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Abstract: Underwater video images, as the primary carriers of underwater information, play a
vital role in human exploration and development of the ocean. Due to the optical characteristics
of water bodies, underwater video images generally have problems such as color bias and unclear
image quality, and image quality degradation is severe. Degenerated images have adverse effects
on the visual tasks of underwater vehicles, such as recognition and detection. Therefore, it is vital
to obtain high-quality underwater video images. Firstly, this paper analyzes the imaging principle
of underwater images and the reasons for their decline in quality and briefly classifies various
existing methods. Secondly, it focuses on the current popular deep learning technology in underwater
image enhancement, and the underwater video enhancement technologies are also mentioned. It
also introduces some standard underwater data sets, common video image evaluation indexes and
underwater image specific indexes. Finally, this paper discusses possible future developments in
this area.

Keywords: underwater vision; video/image enhancement; deep learning

1. Introduction

The ocean covers 71% of the Earth’s surface, with a total area of 360 million square
kilometers, and contains rich resources. Exploration and development of the ocean have
been long-term concerns of human development. With the increasing scarcity of resources,
it has become an inevitable choice to strengthen the exploration and development of the
ocean [1]. However, due to the harsh and complex underwater environment, it is too
dangerous to explore and develop it manually. Therefore, it is safer and more efficient
to adopt autonomous underwater vehicles (AUV) to carry out ocean exploration and
development. In addition, AUVs are also widely used in lakes, rivers, and other water areas.

Visual information, which plays an essential role in detecting and perceiving the
environment, is easy for underwater vehicles to obtain. However, due to many uncertainties
in the aquatic environment and the influence of water on light absorption and scattering,
and the quality of directly captured underwater images can degrade significantly. Large
amounts of solvents, particulate matter, and other inhomogeneous media in the water
cause less light to enter the camera than in the natural environment. According to the
Beer–Lambert–Bouger law, the attenuation of light has an exponential relationship with
the medium. Therefore, the attenuation model of light in the process of underwater
propagation is expressed as

E(r) = E0e−are−br (1)
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In Equation (1), E is the illumination of light, r is the distance, a is the absorption
coefficient of the water body, and b is the scattering coefficient of the water body. The sum
of a and b is equivalent to the total attenuation coefficient of the medium.

The process of underwater imaging is shown in Figure 1. As light travels through
water, it is absorbed and scattered. Water bodies have different absorption effects on light
with different wavelengths. As shown in Figure 1, red light attenuates the fastest and will
disappear at about 5 m underwater, blue and green light attenuates slowly, and blue light
will disappear at about 60 m underwater. The scattering of suspended particles and other
media causes light to change direction during transmission and spread unevenly. The
scattering process is influenced by the properties of the medium, the light, and polarization.
McGlamery et al. [2] presented a model for calculating underwater camera systems. The
irradiance of non-scattered light, scattered light and backscattered light can be calculated by
input geometry, source properties and optical properties of water. Finally, the parameters
such as contrast, transmittance and the signal-to-noise ratio can be obtained. Then, the
classical Jaffe–McGlamery [3] underwater imaging model was proposed. It indicates that
the total illuminance entering the camera is a linear superposition of the direct component,
the forward scatter component, and the backscattered component

Er = Ed + Ej + Eb (2)

In the equation, Ed, Ej and Eb represent the components of direct irradiation, forward
scattering, and backscattering, respectively. The direct irradiation component is the light
directly reflected from the surface of the object into the receiver. The forward scattering
component refers to the light reflected by the target object in the water, deflected into the
receiver by the small angle of suspended particles in the water during straight propagation.
Backscattering refers to illuminated light that reaches the receiver through the scattering of
the water body. In general, the forward scattering of light attenuates more energy than the
backscattering of light.

Figure 1. Underwater imaging model.

Due to the absorption and scattering of incident light by water bodies, the video
images collected underwater generally appear blue-green and have an apparent fog-like
effect. In addition, blur, low contrast, color distortion, more noise, unclear details, and
limited visual range are the typical problems that degrade the quality of underwater video
images [4]. Figure 2 shows some low-quality underwater images. There is obvious color
bias in images a and b, and the overall style is green. The problem with image c is low
contrast. Image d represents the atomization phenomenon commonly seen in underwater
images.



J. Mar. Sci. Eng. 2022, 10, 241 3 of 35

(a) (b) (c) (d)
Figure 2. Typical underwater image.

Low-quality video images are not compatible with the perception of human eyes.
They will affect subsequent computer vision tasks, such as video image segmentation [5,6],
target detection [7], 3D reconstruction [8,9], and other visual processing tasks. In practical
application, low-quality underwater video images pose significant challenges to underwa-
ter archaeology, biological research, acquisition, and other projects. How to use existing
technology to obtain high-quality underwater video images is a very important question.
Improving the underwater imaging environment and optimizing the acquisition equipment
would strengthen video image acquisition. Although these actions have specific effects, the
implementation cost is too high. In contrast, by using computer equipment through digital
image processing, high-quality images can be obtained more conveniently and quickly.

Underwater vision enhancement uses computer technology to process degraded
underwater images and convert original low-quality images into a high-quality image.
The problems of color bias, low contrast, and atomization of original underwater video
images are effectively solved by using vision enhancement technology. Enhanced video
images improve the visual perception ability and are beneficial for subsequent visual
tasks. Therefore, underwater video image enhancement technology has important scientific
significance and application value.

This article is searched in the Google Academic database and CNKI database by the
keywords of ’underwater image enhancement’, ’underwater image processing’, and ’under-
water video enhancement’, etc. A total of 106 relevant articles were selected, including nine
reviews, and the rest were specific algorithms, which were analyzed and summarized. In
addition, some commonly used underwater image data sets and evaluation indicators are
summarized, involving a total of 28 references. In this paper, the existing underwater image
enhancement techniques are classified and summarized, as shown in Figure 3. The current
algorithms are mainly divided into traditional and deep learning-based methods. Tradi-
tional methods include model-based and non-model methods. Non-model enhancement
methods, such as the histogram algorithm, can directly enhance the visual effect through
pixel changes without considering the imaging principle. Model-based enhancement is also
known as the image restoration method. According to the imaging model, the relationship
between clear, fuzzy, and transmission images is estimated, and clear images are derived,
such as through the dark channel prior (DCP) algorithm [10]. With the rapid development
of deep learning technology and its excellent performance in computer vision, underwater
image enhancement technology based on deep learning is also developing rapidly. The
methods based on deep learning can be divided into those based on convolution neural
networks (CNN) [11] and those based on generative adversarial networks (GAN) [12].
Most of the existing enhancement techniques are extensions of underwater single image
enhancement techniques in the video field. Since the development of underwater video
enhancement technology is not fully mature, this paper will not classify it for the time being.

We introduced underwater visual enhancement technologies (including video and im-
age) and their development and current status to promote researchers’ further exploration
in this field.
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Figure 3. Classification of underwater image enhancement methods.

Prior to this paper, there have been many excellent review articles focused on the area
of underwater image enhancement. As time goes on, new methods, especially algorithms
based on deep learning, need to be updated. In addition, the urgent need for underwater
video enhancement technology also deserves the review article’s attention. According to
the function of the algorithm, the article [13] divides the algorithms into underwater image
dehazing and underwater image color evaluation, surveys the intelligence algorithms in
underwater image dehazing and restoration, demonstrates the performance with different
methods, and summarizes the application of underwater image processing. However, there
is no obvious distinction between algorithms of different principles, and the overview of
deep learning-based algorithms is not comprehensive. The article [14] selects representative
methods for discussion, classifies the approaches in two categories: image restoration
(physical-based model) and image enhancement (nonphysical-based model), and compares
and analyzes these methods from both qualitative and quantitative perspectives. Although
some deep learning algorithms have been introduced, the popular generative adversarial
network-based approach is missing. Similar to the article [14], the article [15] reviews
the image enhancement and restoration methods that tackle typical underwater image
impairments, including some extreme degradations and distortions. Moreover, a large
number of experiments were conducted to compare and evaluate different algorithms,
using subjective and objective analysis. Although the enhancement algorithm based on
CNN is classified, the popular generative adversarial network-based algorithm is not
included. The article [16] introduces a review of relatively mature and representative
underwater image processing models, which are classified into seven categories, including
enhancement, fog removal, noise reduction, segmentation, salient object detection, color
constancy and restoration. This helps us to understand the whole field of underwater image
processing, but in contrast, the algorithm introduced for the specific task of underwater
image enhancement is not comprehensive enough. In the article [17], the authors categorize,
analyze and compare underwater image filtering methods for restoration and enhancement
and discuss the merits and limitations of these methods and of the evaluation measures
used for their validation. This paper presents a number of tables to compare different
algorithms, but the algorithm of reference is not described in detail. In addition, the reasons,
data sets and evaluation indexes of underwater image degradation are summarized in the
above papers.

On the basis of existing reviews, we update and supplement the latest development of
underwater visual enhancement technology and divide underwater image enhancement
methods into traditional methods and deep learning-based methods. Then the algorithms
are classified according to different deep neural network structures and whether physical
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models are used or not. At the same time, similar to the above article, we summarize the
degradation causes of underwater images and the characteristics of low-quality images. In
addition, we provide links to commonly used data sets and calculation formulas of evalua-
tion indexes. We classify and analyze the existing underwater image evaluation indexes
and summarize the differences of each type of evaluation index and the shortcomings of
the existing indexes in the underwater video and image quality evaluation.

However, the above articles, including [1,4,18], only focus on image enhancement
algorithms, ignoring underwater video enhancement technology with higher practical
application value. This paper makes the following contributions:

We focus on the introduction of specific algorithms to help readers better understand
the characteristics and development of certain kinds of algorithms. The application require-
ments of underwater video enhancement methods are more extensive. We summarize the
algorithms suitable for underwater video enhancement and reveal the difficulties existing
in the field of underwater video enhancement and some solutions.

The rest of this paper is organized as follows. Section 2 introduces the traditional
underwater image enhancement algorithms, including the histogram-based, retinex-based,
fusion-based, polarization-based, and dark channel priority-based methods. Section 3
introduces the underwater image enhancement algorithm based on deep learning, in-
cluding CNN-based and GAN-based methods. In Section 4, some existing and imperfect
underwater video enhancement algorithms are introduced. In Section 5, some commonly
used datasets and quality evaluation indices in underwater visual enhancement are listed.
Section 6 summarizes the problems of the existing algorithms and puts forward some
future research directions.

