured in all environments. We compared the
distributions of all estimated data, the estimated data incorporating GMM, and the ground
truth (Figure 22), all presented in Table 2. The t-test and Bartlett test were used to determine
if the distributions of the two independent samples were significantly different or not in
terms of means and variances, respectively. The comparison result showed that the length
distributions of the three data were different in means. The p-values for the ground truth
vs. GMM, and the ground truth vs. the distribution of fish length identified by Mask
R-CNN were 1.11× 10−41 and 2.57× 10−8, respectively. However, the variance of the fish
length processed by the GMM and the ground truth was similar (the p-value is 0.61 and the
p-value for the other pair is 1.12× 10−24). In manually measuring the fish length, we used
the fork length.

Table 2. The relative error of the estimated average standard length and weight of fish, where the
ground truth for the average standard length and weight of fish is measured manually, and ε, N,
NG, and c denotes the relative error, the number of fish instances identified by Mask R-CNN, the
number of the instance in the largest Gaussian component, and the number of Gaussian components,
respectively.

Environment

Length (cm) Weight (g)

N NG c
Manual

w/o GMM w/GMM
Manual

w/o GMM w/GMM

` ε ` ε w ε w ε

A (month A) 21.98 8.82 0.14 19.29 0.12 286.37 236.45 0.17 220.32 0.23 4, 456 2, 020 4
A (month B) 21.98 † 27.13 0.24 23.27 0.06 286.37 † 337.39 0.18 315.49 0.10 1, 911 1, 319 2
A (month C) 21.98 † 23.77 0.08 22.31 0.01 286.37 † 315.44 0.10 297.75 0.04 210 168 2
A (month D) 21.98 † 25.16 0.14 22.63 0.03 286.37 † 335.13 0.17 305.94 0.07 33 21 2
A (month E) 21.98 † 24.38 0.11 22.21 0.01 286.37 † 316.57 0.11 296.78 0.04 2, 413 1, 879 2

B (month A) 18.01 † 20.18 0.12 18.90 0.05 180.12 † 210.93 0.17 201.03 0.12 1, 201 1, 034 2
B (month B) 18.01 † 20.30 0.13 19.26 0.07 180.12 † 218.01 0.21 210.78 0.17 3, 279 1, 448 5
B (month C) 18.01 † 21.16 0.18 21.16 0.18 180.12 † 228.60 0.27 228.60 0.27 1, 1228 1, 228 1

C (month A) 15.46 19.78 0.28 17.98 0.16 171.66 272.13 0.59 249.82 0.46 12, 101 9, 781 2
C (month B) 15.50 19.79 0.28 17.51 0.13 173.90 262.86 0.51 236.27 0.36 14, 488 11, 165 2
C (month C) 16.13 16.13 0.22 17.58 0.09 189.36 262.84 0.39 235.98 0.25 10, 121 7, 814 2
C (month D) 16.33 16.33 0.20 18.03 0.10 211.43 290.57 0.37 269.56 0.27 8, 480 7, 013 2

Note. †: no measurement of data available; data was based on the previous months.
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4.3. Estimation of Fish Quantity in a Net Cage Using Sonar Images

Figure 23 shows the off-shore net cage environment in Penghu, Taiwan, for the fish
quantity estimation with Trachinotous blochii as the fish species. The net cage is 15 m in
diameter and 5 m in depth, with approximately 2200 fish instances during the experiment.
The average standard length of the fish was 20 cm, and the sonar beam was positioned at a
slant angle θ of 20◦.
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cages; and (b) is the environment of the net cage used for the experiment.

The dataset used to train the CNN in detecting fish-gathering frames consisted of
58 fish-gathering images and 116 fish-dispersing images. The CNN was evaluated using
10-fold cross-validation and obtained an accuracy of 0.98. Table 3 shows the confusion
matrix results. The intersection over union (IoU) was adopted to represent the performance
index for the semantic segmentation network to segment the fish region. This network was
evaluated using 10-fold cross-validation, and the average IoU was 0.77 ± 0.66.

Figure 24 shows the results of applying the procedures in Figure 15 for fish quantity
estimation. The quantity of the fish was estimated using 105 fish gathering frames. Figure 25
shows the distribution of the estimated fish quantity with a mean and standard deviation
of 2578.72 and 569.099, respectively. Therefore, the manual estimation of the quantity of
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fish in the net cage was 2200, within the estimate’s 68% and 95% confidence intervals with
values of [2112.32, 3045.21] and [1659.33, 3498.11], respectively.

Table 3. The confusion matrix for the CNNs’ detection of fish gathering frame.

