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Abstract
The accuracy of underwater target recognition by autonomous underwater vehicle (AUV) is a powerful guarantee for
underwater detection, rescue, and security. Recently, deep learning has made significant improvements in digital image
processing for target recognition and classification, which makes the underwater target recognition study becoming a hot
research field. This article systematically describes the application of deep learning in underwater image analysis in the past
few years and briefly expounds the basic principles of various underwater target recognition methods. Meanwhile, the
applicable conditions, pros and cons of various methods are pointed out. The technical problems of AUV underwater
dangerous target recognition methods are analyzed, and corresponding solutions are given. At the same time, we
prospect the future development trend of AUV underwater target recognition.
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Introduction

With the development of technology and the continuous

growth of military power, countries around the world are

shifting their military priorities to the ocean. Limited by the

natural conditions of the ocean and the physical limits of

human beings, it is obviously impossible to exploit marine

resources solely by humans. Autonomous underwater vehi-

cle (AUV) is capable of performing underwater tasks inde-

pendently. Therefore, AUV equipped with visual image

acquisition equipment is often used for real-time detection

in the underwater environment, which has also made auton-

omous underwater robots widely used in military fields, for

example, mine detection, intelligence collection, and off-

shore defense.

In 1997, based on the neural network classifier k-nearest

neighbor attractor and the optimal discriminatory filter

classifier, Naval Surface Warfare Center (Dahlgren,

Virginia, USA) extracted and classified the features of each

detected minefield.1 This method reduced false alarms and

laid the foundation for deep learning in underwater danger-

ous target recognition. In 2003, for improving the effi-

ciency of clearing landmines and unexploded ordnance,

Carnegie Mellon University proposed a new method to deal

with sensor uncertainty, which uses geometrical and topo-

logical features instead of sensor uncertainty models.2

Therefore, it speeds up the demining process. To reduce
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the impact of the complex and changeable underwater envi-

ronment, Cao et al.3 proposed a method named stacked

autoencoder (SAE)-softmax that joint SAE and softmax

classifying underwater targets. This method yielded the

highest recognition rate up to 94.12% out of radial basis

function support vector machines (SVM) and probabilistic

neural network (PNN) methods. Based on transfer-

reinforcement learning, Cai et al.4 proposed a multi-AUV

target recognition approach, which reduces the impact of

complex environment while improving the efficiency of

target recognition. The average recognition accuracy is

82.82% out of other six methods in the case of turbid water

quality, object occlusion, insufficient light, complex back-

ground, and overlapping targets.

Recently, deep learning has gained great attention in the

field of target recognition. The recognition accuracy is

improved through a training model on a large number of

samples. However, the underwater target recognition tech-

nology is different from the land or air target recognition

method. It is affected by the scattering effect of the water

medium on the target information, resulting in the blurred

or distorted target information. At the same time, affected

by the complex underwater environment, such as time-

varying ocean currents, uneven illumination, turbid water

quality, and so on, it is difficult to collect target image

information. Moreover, the appearance and shape of hostile

dangerous targets are diverse, resulting in insufficient sam-

ples for training model and reducing recognition accuracy.

At present, for the lack of dataset, transfer learning5–7

can be used to train model on a dataset with a large number

of land or air targets and then transfer the model to the

underwater target field. Generative adversarial network

(GAN)8,9 is a new method, which can autonomously gen-

erate underwater target images to increase the number of

samples. Image preprocessing, image restoration, and rein-

forcement learning also can be used to reduce the impact of

the underwater environment interference.

Most researchers conducted in-depth research on image

processing to improve the accuracy of target recognition.

However, the information extracted from a single image is

limited. Aiming at the insufficient acquisition of target

information, Cai et al.10–12 introduced multiview light field

reconstruction into the target recognition field. The target

information can be collected through multiple views,13 that

is, multi-AUV is used to recognize underwater dangerous

targets. Luo et al.14 introduced the GAN network to the

field of multi-AUV target recognition, which not only

increased the accuracy of target recognition but also

reduced the impact of underwater complex environment.