2. Traditional Underwater Image Enhancement Methods
2.1. Non-Physical Model Enhancement Methods

Due to the unique underwater optical environment, there are some limitations when
traditional image enhancement methods are directly applied to image enhancement, so
many targeted algorithms are proposed, including histogram-based, retinex-based, and
image fusion-based algorithms.

(1) Histogram-based methods
Image enhancement based on the histogram equalization (HE) algorithm [19] trans-

forms the image histogram from narrow unimodal to balanced distribution. As a result,
the original image has roughly the same number of pixels in most gray levels. After
that, the adaptive histogram equalization (AHE) algorithm [20] was derived to improve
the local contrast of the image. The contrast limited adaptive histogram equalization
(CLAHE) algorithm [21] improves the calculation speed. In the field of underwater imagery,
Iqbal et al. [22] proposed an unsupervised color correction method (UCM) based on color
correction and selective histogram stretching, which can effectively remove the blue devi-
ation and improve the low-component red channel and brightness. Ahmad et al. [23,24]
proposed an adaptive histogram enhancement method using Rayleigh stretch limit contrast
enhancement to improve image contrast, enhance details, and reduce over-enhancement,
supersaturated area and noise introduction. When the color percentage of the image is
low, the color image will be distorted. Then, a Recursive Adaptive Histogram Modifica-
tion (RAHIM) algorithm was proposed to modify the image color in the HSV color space
and improve the contrast of the background region. The complexity of the algorithm is
increased. Li et al. [25] proposed an a priori histogram distribution algorithm based on
underwater image defogging, which effectively improves contrast and brightness and is
time-saving and straightforward. The disadvantage is that the enhancement effect is not
obvious when the image is dark. Li et al. [26] proposed a hybrid framework for underwater
image enhancement, which combines the improved underwater white balance algorithm
with histogram stretching. By establishing a variational contrast and saturation enhance-
ment model, contrast and saturation are improved and the blur caused by scattering is
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eliminated, and there is better color correction, haze removal, and clarification of details.
The histogram-based underwater image enhancement methods are shown in Table 1.

Table 1. Histogram-based underwater image enhancement methods.

Author Algorithm Contribution

Iqbal et al. [22] Unsupervised color correction method Effectively removes blue bias and improves low
component red channel and brightness

Ahmad et al. [23] Adaptive histogram with Rayleigh stretch limit contrast Enhances detail and reduces over-enhancement,
supersaturated areas, and noise introduction

Ahmad et al. [24] Recursive adaptive histogram modification combined
with HSV model color correction Better contrast in background area

Li et al. [25] Contrast enhancement algorithm combining dehazing
and prior histogram Improves contrast and brightness

Li et al. [26] Underwater white balance algorithm combined with
histogram stretch phase

Shows better results in terms of color correction,
haze removal, and detail clarification

(2) Retinex-based methods
Retinex theory, based on color constancy, obtains the true picture of the scene by elimi-

nating the influence of the irradiation component on the color of the object and removing
the uneven illumination. In the references [27], Plutino et al. gave a very detailed review of
the automatic color equalization (ACE) algorithm, including the application of the ACE
algorithm in the field of underwater images. Jobson et al. [28,29] proposed a multiscale
retinex (MSR) enhancement algorithm and color enhancement. Joshi et al. [30] applied
retinex theory to underwater images to enhance degraded images. The visual effects of
underwater images are improved, but the enhancement is limited. Fu et al. [31] proposed a
variational framework based on retinex, using an alternate-direction optimization strategy
to solve reflectivity and illumination and adding a color correction to solve the problem of
underexposure and blurring. However, iterative optimization results in higher algorithm
complexity. Bianco et al. [32] present the first proposal for color correction of underwater
images by using color space. The chromatic components are changed, moving their distri-
butions around the white point (white balancing) and histogram cutoff, and stretching of
the luminance component is performed to improve image contrast. Zhang et al. [33] pro-
posed an underwater image enhancement algorithm based on extended multiscale retinex,
which combined bilateral and trilateral filtering to suppress the halo phenomenon. The
disadvantage is that the contrast enhancement is not obvious and the trilateral filtering is
time-consuming. Mercado et al. [34] proposed deep-sea dark image enhancement based on
MSRCR and reversed the color loss, which overcame the problem of uneven illumination.
The illumination intensity of the enhanced image tended to reach the peak in the central
intensity region. Li et al. [35] combined the MSRCR algorithm with a correction algorithm
based on histogram quantization of each color channel. Zhang et al. [36] proposed a
single-image defogging method based on multi-channel convolution (MC) with multiscale
retinex with color recovery (MSRCR). It can be applied to underwater scenes to enhance
the global contrast and detail information of the image, reduce noise, and eliminate the
effect of light on the image’s color without fog. However, overexposure may also occur.
Tang et al. [37] proposed an underwater video image enhancement method called IMSRCP.
First, the image is pre-corrected to even out the pixel distribution and reduce the dominant
color. The classic multiscale retinex with intensity channels is then applied to pre-corrected
images to further improve contrast and color. Due to many steps, the real-time performance
of the algorithm is not high. Hu et al. [38] proposed an underwater image enhancement
optimization (MSR-PO) algorithm, which uses the non-reference image quality assessment
(NR-IQA) index as the optimization index. The gravitational search algorithm (GSA) is
used to optimize the underwater image enhancement algorithm based on MSR and the
NIQE index. The experimental results show that this algorithm has an adaptive ability
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to environmental changes. However, using the GSA algorithm to optimize parameters
consumes more computing resources.

Tang et al. [39] proposed an underwater image enhancement algorithm based on
adaptive feedback and the retinex algorithm. Guided filtering was used to improve the al-
gorithm, reducing the time required for underwater image processing. They also proposed
a method for adaptive feedback stretching of saturation that can maintain the structural in-
formation of the underwater image while improving the clarity of the image, but the global
contrast enhancement is not significant enough. Zhuang et al. [40] developed a Bayesian
retinex algorithm for enhancing a single underwater image with multiorder gradient priors
of reflectance and illumination. A maximum a posteriori formulation for underwater image
enhancement is established on the color-corrected image by imposing multiorder gradient
priors on reflectance and illumination. This algorithm has the effectiveness of the proposed
method in color correction, naturalness preservation, structures and details promotion,
artifacts or noise suppression. However, the decomposition and alternate optimization of
subproblems require too much time.

It can be seen that the direct application of retinex in underwater image enhancement
is limited. The enhanced image has the problem of too low contrast or overexposure. The
common practice is to use RGB combined with HSV and other color spaces to adjust the
color and lighting. In addition, it can also be combined with filtering, contrast stretching,
color correction and other pretreatment or post-processing methods. This can lead to
obvious visual enhancement. An unavoidable problem is that the better models of this
type of approach often contain too many parameters. Parameters need to be adjusted to
suit different underwater environments. Table 2 contains the retinex algorithms applied to
underwater images.

Table 2. Underwater image enhancement methods based on retinex theory.

Author Algorithm Contribution

Fu et al. [31] Variational framework based on retinex to decompose and optimize
reflectivity and illumination

Solves problems of color distortion,
underexposure, and blurring

Bianco et al. [32]
The chromatic components are changed, moving their distributions
around the white point (white balancing) and histogram cutoff, and
stretching of the luminance component

Improves image contrast and it is suitable for
real-time implementation.

Zhang et al. [33] Extended multiscale retinex for underwater image enhancement Suppresses halo phenomenon

Mercado et al. [34] Multiscale retinex combined with reverse color loss (MSRRCL) Overcomes problem of uneven lighting; color is
more obvious

Li et al. [35] Color correction algorithm based on MSR algorithm combined with
histogram quantization of each color channel

Enhances underwater image contrast and removes
color bias

Zhang et al. [36] Multiscale retinex with color recovery based on multi-channel
convolution (MC)

Enhances image’s global contrast and detail
information, reduces noise, and eliminates the
influence of illumination

Tang et al. [37] Underwater image and video enhancement method based on
multi-scale retinex (IMSRCP)

Improves image contrast and color, and suitable
for underwater video

Hu et al. [38]
Use the gravitational search algorithm (GSA) to optimize the
underwater image enhancement algorithm based on MSR and the
NIQE index

Improves adaptive ability to environmental
changes

Tang et al. [39] Propose an underwater image enhancement algorithm based on
adaptive feedback and Retinex algorithm

Reduces the time required for underwater image
processing, improves the color saturation and color
richness

Zhuang et al. [40]
A Bayesian retinex algorithm for enhancing single underwater
image with multiorder gradient priors of reflectance and
illumination

Solves problems of color correction, naturalness
preservation, structures, and details promotion,
artifacts, or noise suppression
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(3) Fusion-based methods
The image fusion algorithm fuses multiple images of the same scene to realize comple-

mentary information of various images to achieve richer and more accurate image informa
tion after enhancement. Ancuti et al. [41] first used image fusion to improve underwater
image quality. In this algorithm, white balance and histogram equalization are used to
enhance degraded underwater images. Then, the fusion coefficient is defined according to
the characteristics of the underwater images, and enhanced images are obtained by multi-
scale fusion. It reduces noise, improves global contrast, enhances edges and details, and is
suitable for underwater video enhancement. The method showed good dehazing perfor-
mance but still suffered from an artificial lighting source. On this basis, Ancuti et al. [42,43]
continued to optimize the fusion algorithm, making full use of the complementary infor-
mation between multiple images. Then, the acquisition process of the fused image and the
definition of weight information are optimized, and an enhancement method is used to
improve the exposure degree and keep the edge of the image, but selective compensation
can not be implemented. Pan et al. [44] obtained hazing and color correction images of the
original image through dehaze-net and white balance and then used the fusion strategy of
the Laplace pyramid for fusion and the mixed wavelet for denoising and edge enhance-
ment but cannot enhance the image contrast apparently. Chang et al. [45] proposed an
adaptive fusion algorithm for underwater image restoration. Based on the knowledge of
optical characteristics and image processing, background light and transmission images are
extracted and adaptive weighted fusion is performed according to their respective salient
maps. The algorithm can effectively correct the high definition and natural color in the
foreground of the scene while maintaining a certain degree of blur in the background, but
the contrast is still lacking.