Actual
Predicted

Gathering Dispersing

Gathering 58 0
Dispersing 3 113
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Figure 24. Experimental results of estimating fish quantity where (a) shows the non-gathering
characteristics of the fish school; and (b–d) show the gathering feature of the fish school and the
estimated fish quantity based on the fish region identified by the semantic segmentation network.
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4.4. Object Detection for Fish Type Identification and Two-Mode Fish Count

The object detection model utilized the pre-trained YOLOv4 with the COCO dataset [60]
was used for the object detection model. The object detection results representing three
different aquaculture environments (Keelung, Penghu, and Pingtung locations) are shown in
Figure 26. The experimental result for the fake fish experiment is in Figure 27, where three
fish species were detected.
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Figure 27. Fish target object detection results using YOLOv4 using the fake fish experiment.

Figure 28 is the result of the fish count estimation, which shows the actual Trachinotus
blochii species detected from the images taken from the Penghu off-shore cage. Since the
low-cost stereo camera range is short, it cannot see other fish objects beyond its reliable
area coverage; thus, only 55 fish objects were detected and counted.
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5. Discussion

Our sensor-based fusion mechanism was applied to aquaculture monitoring using
optical (stereo camera) and sonar images. Each sensor system has its strength and limita-
tions, and we took advantage of its capabilities to address the issues of the other sensors.
For example, it would be difficult for an RGB camera to accurately estimate fish metrics
due to poor underwater conditions addressed by the sonar camera system. Therefore, we
took advantage of the texture information of the optical images to provide fish species
annotation to sonar images. In addition, detecting the common area of each sensor poses a
significant challenge considering the quality of images in the underwater environment.

Additionally, sonar cameras have a larger area covered when compared with stereo
cameras. Thus, the target objects will be in different positions or locations. We also must
consider that sensors vary in terms of errors, the origin of the coordinate axis, and the
types of data received. Two essential issues need to be addressed for sensor fusion, namely,
opti-acoustic extrinsic calibration and opto-acoustic feature matching [14]. To deal with
this and improve the quality of our data fusion, we performed camera calibration to enable
both sensors to be in a common world frame or coordinates. Our approach integrated
the 3D point cloud information of both sensors to identify the overlapping areas by using
markers (4 pixels) to project sonar images to stereo images as part of the learning phase. The
integration of the transformation matrix made it possible to locate the corresponding pixels
in both camera systems. Camera calibration performed a significant function in our sensor
fusion by transforming their corresponding rotation matrix and translation vectors to match
the features from sonar to optical coordinate system, thus taking advantage of the epipolar
geometry for the multi-modal feature association [14]. For opti-acoustic feature matching,
the 3D information was utilized to identify the same features of both sensor modalities.

One of the AI functions is to estimate the length and weight distribution of the fish in
an indoor aquaculture tank. The main challenge of the first method is that the fish in the
aquaculture tank are often crowded and overlapped in sonar images. Besides, sonar images
of an aquaculture tank are usually noisy due to the echo from the air pumper and the
bottom and wall of the tank. The Mask R-CNN [61] identified single fish instances in sonar
images. Therefore, it may locate overlapped and incomplete fish for crowded aquaculture
tanks as single fish instances. Because Mask R-CNN determines the fish instance, which
looks like a single fish instance, an assumption that the length distribution of identified
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instances is a mixture of Gaussians and the length distribution of the valid single fish
instance is the largest Gaussian component of this mixture of Gaussians. Based on that
assumption, the first method employs Gaussian mixture models (GMMs) to model the
length distribution of the fish instance identified by Mask R-CNN. Then, the proposed
method regards the fish instance with the length from the Gaussian component with the
largest mixture component weight as a single fish instance and estimates the weight of the
instance by the k-nearest-neighbor regression. Since we manually measured the fish fork
length as the basis for the length estimation, our proposed estimation method is biased
since the fork length is usually more significant than the standard length.

Furthermore, the response of the caudal fish fin in the sonar image is usually weak,
which makes the fish length measured by our proposed method close to the standard length
of the fish. On the other hand, the estimated weight distribution and the ground truth were
significantly different. This result could be attributed to the fish’s weight being affected
by other factors, such as the thickness of the fish. In practice, it is difficult to observe both
the thickness and length of the fish instance from the view of the imaging sonar system.
Overall, the relative error of the estimated average fish standard length was approximately
15%, while the relative error for the estimated average weight was less than 50%.