Gao et al. [46] proposed a method based on local contrast correction (LCC) and
multiscale fusion to resolve low contrast and color distortion of underwater images. The
local contrast corrected images are fused with sharpened images by the multiscale fusion
method. The results show that this method can be applied to water degradation images in
different environments effectively solving color distortion, low contrast, and unobvious
details of underwater images. Although it aims to restore and enhance the underwater
image, for the image with low resolution (the image contains some mosaics), the unnatural
block mosaics will be enhanced in image detail enhancement. Song et al. [47] propose
a method based on the multiscale fusion and global stretching of dual-model (MFGS).
Use white-balancing to eliminate the undesirable color deviation and present an updated
saliency weight coefficient strategy combining contrast and spatial cues to achieve high-
quality fusion. At the same time, the global stretching of the full channel in the red, green,
blue (RGB) model is applied to enhance the color contrast. In terms of the color richness of
the resulting images and the execution time, there are still deficiencies with this algorithm.

The fusion method can effectively improve the quality of underwater images. How-
ever, these methods need to obtain multiple fusion images and fusion weights. How to
adopt efficient strategies to obtain the most suitable fusion weight is the key to solving the
problem. Table 3 shows some distinctive underwater image enhancement methods based
on image fusion algorithms.
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Table 3. Underwater image enhancement methods based on image fusion algorithms.

Author Algorithm Contribution

Ancuti et al. [41]

White balance and histogram
equalization used to obtain two images,
and multiscale fusion algorithm used to
integrate underwater features

Noise reduction, improved
global contrast, significantly
enhanced edges and details for
underwater video enhancement

Ancuti et al. [42,43]

Image is synthesized by using
complementary information between
multiple images; process of acquiring
fused images and definition of weight
information are optimized

Images are more informative
and clearer, improves image
exposure, and maintains image
edges

Pan et al. [44]
Fusion strategy of Laplacian pyramid is
used to fuse defogging image and color
correction image

Enhances underwater image
contrast and removes color bias

Chang et al. [45]
Transmission mapping fusion based on
optical properties and image
knowledge

Foreground has improved
clarity, while the background
remains somewhat blurry and
more natural

Gao et al. [46]

A method based on local contrast
correction (LCC) and multiscale fusion
and the local contrast corrected images
are fused with sharpened images by the
multiscale fusion method

Solves the color distortion, low
contrast, and unobvious details
of underwater images

Song et al. [47]

An updated strategy of saliency weight
coefficient combining contrast and
spatial cues to achieve high-quality
fusion combine with white-balancing
and the global stretching

Eliminates color deviation,
achieves high-quality fusion
and a better de-hazing effect

2.2. Physical Model-Based Enhancement Algorithm

Different from the non-physical model enhancement algorithm, the algorithm based
on the physical model analyzes the imaging process and uses the inverse operation of the
imaging model to obtain a clear image to improve the image quality from the imaging
principle. It is also known as the image restoration technique.

Underwater imaging models play a crucial role in physical model-based enhancement
methods. The Jaffe–McGlamery underwater imaging model is a very widely used recovery
model. In addition, Zhao et al. [48] found a correlation between the degraded original
underwater image the optical characteristics of the water body. According to the correlation,
inherent optical features are extracted from the background color of the original image and
a new physical model is established by inverting its degradation process. Zhang et al. [49]
proposed a model that takes into account wavelength-dependent attenuation of underwater
light and color projection of underwater images and optimizes the estimation of global
background light and the medium transmission amount of the RGB color channel. Akkay-
nak et al. [50] improved the classic Jaffe–McGlamery model, used the actual measured
depth of the restored scene to make a spatial estimation of the attenuation coefficient and
the restored image, and proposed a new underwater imaging model.

After the underwater imaging model is established, unknown parameters in the
imaging model are obtained by using prior knowledge and other methods, and then
undegraded images in the model are solved. The mainstream methods include image
restoration based on light polarization and on prior information and integral imaging-
based methods.

(1) Polarization-based methods
An underwater image restoration method based on the principle of polarization imag-

ing utilizes the polarization characteristics of scattered light to separate scene light and
scattered light, estimate the intensity and transmission coefficient of scattered light, and
realize the imaging intensification. Schechner et al. [51] used the polarization effect of
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light scattering in the water to restore visibility, scene contrast, and color correction of the
underwater image. However, for the image with scattering that is too obvious, blur will ap-
pear after enhancement. Based on the independent component analysis, Namer et al. [52]
estimated the polarization degree and intensity of the background light from the polariza-
tion image. They then calculated the depth map of the scene to realize the restoration of
the atomized image. Chen et al. [53], aiming at non-uniform illumination, segments the
underwater image according to whether it is an artificial illumination area, compensates
the artificial illumination area in the image, and eliminates the influence of artificial illu-
mination on the underwater image. However, overexposure may occur. Han et al. [54]
considered the impact of backscattering in the imaging process, mitigated the scattering
effect by changing the light source, obtained two images under orthogonal polarization,
and proposed a point diffusion estimation method based on light polarization. However, it
has not been verified in a real environment. Ferreira et al. [55] estimated the polarization
parameters through particle swarm optimization and used the unreferenced mass measure
as the cost function for restoration, achieving better visual quality and better adaptabil-
ity. However, the parameter optimization process increases the time complexity of the
algorithm.

The restoration method based on polarization does not fully consider the absorption
of light in the underwater scene and the noise contained in the image, which affects the
restoration effect of underwater images. Moreover, this method requires multiple images
of different polarization angles taken from the same scene as a priori knowledge, limiting
its practical application scope. Table 4 shows the underwater image restoration algorithms
based on polarization. Due to the limitation of the polarization-based algorithm, only some
typical models are listed.

Table 4. Underwater image restoration algorithms based on polarization.

Author Algorithm Contribution

Schechner et al. [51]
Polarization effect of underwater
scattering is used to recover
underwater images

Improved visibility and
contrast

Namer et al. [52]
Polarization degree and intensity of
background light are estimated from
polarized image

More accurate estimation of
depth map

Chen et al. [53] If there is an artificial lighting area, area
is compensated

Eliminates effects of artificial
lighting on underwater images

Han et al. [54]
Backscattering effect is considered, and
light source is changed to alleviate the
scattering effect

Point diffusion estimation
based on light polarization is
proposed

Ferreira et al. [55]

Polarization parameters are estimated
by the bionic optimization method, and
unreferenced mass measure is used as
the cost function for restoration

Achieves better visual quality
and adaptability

(2) Dark channel prior-based methods
He et al. [10] proposed the dark channel prior (DCP) algorithm. According to statistics,

it is found that there is always a channel in most areas of a fog-free image, and a pixel has a
meager gray value, which is called a dark channel. The dark channel prior theory is used to
solve the transmission image and atmospheric light value, and the atmospheric scattering
model is used to restore the image. Liu et al. [56] directly used DCP for underwater image
enhancement, but there was no obvious enhancement effect or even distortion from the
perspective of subjective vision. Yang et al. [57] proposed a fast underwater image restora-
tion method based on DCP, using median filtering to replace image matting to estimate
the depth of field information of the image, and introduced a color correction method to
improve image contrast, but underwater images with color bias or low brightness cannot
be restored. Chiang et al. [58] used wavelength compensation and image dehazing (WCID)
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to restore underwater images, making up for three channels with different attenuation char-
acteristics, correcting image blur caused by artificial light sources, and improving image
quality. However, the background might be overly bright. Drews et al. [59,60] proposed
the underwater dark channel prior (UDCP) method, which only considers blue and green
channels, and obtained a more accurate transmittance map than the DCP algorithm, thus
improving the restoration effect. However, its reliability and robustness are insufficient
to the limitations of the assumptions. Galdran et al. [61] proposed automatic red-channel
underwater image restoration (ARUIR) based on red-channel prior, which improved DCP
by minimizing the reverse red channel and blue-green channel, and introduced saturation
information to adjust the influence of the artificial light source. This algorithm requires
more additional information. Li et al. [62] proposed a method based on red-channel correc-
tion and blue-green channel defogging, using the gray world algorithm to perform color
correction on the red channel, and using an adaptive exposure image to solve the problem
of over-bright and over-dark areas, thus improving visibility and contrast. However, the
image is of poor quality if restored in non-uniformly lighting. Meng et al. [63], based on
color correction and image sharpening, applied the color balance and volume methods to
underwater images. When the red channel value is close to the blue channel, the color bal-
ance method is used to restore the image. Otherwise, the DCP-based method for recovery
and use based on the maximum a posteriori probability (MAP) of the sharpening method
reduces the fuzziness, improves visibility, and provides better retention of foreground
textures, but too many parameters are introduced.

The DCP algorithm has excellent defogging performance. When applied to underwater
images, the dark channel is affected because the water absorbs too much red light. Therefore,
the underwater DCP algorithm is usually improved for this feature. Table 5 lists the
underwater-specific DCP algorithms.

Table 5. Underwater image restoration algorithms based on the DCP algorithm.

Author Algorithm Contribution

Yang et al. [57]
Median filtering is used to estimate
depth of field, and a color correction
method is introduced

Improves calculation speed and
contrast

Chiang et al. [58] Combined wavelength compensation
and image dehazing (WCID)

Corrects image blurring where
artificial light is present

Drews et al. [59,60]
Underwater dark channel prior (UDCP)
method considering only blue and
green channels

Underwater images have a
more obvious defogging effect

Galdran et al. [61]
DCP algorithm improved by using
minimization of reverse red channel
and blue-green channel

Processes influence of artificial
light area, improves image color
trueness

Li et al. [62]
Red channel uses gray world color
correction algorithm, and blue and
green channels use the DCP algorithm

Significantly improves visibility
and contrast

Meng et al. [63]

Different strategies (color balance or
DCP) selected to restore RGB combined
with maximum posterior probability
(MAP) sharpening

Eliminates underwater color
projection, reduces blur,
improves visibility, and better
retains foreground textures

(3) Integral imaging-based methods
Integral imaging technology is based on a multi-lens stereo vision system, which uses

a lens array or camera array to quickly obtain information from different perspectives of the
target, and combines all element images (each image that records information from different
perspectives of a three-dimensional object) into element image array (EIA). According to
the principle of optical path invertibility, the lens array with the same recording parameters
can be placed in front of EIA to reconverge the rays emitted by EIA and realize the optical
reproduction of a 3D scene. Integral imaging is considered as one of the interesting
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solutions for 3D visualization under a scattering environment, so it can be applied to
underwater image degradation caused by water scattering, especially underwater 3D
image visualization.

Cho et al. [64] used integral imaging for 3D reconstruction of objects in turbid water.
Multi-perspective images are degraded due to light scattering and are treated by statistical
image processing and computational 3D reconstruction algorithms to remedy the effects
of scattering and to visualize the 3D scene. Lee et al. [65] proposed a three-dimensional
visualization method of 3D objects in a scattering medium. The proposed method applies
spectral analysis to the computational integral imaging reconstruction and introduces a
signal model with a visibility parameter to analyze the scattering signal to improve the
visual quality of 3D images. The reconstructed image presents better color presentation,
edges, and detail information. However, the orange object was not reconstructed well
in the experiment. Satoruet et al. [66] applied the descattering method to 3D integral
imaging. A scattering mitigation process is applied to 3D reconstruction to reduce the
effect of scattering. By computing maximum a posteriori estimates of the mean and
variance of the turbid media containing object information, a Bayesian scattering mitigation
process is implemented. The proposed method achieves a higher structural similarity
index measure (SSIM). Neumann et al. [67] proposed a fast enhancement method for color
correction of underwater images, which is based on the gray-world assumption applied in
the Ruderman-opponent color space and can cope with non-uniformly illuminated scenes.
Integral images are exploited by the proposed method to perform fast color correction,
and locally changing luminance and chrominance are taken into account. However, the
details of the reconstruction were missing. Bar et al. [68] proposed an approach to enhance
image quality during recovery of objects hidden in turbid liquid by fusion of single-shot
multi-view circularly polarized speckle images collected by a lens array and deconvolution
algorithm based on multiple medium sub-PSFs viewpoints. The quality of reconstructed
images is evaluated by using the image quality index, and the feasibility of imaging in
turbid media is verified. Li et al. [69] proposed a thresholded single-photon imaging
and detection scheme to extract photon signals from the noisy underwater environment.
This method reconstructs the images obtained in a high-loss underwater environment by
using photon-limited computational algorithms and improves the PSNR in principle in the
high-noise regime.

The integral imaging technology can integrate signals from multiple images and has a
remarkable effect in the face of the serious scattering effect of turbidity water. The underwa-
ter image enhancement technology based on integrated imaging technology can reconstruct
the object obscured by muddy water, enhance the detail features, and restore brightness
and contrast. However, this method depends on the establishment of the imaging system
and the implementation cost is high. For images obtained from conventional water bodies,
more convenient single-image enhancement techniques are usually used. Table 6 lists the
underwater image restoration algorithms based on integral imaging.
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Table 6. Underwater image restoration algorithms based on the integral imaging.

Author Algorithm Contribution

Cho et al. [64]

Use statistical image processing and
computational 3D reconstruction
algorithms to remedy the effects of
scattering

The first report on 3D
reconstruction of objects in
turbid water using integral
imaging

Lee et al. [65]

Applies spectral analysis and
introduces a signal model with a
visibility parameter to analyze the
scattering signal

Reconstructed image presents
better color presentation, edge,
and detail information.

Satoruet et al. [66]
Combined with maximum posterior
estimation, bayesian scattering
suppression is achieved

This method achieves a higher
structural similarity index
measure

Neumann et al. [67]

Three-dimensional reconstruction is
realized by combining the gray-world
assumption applied in the
Ruderman-opponent color space

Locally changing luminance
and chrominance are taken into
account

Bar et al. [68]

Single-shot multi-view circularly
polarized speckle images collected by
lens array and deconvolution algorithm
based multiple medium sub-PSFs
viewpoints are combined

Improve recovery of hidden
objects in cloudy liquids

Li et al. [69]

Reconstruct the images obtained in a
high-loss underwater environment by
using photon-limited computational
algorithms

Improves the PSNR in the
high-noise regime

3. Deep Learning-Based Enhancement Method

In recent years, deep learning has been widely applied in image processing due to its
powerful classification performance and feature learning ability, and underwater image
enhancement algorithms based on deep learning have also developed rapidly. Based on the
differences in the deep learning network models, they can be divided into convolutional
neural network (CNN) and generative adversarial network (GAN) methods.

3.1. Convolutional Neural Network Methods

LeCun et al. [11] first proposed the convolutional neural network structure LeNET.
The convolutional neural network is a kind of deep feedforward artificial neural network.
It is composed of multiple convolutional layers that can effectively extract different feature
expressions, from low-level details to high-level semantics, and is widely used in computer
vision. In the underwater image enhancement algorithm based on CNN, according to
whether the algorithm uses a physical imaging model for restoration, it can be divided into
non-physical and combined physical methods.

(1) Combined physical methods
Traditional model-based underwater image enhancement methods usually need to

estimate the transmission graph and parameters of the underwater image based on prior
knowledge and other strategies, and those estimated values thus have poor adaptability.
The method combined with the physical model mainly uses the excellent feature extraction
ability of the convolutional neural network to solve the parameter values in the imaging
model, such as the transmission diagram. In this process, CNN replaces the assumptions
or prior knowledge used in traditional methods, such as dark channel prior theory. The
network model is usually divided into two parts: first, the transmission figure is calculated
in which the original image is input to the convolution neural network for feature extraction
and to obtain the transfer diagram, and then, from the calculation, a clear image restoration
is extracted by the transfer diagram, and the original image is entered into the optical
imaging model for inversion calculation. The algorithm process is shown in Figure 4.
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Figure 4. CNN underwater image enhancement combined with model.

Cai et al. [70] first proposed the deep neural network DehazeNet to extract medium
transmission images with or without images by using a convolutional neural network and
restore them by using an atmospheric scattering model to achieve end-to-end single image
dehazing. The effect on direct underwater image processing is not ideal. Shin et al. [71] pro-
posed a general convolution structure to learn the transmission image and background light
of the underwater image at the same time to realize image restoration. The results show
promising performance of the dehazing ability, but the color overcompensation appears.
Ding et al. [72] used the adaptive color correction algorithm to compensate for color distor-
tion. The CNN network was used to estimate the depth map of the color-corrected image,
which was directly converted into a transmission image for restoration. The robust adap-
tation and real-time performance of the algorithm need to be improved. Wang et al. [73]
proposed a CNN-based underwater image enhancement network (UIE-NET), which can
estimate color-corrected and transmission images from input underwater images. Its main
learning strategy is to train both color-correction and "defogging" processes simultaneously
to better extract the inherent characteristics of local blocks. In the training process, the
pixel interference strategy is used to suppress the small texture interference information
contained in the regional block, which improves the convergence speed and accuracy of
the learning process. This method improves the brightness and contrast of the underwater
image. However, there is a red overcompensation phenomenon. Since it is difficult to obtain
a corresponding reference image for underwater images, Barbosa et al. [74] used a group
of image quality measures to guide the restoration process based on the CNN network. By
processing simulated data to recover the image, the difficulty of measuring the real scene
data is avoided. Good results have been achieved when UCIQE measures are considered,
but other indicators need to be improved. Hou et al. [75] proposed an underwater-residuals
CNN. The underwater image enhancement task was modeled to learn the transfer diagram
and scene residuals simultaneously and estimate the global background light from blue
and green channels. The model includes a data-driven residuals structure for transmission
image estimation and a knowledge-driven scene residuals calculation method for underwa-
ter lighting balance, and color correction is performed on the image to obtain the restored
underwater image. The disadvantage is the need to use color correction algorithms for
reprocessing. Cao et al. [76] constructed a deep neural network to directly estimate the
learned background light transmission image from the input image to further improve
the restoration effect. They then used the atmospheric model to realize image restora-
tion with better contrast and brighter color. Strictly speaking, an end-to-end enhanced
network is not built, and there are additional parameters. Wang et al. [77] proposed a
parallel convolutional neural network for underwater image processing, consisting of two
parallel branches, a transmission estimation network, and a global ambient light estimation
network. The network uses cross-layer connection and multiscale estimation to prevent the
halo phenomenon and maintain edge features. However, the contrast enhancement is not
significant enough. Li et al. [78] present an underwater image enhancement network via
medium transmission-guided multi-color space embedding, called Ucolor. The network
has a multi-color space encoder and a medium transmission-guided decoder, which can
effectively improve the visual quality of underwater images by exploiting multiple color
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spaces embedding and the advantages of both physical model-based and learning-based
methods. However, it fails to produce a visually compelling result when processing an
underwater image with limited lighting. The underwater image enhancement method
combined with a physical model CNN is shown in Table 7.

Table 7. Underwater image enhancement method combined with physical model CNN.

Author Algorithm Contribution

Shin et al. [71]
Learn the transmission image and
background light of the underwater
image at the same time

Good defogging performance

Ding et al. [72]

Adaptive color correction method is
used for color compensation of
underwater images, combined with
convolutional neural network model

Reduces image blur

Wang et al. [73]

Color correction and “defog” processes
trained simultaneously, and pixel
interference strategy is used to
optimize the training process

Improves convergence speed
and accuracy of learning process

Barbosa et al. [74]
Set of image quality metrics is used to
guide restoration process, and image is
recovered by processing analog data

Avoids difficulty of real scene
data measurement

Hou et al. [75] Combined residual learning for
underwater residual CNN

Deep learning approaches
combine data-driven and
model-driven approaches

Cao et al. [76]

Convolutional neural network is used
to learn background light and
transmission images directly from
input images

Reveals more image details

Wang et al. [77]
Parallel convolutional neural network
estimates transmission image and
background light

Prevents halo, maintains edge
features

Li et al. [78]

Design an underwater image
enhancement network via medium
transmission-guided multi-color space
embedding

Exploiting multiple color spaces
embedding and the advantages
of both physical model-based
and learning-based methods

(2) Non-physical model methods
In the non-physical model, the original underwater image is sent into the network

model with the help of CNN’s powerful learning ability. The enhanced underwater image
is directly output after convolution, pooling, deconvolution, and other operations. The
process is shown in Figure 5. This method can eliminate the constraints of model assump-
tions or prior conditions and directly learn the mapping relationship between the original
underwater image and the clear underwater image.