The second AI function for sonar images estimates fish quantity in an off-shore net
cage, and we identified two main challenges. First, the fish considered in this paper, which
were Trachinotus blochii, are often widely distributed in the net cage. Second, the view of an
imaging sonar system only covers a small portion of the net cage. Since the fish of the target
species can gather and swim close to the water surface to grab food pellets, the proposed
method only estimates the quantity of fish in the net cage when feeding fish. The number
of fish is assessed on the average fish volume and the fish school’s estimated volume and
density. In this paper, a convolutional neural network was developed to determine if fishes
gathered and were grabbing food pellets. Then, we supposed that the fishes gathered and
were grabbing feed. In that case, a semantic segmentation network was applied to segment
the fish school in the sonar image, and the volume of the fish school was estimated on the
segmentation result. The visible imaging has a short imaging distance underwater due to
the light attenuation caused by water absorption and scattering. Therefore, the image was
more blurred, and the quantity of the image decreased as the shooting distance increased.
However, the sound wave can travel far through water without attenuation. Consequently,
counting based on acoustics can still work when visual counting is inappropriate [62].

For object detection, this work used two images from the two sensors to capture a
common target. The YOLOv4 [55], with an efficient and powerful object detection model,
which makes it possible to achieve real-time object detection, was used to identify or
detect the target object in the sonar and stereo images. In the two-mode fish counting
estimation, we detected the type of fish found in the cage and provided an assessment
of the number of populations for each species. Since we used a low-cost camera type, its
range is minimal, so it cannot detect fish out of its range even with robust object detection
deep learning models such as YOLOv4. Therefore, we only counted detected fish images
within the reliable range, which is why we had a lower fish count when compared with the
estimated number of fish in the cage, unlike the sonar camera system that covers a larger
and broader range. Thus, we will still rely on the sonar camera system for the final fish
population count to perform such estimation. The two-mode fish counting estimation now
serves as a sampling device to support and assist the sonar camera system in providing
information about the fish species distribution as added sonar image analytics. However, at
the moment, the dataset available is only one species per cage/pond. However, we tested
our mechanism to perform annotation functions using a well-known object detection CNN
to check if our proposed method can detect various fish types. We can replace the YOLOv4
with a state-of-the-art object detection CNN because YOLOv4 does not work well in the
underwater environment. This shortcoming will be one of our future works to improve the
performance of our smart sensor fusion.
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The success of the data collection procedure for this study poses a difficult task. First,
the assistance of the aquaculture operators is much needed during the data collection, and
they must be present in every data collection activity. Second, the data can only be obtained
when the aquaculture operators feed the fish, usually once a day. Third, the weather is
another major factor since the net cages are in the open sea. Finally, it is essential to consider
the sea current to make sure that the transducer of the imaging sonar system is steady since
it greatly affects the quality of the data. After several attempts to collect data, only a few
were collected due to difficulties.

6. Conclusions

The 3D point clouds for each camera system were separately obtained, extracted,
and matched to find each correspondence. Our sensor fusion approach detected the
corresponding pixels or the bounding box of the common area. Thus, it could also detect
the fish objects in the images of both sensors to be utilized for fish type annotation. In this
paper, two methods were developed to estimate the quantity and the distribution of the
standard length and weight of fish using a sonar imaging system. The first method was
developed for estimating the distribution of the standard length and weight of fish. Using
GMMs to find the distribution of the standard length of single fish instances and employing
K-nearest-neighbor regression to estimate the weight of fish by the length, the relative errors
of the estimated average fish standard length and weight were approximately less than
15 and 50%, respectively. Those errors can be reduced if the fish length manually measured
is based on the standard length instead of the fork length. Therefore, the proposed method
can be applied to monitoring the growth of culture fish. The second method estimates
the fish quantity in an off-shore net cage. The preliminary experimental result showed
that the quantity of fish could be within the estimate’s 68 and 95% confidence intervals.
The 68 and 95% confidence interval widths were approximately 900 and 1800, respectively.
Preliminary experimental results showed that the proposed method is feasible. Lastly,
the fish target object detection provides an additional function to annotate fish species
and offers additional information to the sonar system. For our future works, we plan to
incorporate Generative Adversarial Networks to convert the optical image of the target
object into a sonar image. Additionally, we will integrate sonar and stereo camera fusion
for fish length and weight estimation.
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Abbreviations

AIoT Artificial Intelligence-based Internet of Things
CNNs Convolutional Neural Networks
EM Expectation Maximization
GMM Gaussian Mixture Model
IoT Internet of Things
K-NN K-Nearest Neighbors
ReLU Rectified Linear Unit
RGB Red, green, blue
YOLOv4 You only look once version 4
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