Figure 5. CNN underwater image enhancement for non-physical model.
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Perez et al. [79] first formed a paired dataset of degraded and clear underwater images
and used the deep learning method to learn the mapping relationship between the two.
The underwater image enhancement model based on the convolutional neural network
was built to complete underwater image enhancement. Sun et al. [80] proposed a pixel-
to-pixel deep learning model to realize an underwater image enhancement model. This
model adopts the code-decoder framework, using the convolutional layer as the encoder to
de-noise the underwater image and the deconvolutional layer as the decoder to enhance
the details of the pixelated underwater image. This method has a remarkable effect on
underwater image denoising. The algorithm has good results in dealing with turbid images,
but it is not effective in color enhancement. Li et al. [81] proposed a gated fusion network,
WATER-NET. White balance, histogram equalization, and gamma correction algorithms
are used to enhance the underwater image, and the final image is obtained by combining
the confidence graphs of different enhancement algorithms. Although the quantitative
analysis of the results is not good, it has good generalization performance and room for
improvement, as a reference model.

Li et al. [82] proposed an underwater image enhancement CNN model based on
the underwater scene prior, called UWCNN. The model does not need to estimate the
parameters of the underwater imaging model but combines the physical model of the image
and the optical characteristics of the underwater scene to synthesize image degradation
datasets covering different types and degradation degrees. The corresponding training
data are used to train the network, and multiple losses are optimized jointly to reconstruct
clear underwater images while retaining the original structure and texture. However,
the UWCNN cannot realize the prediction of single model. Naik et al. [83] proposed a
shallow neural network (Shallow-UWnet) composed of a fully connected convolutional
network and three densely connected convolutional blocks in series. By using convolutional
blocks and jump connections, the network prevents overfitting problems and has better
generalization performance. The real-time performance of the algorithm is good, but the
enhancement effect needs to be improved.

Han et al. [84] proposed a deep supervised residual dense network (DS_RD _Net).
DS_RD_Net first uses residual dense blocks to extract features to enhance feature utilization.
Then, it adds residual path blocks between the encoder and decoder to reduce the semantic
differences between the low-level features and high-level features. Finally, it employs a
deep supervision mechanism to guide network training to improve gradient propagation.
The proposed method can fully retain the local details of the image while performing
color restoration and defogging. Because the method prefers to preserve detailed features,
the color index of the result is not superior. Yang et al. [85] proposed a trainable end-
to-end neural model constituted by two parts. The first one is a non-parameter layer for
the preliminary color correction. The second part consists of parametric layers for a self-
adaptive refinement, namely the channel-wise linear shift. The proposed method can obtain
high-quality enhancement results with better details, contrast, and colorfulness, but it does
not work well in overall style and texture retention. Wang et al. [86] use HSV color space
for underwater image enhancement based on deep learning. They proposed Convolution
Neural Network using 2 Color spaces (UICE2-Net) to efficiently and effectively integrate
RGB Color Space and HSV Color Space in one CNN. The RGB pixel-level block implements
fundamental operations such as denoising and removing color cast, the HSV global-adjust
block for globally adjusting underwater image luminance, color, and saturation by adopting
a novel neural curve layer. The disadvantage is that extracting features of different color
spaces increases the time complexity of the algorithm. The underwater image enhancement
methods of non-physical model CNNs are shown in Table 8.
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Table 8. Underwater image enhancement methods of non-physical model CNNs.

Author Algorithm Contribution

Perez et al. [79]
Deep learning method is used to learn
the mapping model of degraded and
clear images

First to use deep learning for
underwater image enhancement

Sun et al. [80] Underwater image is enhanced using
an encoder–decoder structure

Significant denoising effect,
enhanced image details

Li et al. [81]
Gated fusion network with white
balance, histogram equalization, and
gamma correction algorithms is used

Reference model for underwater
image enhancement with good
generalization performance

Li et al. [82]

Training data are synthesized by
combining the physical model of the
image and optical characteristics of
underwater scenes and used to train
the network

Retains original structure and
texture while recreating a clear
underwater image

Naik et al. [83]
Shallow neural networks connected by
convolutional blocks and jumps are
used

Maintains performance while
having fewer parameters and
faster speed

Han et al. [84]

A deep supervised residual dense
network uses residual dense blocks,
adds residual path blocks between the
encoder and decoder, and employs a
deep supervision mechanism to guide
network training

Retains the local details of the
image while performing color
restoration and defogging

Yang et al. [85]

A non-parameter layer for the
preliminary color correction and a
parametric layers for a self-adaptive
refinement constitute a trainable
end-to-end neural model

The results have better details,
contrast and colorfulness

Wang et al. [86] Integrate both RGB Color Space and
HSV Color Space in one single CNN

Addresses the problem that
RGB color space is insensitive to
image properties such as
luminance and saturation

3.2. Generative Adversarial Network-Based Methods

Generative adversarial network(GAN) was proposed by GoodFellow et al. [12]. A
generative adversarial network (GAN) is used to produce better output through the mutual
game confrontation learning of a generator and discriminator. By learning, the generator
generates an image as similar to the actual image as possible so that the discriminator
cannot distinguish between true and false images. The discriminator is used to indicate
whether the image is a composite or actual image. If the discriminator cannot be cheated,
the generator will continue to learn. The process is shown in Figure 5. The input of the
generator is a low-quality image, and the output is a generated image. The input of the
discriminant network is the generated image and the actual sample, and the output is
the probability value that the generated image is true. The probability value is between 1
and 0. As an excellent generation model, GAN has a wide range of applications in image
generation, image enhancement and restoration, and image style transfer.

The initial application of GAN in the underwater image field is to expand the un-
derwater image dataset. In view of the insufficient dataset caused by the difficulty in
obtaining natural and effective underwater images, Chen et al. [87] first used GAN to
generate many images of the underwater environment. A pair of training sets was formed
with clear images on land to train the model. Later, Anwar et al. [88] used the indoor
environment to synthesize underwater images as the CNN training set and reconstructed
clear underwater latent images using the established network. Yang et al. [89] also used
generative adversarial networks to construct underwater image datasets. The difference is
that this network model uses double discriminators to obtain global semantic information
of underwater images to synthesize more realistic images. This method improves the
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overall clarity of underwater images, but the images still have fuzzy details and an unclear
edge structure.

(1) CGAN-based methods
The original GAN network automatically learns the distribution characteristics of data

with random noise as input, and outputs a random image following a certain distribution.
The disadvantage is that the category attribute of the image cannot be controlled. By
adding conditional information to the generator and discriminator of the original GAN,
the conditional generation adversarial network (CGAN) [90] is obtained. The additional
conditional information can be category tags or other ancillary information. Therefore, the
image generation process of CGAN is controllable. The structure is shown in Figure 6.

Figure 6. CGAN network model structure.

Li et al. [91] proposed the underwater image generation countermeasure network (Wa-
terGAN), which uses atmospheric image and depth maps to synthesize underwater images
as an end-to-end network training dataset for color correction of a single underwater image.
Then, a two-stage deep learning network is constructed using the original underwater
image, actual atmospheric color image, and depth map to realize real-time color correction
of a single underwater image. The performance of the algorithm depends on the training
dataset. Guo et al. [92] proposed a new multiscale dense generated adversarial network
for underwater image enhancement, denoted as UWGAN, which introduces residual mul-
tiscale dense blocks into the generator. Multiscale manipulation, dense cascading, and
residual learning are used to improve performance, render more detail, and take full advan-
tage of features, respectively. The discriminant adopts the method of calculating spectral
normalization to stabilize the training of the discriminant. The real time and adaptive
ability of the algorithm are still lacking. Liu et al. [93] proposed a multiscale feature fusion
network for underwater image color correction, denoted as MLFCGAN. This method
realizes multiscale global and local feature fusion in the generator part. The fusion of global
and local features can obtain more discriminative and effective feature expression and
contribute to more effective and faster network learning. Thus, it has better performance
in color correction and detail retention. Yang et al. [89] proposed an underwater image
enhancement method based on GAN. In the generator part, a multiscale structure is used
to generate a clear underwater image. In the discriminator part, a double discriminator is
designed to obtain local and global semantic information. Therefore, the results generated
by the constrained multiscale generator are real and natural, but the detail retention needs
to be improved. Li et al. [94] propose the simple and effective fusion adversarial network,
which employs the fusion method to extract the degraded underwater image features.
The multi-term objective function combined generator loss, fusion enhanced image loss,
SSIM loss, and PSNR loss is leveraged for correcting color casts effectively, and spectral
normalization is utilized to improve image quality. The proposed method has superiority
in both qualitative and quantitative evaluations. The disadvantage is that the method of
setting reasonable parameters affects the generalization ability of the model. Liu et al. [95]
offer an integrated approach, where the revised underwater image formation model, i.e.,
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the Akkaynak–Treibitz model, is embedded into the network. The embedded physical
model guides for network learning and the generative adversarial network (GAN) are
adopted for the estimation of coefficients. This method takes full advantage of the merits
of these two approaches to mutually benefit each other and can effectively restore the color
of underwater images with fine details and alleviate the unwanted artifacts. However,
the real-time performance of the algorithm needs to be tested. The underwater image
enhancement methods based on CGAN are shown in Table 9.

Table 9. Underwater image enhancement methods based on CGAN.

Author Algorithm Contribution

Li et al. [91]

Underwater image generation
countermeasure network WaterGAN,
using atmospheric images and depth
maps to synthesize underwater images
as the training dataset

Constructs two-stage deep
learning network using raw
underwater images, authentic
atmospheric color images, and
depth maps

Guo et al. [92] New multiscale dense generated
adversarial network(UWGAN)

Multiscale manipulation, dense
cascading, and residual learning
improve performance, render
more detail, and take full
advantage of features

Liu et al. [93]

Multiscale feature fusion network for
underwater image color correction
(MLFcGAN) realized multiscale global
and local feature fusion in the generator
part

Conducive to more effective
and faster online learning

Yang et al. [89]

Dual discriminator designed to obtain
local and global semantic information,
thus constraining the multiscale
generator

Generated images are more
realistic and natural

Li et al. [94]

A simple and effective fusion
adversarial network that employs the
fusion method and combines four
different losses

Corrects color and has
superiority in both qualitative
and quantitative evaluations

Liu et al. [95] Combine the Akkaynak–Treibitz model
and generative adversarial network

Achieves clear results with good
white balance and visually quite
close to the ground-truth images

(2) CGycleGAN-based methods
The cycle-consistent adversarial network (Cyc1eGAN) is an improvement on the

traditional GAN network structure. A ring network consisting of two mirror-symmetric
GAN generators and two corresponding discriminators is constructed. The structure is
shown in Figure 7. CycleGAN trains two GAN networks. There are two generators, G,F
and two discriminators, DX ,DY. G,F are used to learn the mapping relationship from the X
to the Y domain and from the Y to the X domain. In order for the input image and generated
image to correlate, it is required that F(G(x)) ≈ x and G(F(y)) ≈ y, and Cyc1eGAN is
proposed for the cyclic consistency loss function. This structure solves the difficulty that
GAN requires paired data for training and has good application in underwater images that
lack paired data.
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Figure 7. CGAN network model structure.

Fabbri et al. [96] proposed a network UGAN based on a generative adversarial
network (GAN) to improve the visual quality of underwater images. It first uses unpaired
clear and degraded underwater images to train and then forms a training set with clear
underwater images generated by Cyc1eGAN and the corresponding degraded underwater
images. Absolute error loss and gradient loss are added to restore the underwater image.
Lu et al. [97] proposed a multiscale Cyc1eGAN network for underwater image restoration
that combines dark channel prior and Cyc1eGAN. An adaptive image restoration process
is established by using dark channel prior to obtain the depth information of underwater
images. Then the depth information is input into the network to guide the multiscale
calculation. Underwater image quality and detailed structural information are improved,
and it has good performance in contrast enhancement and color correction. However, this
model cannot produce a reliable image under non-uniform illumination.

Park et al. [98] added a pair of discriminators based on Cyc1eGAN. The model consists
of two generators and four discriminators. Image enhancement is achieved while retaining
the content of the input image. An adaptive weighting method is introduced to limit the
loss of the two discriminators. Although it is difficult to train, this mechanism makes
full use of the advantages of each discriminator while suppressing their negative effects.
Islam et al. [99] proposed a fast underwater enhancement model, FUnIE-GAN, which
develops an objective function based on global content, image content, local texture, and
style information to evaluate perceived image quality. The specific approach is to use
absolute error loss as global loss and a pre-trained VGG-19 network to extract advanced
features to construct content loss. The local consistency of texture and style depends on the
antagonistic implementation of the recognizer. In addition, different objective functions are
designed for paired image training based on CGAN and unpaired image training based
on CycleGAN. The results of the algorithm have an excellent effect on color restoration
and sharpening, and the processing speed is fast. Experiments have also been carried out
on underwater video enhancement. In this algorithm, the contrast effect of the generated
image is not very good. Hu et al. [100] proposes to add the natural image quality evaluation
(NIQE) index to the GAN to provide generated images with higher contrast and make them
more in line with the perception of the human eye, and at the same time, grant generated
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images a better effect than the truth images set by the existing dataset. Contrast and
NIIQE are good, but texture details are missing. Zhang et al. [101] propose an end-to-end
dual generative adversarial network (DuGAN) for underwater image enhancement. The
images are segmented into clear parts and unclear parts and two discriminators are used
to complete adversarial training toward different areas of images with different training
strategies, respectively. However, this method obtained reference images by relying on a
user-guided approach, which made it difficult to train with new images. The underwater
image enhancement methods based on CycleGAN are shown in Table 10.

Table 10. Underwater image enhancement and restoration based on CycleGAN.

Author Algorithm Contribution

Fabbri et al. [96]

Unpaired underwater images are used
for training, then generated clear
images and corresponding degraded
images are formed into a training set

Absolute error loss and gradient
loss are added to the loss
function

Lu et al. [97]

Underwater image restoration based on
a multiscale CycleGAN network;
establishes adaptive image restoration
process by using dark channel prior to
obtaining depth information of
underwater images

Improves underwater image
quality, enhances detail
structure information, has good
performance in contrast
enhancement and color
correction

Park et al. [98]

A pair of discriminators is added based
on Cyc1eGAN; introduces adaptive
weighting method to limit loss of the
two discriminators

Stable training process

Islam et al. [99]
Supervises training based on global
content, image content, local texture,
and style information

Good color restoration and
image sharpening effect, fast
processing speed can be used in
underwater video enhancement

Hu et al. [100] Add the natural image quality
evaluation (NIQE) index to the GAN

Provides generated images with
higher contrast and tries to
generate a better image than the
truth images set by the existing
dataset

Zhang et al. [101]

An end-to-end dual generative
adversarial network (DuGAN) uses
two discriminators to complete
adversarial training toward different
areas of images

Restores detail textures and
colour degradations

4. Underwater Video Enhancement

With the development of underwater video acquisition and data communication tech-
nology, real-time underwater video transmission becomes possible. Underwater video with
spatiotemporal information and motion characteristics has higher application prospects
than underwater images in ocean development. Because of the optical properties, under-
water video has some similar problems to underwater images, such as color bias, image
blur, low contrast, uneven illumination, etc. At the same time, due to the influence of water
flow on video acquisition equipment, the texture features and details of moving objects
are weakened or disappear. These problems seriously affect the ability of the underwater
video system to accurately collect scene and object features. Unlike atmospheric video en-
hancement technology, which tends to solve blur and jitter, underwater video enhancement
focuses more on solving the harmful effects of the unique optical environment on color and
visibility.

Compared with underwater image enhancement technology, underwater video en-
hancement is more complicated. The research in this direction has not yet reached a mature
stage. Most of the existing underwater video enhancement methods are extensions of
single image enhancement algorithms. When underwater image enhancement technology
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is directly applied to video, each frame is enhanced and then connected into a new video.
Due to the differences in transmission images and background light between frames, the
continuity of the enhanced video is not well maintained, and time artifacts and interframe
flicker phenomena can occur.

Because of this defect, some scholars propose reducing the flicker phenomenon by
accelerating the processing speed of each underwater image frame. IMSRCP, proposed
by Tang et al. [37], is a fast MSR enhancement method applicable to underwater video.
Considering that frequent convolution operation on a large scale will seriously affect
the calculation speed, this algorithm extracts features from low-resolution images after
subsampling. Subsampling and an IIR Gaussian filter are used to form a fast filter, and 1/2
subsampling is performed on the image repeatedly until the filter size reaches a reasonable
range. The IIR Gaussian filter is composed of forward and reverse recursion. The filter is
applied to a two-dimensional image’s vertical and horizontal directions to complete the fast
two-bit convolution operation. This strategy effectively solves the problem of the strain on
computing resources by increased scale and has a significant advantage in speed, enabling
it to be extended to underwater video enhancement.

UMCNN, proposed by Li et al. [82], adopts a lightweight modular structure to adapt
to underwater video enhancement. Different from the widely used Densenet structure,
the convolutional layer in the network structure of UMCNN is not connected to other
convolutional layers in the same block. Moreover, the network does not use any full
connection layer or batch normalization processing, making the network memory efficient
and fast. Further, the inputting of images directly into each enhancement module layer and
the inputting of data reduce the need for a deep network. The whole network comprises
three enhancement units, and each unit is composed of three convolution layers. There is a
single convolution layer at the end of the network. The total depth of the network is only 10
layers, which reduces the computational cost and is easy to train for use in frame-by-frame
enhancement of underwater video.

FUnIE-GAN, proposed by Islam et al. [99], also has excellent image enhancement
speed. A simpler model is adopted in the generator part of the GAN model, which only
learns 256 feature graphs of size 8 × 8 with fewer parameters to realize fast inference. In
the discriminant part, the recognition is only based on patch-level information rather than
global recognition at the image level. This configuration is computationally more efficient
because it requires fewer parameters. The entire network structure requires only 17 MB of
memory. The computing speed reaches 25.4 frames per second in the embedded system
(NVIDIA Jetson TX2), 148.5 frames per second on the graphics card (NVIDIA GTX 1080),
and 7.9 frames per second on the CPU (Intel Core i36100 U). It can meet the real-time
requirements of underwater robots and has been shown to effectively improve underwater
target detection, saliency prediction, and human posture estimation through experiments.

In addition, there are enhancement algorithms to increase speed by reducing computa-
tional complexity. Lu et al. [102] proposed a prior estimation method based on attenuation
differences between red channels to estimate transmission patterns, using a triangular
filter to compensate the transmission, preserve the edge, remove the noise, and speed up
the calculation. At the same time, in the color correction method, the summation oper-
ation is replaced by the convolution operation to reduce the computational complexity.
Bicnao et al. [103] proposed a fast enhancement method for underwater images with non-
uniform illumination. Based on the gray world hypothesis, according to local changes of
brightness and chromaticity, color correction is carried out with the area summation table
technique, which reduces the computational complexity and is suitable for video enhance-
ment. Liu et al. [104] proposed a real-time multithreading underwater image enhancement
system that uses an automatic multithreading method. The hardware’s computing power
is compacted by creating an optimal number of processing threads for both consistency
and real-time performance. The framework improves the computing efficiency by opti-
mizing the computing strategy of the processor, which is independent of the enhancement
algorithm used and enhances the real-time performance.
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These algorithms often sacrifice image quality to achieve faster processing speed.
The commonly used methods include fast filtering, optimal computing strategy, and
compressed deep network model, etc. How to strike a balance between video quality
and computing speed is an urgent problem to be solved.

The other method to enhance underwater video is to use the timing characteristics
of the video combined with the timing relationship between frames. Simply enhancing
video frames and connecting them will interrupt the correlations between adjacent frames,
and the color consistency of the entire video will not be maintained. Furthermore, the time
complexity will be very high. In the image fusion algorithm proposed by Ancuti et al. [41],
the time-bilateral filtering strategy is used for the white balance version of the video
frame. A bilateral filter is a non-iterative edge-preserving filter defined on a kernel domain
that combines the center pixel in the window with adjacent pixels to enhance sharpness
and improve the stability of the smooth region. Time-sequence information is added in
time-domain bilateral filtering. In window selection, pixels containing time alignment in
adjacent frames are selected to achieve smoothing between frames and maintain temporal
coherence.

Li et al. [105] performed video dehazing and stereo reconstruction simultaneously.
The depth cues from stereo matching and fog information reinforce each other, producing
better results than traditional stereo or fog removal algorithms. In order to simulate
the appearance change caused by the scattering effect, first the light consistency term is
improved. The a priori matting Laplace constraint of fog propagation imposes a smoothing
constraint to preserve details on scene depth and strengthens the sequence consistency
between the scene depth and the fog propagation of adjacent points. These constraints were
added to the constructed MRF framework, and the auxiliary variables were introduced
for iterative optimization. The algorithm calculates the fog transmission of each pixel
directly from the scene depth (and the estimated fog density). This ensures that the stereo
reconstruction and defogging results are consistent. Eliminating the ambiguity of air
albedo during defogging maintains the time consistency of the final defogging video. In
the experiment, the algorithm dealt with underwater video and obtained an excellent
defogging effect.

Qing et al. [106] proposed a space-time information fusion algorithm for underwater
video defogging. Based on the DCP algorithm, it optimizes the projection image and
estimation of atmospheric light value. In terms of transmission image extraction, the
transmission image of the first frame of the video is extracted based on DCP, then refined
by the guided filter. Since there is little difference between the transmission images of
adjacent frames, the images of subsequent frames are guided by the grayscale image of
the frame. The transmission images of the previous frame are input and obtained through
linear translation filtering. In estimating the background light, the adjustment factor is
designed to avoid frequent changes of the atmospheric light value by combining the
current frame’s background light estimation. The computational complexity is reduced
because only the projection image is extracted in the first frame using dark channel priors.
In addition, the correlation between adjacent frames of the video is presented through
the transmission image and estimation of atmospheric light value fused with spatial and
temporal information, which reduces the scintillation caused by changes in the transmission
image and atmospheric light value.

This algorithm makes full use of the relationship between frames and preserves the
timing characteristics of the video. Although extracting time sequence information will
increase the complexity of the algorithm, the key frame parameters can be used to replace
the adjacent multi-frame images and shorten the calculation time. The underwater video
enhancement algorithms are shown in Table 11.
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Table 11. Underwater video enhancement algorithms.

Author Algorithm Contribution

Tang et al. [37]

Extracts features from low-resolution
images after subsampling; subsampling
and IIR gaussian filter are used to form
a fast filter to complete the fast two-bit
convolution operation

Solves the problem of the strain
on computing resources by
increased scale effectively

Li et al. [82]

The convolutional layer in the network
structure of UMCNN is not connected
to other convolutional layers in the
same block and the network does not
use any full connection layer or batch
normalization processing

The total depth of the network
is only 10 layers, which reduces
the computational cost and is
easy to train

Islam et al. [99]

In the generator part, the model only
learns 256 feature graphs of size 8 × 8;
in the discriminant part, the recognition
is only based on patch-level
information

The entire network structure
requires only 17 MB of memory
and calculates more efficiently

Ancuti et al. [41]

The time-bilateral filtering strategy is
used for the white balance version of
the video frame. Time-sequence
information is added in time-domain
bilateral filtering

Enhances sharpness and
improves the stability of the
smooth region. Achieves
smoothing between frames and
maintains temporal coherence

Li et al. [105]

The depth cues from stereo matching
and fog information reinforce each
other. Calculates the fog transmission
of each pixel directly from the scene
depth and the estimated fog density

Eliminating the ambiguity of air
albedo during defogging
maintains the time consistency
of the final defogging video

Qing et al. [106]

The images of subsequent frames are
guided by the grayscale image of the
first frame and combine the current
frame’s background light estimation to
avoid frequent changes of the
atmospheric light value

Reduces the computational
complexity and the scintillation
caused by changes in the
transmission image and
atmospheric light value

5. Dataset and Quality Assessment
5.1. Underwater Vision Dataset

For underwater video and image enhancement, the underwater vision dataset is
an enhancement object and a sample for deep learning model training, and is used to
test algorithm performance. Through the efforts of many scholars, some well-recognized
datasets have been established. Li et al. [91] set the Port Royal dataset by using WaterGAN.
Jian et al. [107] established the OUC-Vision dataset by taking photos of different postures
and positions of individuals underwater. Berman et al. [108] collected images of different
locations and water quality levels and made data annotations to establish the SQUID dataset.
Li et al. [81] established a large-scale real underwater image enhancement benchmark
dataset (UIEBD), which includes underwater images with different degrees of degradation
and corresponding high-quality reference images. Liu et al. [109] established real-world
underwater image enhancement (RUIE) by using the multi-view underwater imaging
system. It includes underwater image quality sets (UIQs), underwater color deviation sets
(UCCS), and underwater advanced mission drivers (UHTS). Islam et al. [99] constructed
the EUVP dataset with 12,000 paired and 8000 unpaired cases by capturing underwater
video from different cameras and the internet. Wei et al. [110] established MABLs, the first
dataset for background light estimation of underwater images, consisting of 500 images
with different scenes and distortion levels, with manually labeled background light values.
Underwater vision datasets are shown in Table 12.
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Table 12. Underwater vision datasets.

Author Content Addresses

Port Royal Composite image using WaterGAN https://github.com/kskin/data
(accessed on 16 December 2021)

OUC-Vision Take photos of different postures and
positions of individuals underwater

https://ieeexplore.ieee.org/abstract/
document/8019324 (accessed on 16
December 2021)

SQUID
Collected images of different locations
and water quality levels and made data
annotations

http://csms.haifa.ac.il/profiles/
tTreibitz/datasets/ambient$_
$forwardlooking/index.html
(accessed on 16 December 2021)

UIEBD

Includes underwater images with
different degrees of degradation and
corresponding high-quality reference
images

https://li-chongyi.github.io/proj$_
$benchmark.html (accessed on 16
December 2021)

RUIE Use the multi-view underwater
imaging system

https://github.com/dlut-dimt/
Realworld-Underwater-Image-
Enhancement-RUIE-Benchmark
(accessed on 16 December 2021)

EUVP
12,000 paired and 8000 unpaired cases
by capturing underwater video from
different cameras and the internet

http://irvlab.cs.umn.edu/resources/
euvp-dataset (accessed on 16
December 2021)

MABLs

Consists of 500 images with different
scenes and distortion levels, with
manually labeled background light
values

https://github.com/wangyanckxx/
Enhancement-of-Underwater-
Images-with-Statistical-Model-of-
BL-and-Optimization-of-TM
(accessed on 16 December 2021)

5.2. Quality Assessment of Underwater Video and Images

Image quality assessment (IQA) and video quality assessment (VQA) play important
roles in video image enhancement. A reasonable quality assessment reflects the quality of
video images and has important significance for performance evaluation of enhancement
algorithms and guiding the optimization direction of the algorithm. The standard of
video and image quality evaluation can be divided into subjective and objective methods.
A subjective evaluation of the video or image is given by the observer and is usually
represented by the mean opinion score (MOS) or differential mean opinion score (DMOS).

Subjective scoring relies on the optical characteristics of human eyes, but it does not
apply to the quality of underwater video images because of its heavy workload, poor
real-time performance, and inability to be realized automatically. In particular, subjective
indicators cannot quickly and accurately evaluate a large amount of data in the face of the
current popular deep learning methods. Objective evaluation uses computer algorithms for
scoring, which can be real-time online evaluation. It is better adapted for underwater visual
enhancement tasks. According to whether reference images are needed in the evaluation, it
can be divided into three kinds of methods: full reference (FR), reduced reference (RR), and
no reference (NR).

Full reference image quality evaluation compares the reference image with the dis-
torted image and calculates the difference to obtain a score. Traditional full-reference
and semi-reference evaluation indicators include mean square error (MSE), peak signal-
to-noise ratio (PSNR) [111], structural similarity index (SSIM) [112], visual information
fidelity (VIF) [113], visual signal-to-noise ratio (VSNR) [114], and most apparent distortion
(MAD) [115]. Unreferenced evaluation, also known as blind image quality (BIQ), only
estimates image quality according to its own characteristics and is independent of image
content. Commonly used non-reference image quality assessments include blind image
quality index (BIQI) [116], entropy [117] and natural image quality evaluator (NIQE) [118].
NR assessments directly calculates the objective quality of the image, which is more widely
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used in underwater data without labels. At the same time, the strategy of using NR
assessments to optimize parameters in the algorithm is also very common.

Due to the universality of NR indicators, many quality assessment models based on
deep learning have been proposed, for example, neural image assessment (NIMA) [119],
which is a novel approach to predict both technical and aesthetic qualities of images,
deep image quality assessor (DIQA) [120], and multi-task end-to-end optimized network
(MEON) [121]. Quality assessment models based on deep learning have better data fitting
ability and less error with subjective indicators.

Non-reference quality evaluation indices used especially for underwater images in-
clude underwater color image quality evaluation (UCIQE) proposed by Yang et al. [122],
underwater image quality measure (UIQM) proposed by Panetta et al. [123], and colorful-
ness–contrast–fog density (CCF) proposed by Wang et al. [124]. Compared with evaluation
indicators, these indexes can better reflect the contrast, color richness and atomization of un-
derwater images. Underwater vision enhancement algorithms use these quality assessment
models to measure the performance of the algorithm.

There are some similarities between video quality and image quality evaluation
methods, and image quality evaluation indices such as PSNR and SSIM can be applied
directly. However, they only reflect the quality of the frame in the video. They cannot
reflect the motion characteristics of the video that are different from the image and the
accompanying timing information. Quality assessment methods used for video include
motion-based video integrity evaluation (MOVIE) [125], video quality model (VQM) [126],
spatiotemporal most-apparent-distortion model (STMAD) [127], and deep learning-based
video quality evaluation models such as DeepVQA [128], C3DVQA [129], SACONV A [130],
and Deep BVQA [131].

At present, there are few studies on underwater video quality evaluation, and they
do not have good applicability. For example, Moreno-Roldan et al. [132] proposed the
generalization—non-linear regression model (NLR.G) and accuracy—non-linear regres-
sion model (NLR.A) to evaluate underwater video quality. Song et al. [133] proposed a
no-reference underwater video quality assessment model (NR-NVQA) based on spatial
natural characteristics and coding parameters. These models have not been widely used
due to insufficient samples or over-fitting of models. The development of underwater
video enhancement technology is in urgent need of more evaluation indexes with good
performance.

Due to the complexity of the underwater environment, there are many reasons for
distortion and quality degradation. The general video image quality index cannot fully
reflect the natural underwater environment. Even the widely used indicators for under-
water images, UCIQE and UIQN, tend to score more strongly in favor of highly colored
underwater images. Reasonable and universal underwater video quality assessments are
even rarer. Therefore, underwater video image enhancement is of great significance in
order to develop more accurate and suitable indicators that reflect underwater video image
quality and have good generalization performance.

Some indexes with high utilization rates in underwater image quality assessment are
calculated as follows:

(1) MSE

MSE =
1

M ∗ N

N−1

∑
n=0

M−1

∑
m=0

[ f (m, n)− I(m, n)]2 (3)

In the equation, M and N are the height and width of the image, f (m, n) is the pixel
value of the reference image (m, n), I(m, n) is the pixel value of the image to be tested
(m, n), and represents the whole image after sum. The smaller the MSE is, the closer the
image to be measured is to the reference image, and the higher the quality is.

(2) PSNR

PSNR = 10 ∗ log10
2n − 1
MSE

(4)
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In the equation, the value of the numerator represents the maximum value of the
color of the image point, which is 255 if each sample point is represented by 8 bits. The
denominator is MSE. The larger the PSNR is, the higher the fidelity of the image to be
tested to the reference image is, and the higher the image quality is.

(3) SSIM

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5)

In the equation, x is the reference image, and y is the image to be measured. µ
represents the average value of the image, while σ is the standard deviation of the image.
σxy represents the covariance between x and y. To avoid having a zero denominator, C1 and
C2 are very small constants. The SSIM is between 0 and 1; the closer it is to 1, the better the
image quality is.

(4) Entropy

Entropy =
n

∑
i=0

p(i)log2 p(i) (6)

In the equation, p(i) represents the probability of image gray value I appearing in the
image, n is the total number of image gray levels, 0 ≤ n ≤ 255. The higher the Entropy, the
higher the image quality.

(5) NIQE

NIQE =

√
(v1 − v2)T(

σ1 + σ2

2
)−1(v1 − v2) (7)

In the equation, the calculation of NIQE needs to obtain the mean value v1, v2 and
variance matrix σ1, σ2 of the natural image and distorted image by fitting the natural image
and distorted image and then calculate the distance between the fitting parameters of
natural image and distorted image to measure the image quality. NIQE represents the
distance between the image to be measured and the natural image, and the smaller the
value, the higher the quality of the image.

(6) UCIQE
UCIQE = c1 ∗ δc + c2 ∗ conl + c3 ∗ µs (8)

In the equation, δc is the standard deviation of color concentration, conl is the contrast
of brightness, µs is the mean value of saturation. c1, c2, c3 are weighted coefficients with
values of 0.4680, 0.2745 and 0.2576, respectively. The coefficient is derived from data in
Reference [122]. The higher the UCIQE, the better the image quality.

(7) UIQM
UIQM = c1 ∗ UICM + c2 ∗ UISM + c3 ∗ UIConM (9)

In the equation, UIQM is a weighted combination of UICM (underwater image color-
fulness measure), UISM (underwater image sharpness measure) and UIConM (underwater
image contrast measure). The weight coefficients c1 = 0.0282, c2 = 0.2953, c3 = 3.5753.
This coefficient setting is taken from Reference [123] and fitted by using multiple linear
regression. The larger UIQM is, the better the overall quality of the image is.

5.3. Algorithm Result

To verify the performance of these algorithms, we selected some typical algorithms
from different categories, including CLAHE [21], MSRCR [34], FUSION [42], UDCP [59],
UWCNN [82], UGAN [96], and FGAN [99]. We tested it on an effective and public underwa-
ter test dataset (U45) [134], which includes the color casts, low contrast and haze-like effects
of underwater degradation. This represents a typical feature of low-quality underwater
images. The results are shown in Figures 8–10.
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(a) Original Image (b) CLAHE (c) MSRCR (d) FUSION

(e) UDCP (f) UWCNN (g) UGAN (h) FGAN

Figure 8. Enhanced results of color casts.

(a) Original Image (b) CLAHE (c) MSRCR (d) FUSION

(e) UDCP (f) UWCNN (g) UGAN (h) FGAN

Figure 9. Enhanced results of low contrast.

(a) Original Image (b) CLAHE (c) MSRCR (d) FUSION

(e) UDCP (f) UWCNN (g) UGAN (h) FGAN

Figure 10. Enhanced results of haze.

The performance of the algorithm cannot be fully reflected only from subjective visual
perception. Therefore, the UCIQE underwater image quality index and NIQE natural
image quality index were selected for test and evaluation. The average results are shown in
Table 13.
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Table 13. Objective evaluation index of the test image.

Data Metric Original Image CLAHE MSRCR FUSION UDCP MCNN UGAN FGAN

Green UCIQE 0.393 0.492 0.571 0.549 0.467 0.523 0.618 0.635
NIQE 4.223 4.068 5.172 4.361 3.476 4.296 3.842 4.299

Blue UCIQE 0.647 0.643 0.516 0.629 0.676 0.673 0.664 0.632
NIQE 4.141 3.726 4.457 3.702 5.358 4.557 5.239 6.132

Haze UCIQE 0.546 0.585 0.536 0.572 0.657 0.598 0.602 0.596
NIQE 3.236 3.264 3.382 3.436 3.322 3.503 4.418 5.609

We evaluated both subjective visual effects and objective quality indicators. From the
subjective visual effects, it can be seen that the histogram-based algorithm has an obvious
effect on color and contrast enhancement, but the red part may have excessive enhancement.
After the MSRCR algorithm is enhanced, the brightness is greatly improved, but some
colors are distorted and the details are blurred. Based on the fusion algorithm, the green
and fog environment is improved, and the blue scene will produce a redshift. The UDCP
algorithm has excellent defogging performance but has obvious defects in improving image
color and even deepens green and blue. The performance of traditional algorithms varies
with different data sets. It can be seen that the performance of CLAHE algorithm and UDCP
algorithm is not superior in processing green images. The MSRCR algorithm has insufficient
ability to remove fog. The algorithm based on fusion can well adapt to the degraded images
in various environments. Although DCP algorithm has a significant effect on fog removal,
the green and blue parts are significantly deepened. The algorithm based on deep learning
is more natural in color truth, without obvious distortion or excessive enhancement effects,
and has a good enhancement effect for different underwater environments. Because the
large underwater image data set used in the training network covers a variety of underwater
degraded images, the deep network fully learns these degraded features. To analyze the
objective indicators, when using UCIQE, a special evaluation index for underwater images,
the MSRCR algorithm and FUSION algorithm of traditional algorithms have higher UCIQE
value in processing green scene images, which is superior to CLAHE and UDCP algorithms.
The three algorithms based on deep learning are better than traditional algorithms in
UCIQE. In blue scenes, the UCIQE index of images evaluated by the UDCP algorithm is
better than other traditional methods, and the image quality enhanced by MCNN and
UGAN based on deep learning is comparable. In the atomization scene, the UCIQE
index of the evaluated image of the UDCP algorithm is significantly improved, which
is due to the excellent defogging ability of the original DCP algorithm. The algorithm
based on deep learning has yet to be improved in this method. By integrating the three
scenarios, traditional algorithms have different performances in processing images of
different scenarios, while deep learning algorithms have good enhancement effects in
different underwater environments. As a supplement to the evaluation results of natural
image index NIQE, it can also be seen that the image processed by the enhancement method
based on deep learning is significantly different from the natural or underwater image in
terms of indicators, and the change effect is quite obvious.

6. Conclusions and Future Research Directions

As an essential carrier of marine ecosystem information, underwater video images
play an indispensable role in advanced computer vision tasks such as underwater target
recognition and detection, and underwater navigation, etc. However, due to the inter-
ference of the complex underwater environment and natural factors, underwater video
images suffer from serious blurring and color fading. With the ongoing efforts of many
scholars, underwater image enhancement technology has made significant progress, but the
technology is not yet mature. Traditional enhancement methods can achieve better results
when aiming at a certain type of underwater image or an image with certain characteristics.
Still, their applicability is not broad enough due to the changing and complex underwater
environment. The method based on deep learning can reduce the impact of the complex
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underwater environment on the results by learning many samples. However, it is highly
dependent on the dataset, and the coverage of the current dataset is still limited. At the
same time, most deep learning-based methods do not fully integrate the underwater imag-
ing model and focus on enhancement. Therefore, the development of underwater video
image enhancement technology can be further strengthened in the following directions:

(1) Improve adaptability and robustness. Although single image processing methods
have made significant progress due to the complex underwater environment, most of the
existing image processing methods are only effective for a specific type of underwater
image environment. The adaptability and robustness still need to be improved.

(2) Establish a more comprehensive underwater image dataset. Deep learning is
highly dependent on the quality of datasets, but the lack of sufficient reference images
for underwater images greatly limits the effectiveness of deep learning-based methods.
Building a more comprehensive dataset covering different subsea environments will help
improve the adaptability of the algorithm, and the dataset can be used to test and enhance
the algorithm’s performance.

(3) Improve the underwater video and image quality evaluation system. At present,
most researchers only evaluate the performance of underwater image processing methods
through subjective indicators, UIQM and UICQE. Although these are widely used, they
are based on the characteristics of the human visual system and tend to be graded in favor
of over-enhanced color maps. Therefore, it is of great significance to develop an objective
evaluation index with good generalization performance and solid anti-jamming ability. We
think the aesthetic image quality indicators, such as NIMA, can assist in underwater image
optimization to improve the image of subjective feeling.

(4) Improve real-time performance and strengthen research on underwater video
enhancement technology. Existing methods mainly focus on single underwater images,
mostly on improving performance, and cannot be directly applied to underwater video
enhancement let alone meet the high real-time requirements of underwater vehicles. At the
same time, we should pay more attention to the enhancement effect of underwater video
and make full use of the timing characteristics.
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