The above methods and studies mainly introduce deep

learning algorithm into the field of underwater target rec-

ognition. But various difficulties are encountered in the

process of recognizing dangerous targets in a real under-

water environment, such as environmental problems, inter-

ference problems, information collection problems, and

sample information missing. In this article, we will mainly

discuss about different types of underwater dangerous tar-

get recognition technology, summarize the existing meth-

ods, sum up the problems and technical difficulties of

various technologies in the process of underwater danger-

ous target recognition, and look forward to the future devel-

opment direction.

Underwater dangerous target recognition
technology

Mine recognition technology

Mines are widely used in modern naval battles and play an

important role. Mines can not only strike submarines and

block maritime traffic routes but can also cause serious

psychological burdens on enemy personnel. The applica-

tion of advanced technology in mine weapons makes mod-

ern mines more concealed and intelligent. It is very difficult

to accurately find and eliminate them in the vast sea area.

The automatic mine recognition is the current develop-

ment trend.15 In 1997, Shin et al.16 proposed a method of

integrated wide-band compression and mine detection in

shallow water areas. This method combines the target rec-

ognition algorithm and image compression to achieve

excellent detection performance while minimizing the

computational complexity of the algorithm. Gleckler and

Fetzer17 used an integration method of an underwater laser

rangefinder and a digital camera to detect and measure the

mine information. It can locate dangerous targets and

recognize them. Miao et al.18 introduced an approach of

mine target recognition based on basic vision. This idea

came from the essential shape characteristics of the mine

target. According to the physical meaning of the geometric

moment, it combines the regional feature and the boundary

feature to construct three shape descriptors suitable for the

mine target. It uses the threshold judgment method to real-

ize the mine target recognition. This method has higher

accuracy (more than 94%) and better stability than the

method based on moment invariants. It is more suitable for

the recognition of underwater targets with specific shapes

and the circumstance when the targets are partially

occluded.

With the development of deep learning in the target

recognition field, the recognition accuracy is getting higher

and higher, which has become one of the main methods of

target recognition. Some researchers19 used unsupervised

processing technology to detect mine-like targets on the

collected image. The AUV equipped with sonar detection

equipment is used to detect the changes in image texture

and image intensity in the area so as to determine the mine

target buried under the sea, as shown in Figure 1. Although

this method can detect mine targets through unsupervised

training, the error rate is relatively high.

Williams and Fakiris20 constructed a set of classifiers,

controlling the relative importance of each target in the

learning phase of a given classifier through the modulation
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factor. They inferred the quantity of classifiers and all the

other relevant model parameters from the training dataset

automatically. This method improves the utilization rate of

underwater target information and significantly improves

the accuracy of target recognition, as shown in Figure 2. To

extract multilayer features from sonar image, Guo and

Chen21 proposed the naı̈ve Bayes Poisson gamma belief

network (PGBN) model based on PGBN and Bayes’

theorem, which improve the training efficiency of the

model. Moreover, the recognition accuracy can reach

93.85%, which is better than PGBN and other models, such

as three-layer restricted Boltzmann machine, similarity

deep belief network (DBN), DBN, SVM, and kernel SVM.

In the process of underwater target detection, how to

reduce background interference is also extremely challen-

ging. Based on the unsupervised network, Xie et al.22 pro-

posed a feature extraction approach to extract the mine

intrinsic attributes. They constructed a spectrum regulari-

zation unsupervised network (SRUN) to distinguish target

information from background information. Target detec-

tion is not only based on image features but also on the

basis of the difference between the known target spectrum

and the collected information pixel spectrum. Figure 3

shows the schematic of the proposed approach, which com-

prises the following steps. First, the SRUN was proposed to

extract compact features in hyperspectral images. Then, the

effective nodes are selected and further weighted adap-

tively. Finally, the background information is suppressed

to gain the detection map. Experimental results on several

datasets indicate that the proposed SRUN-based target

detection algorithm is more suitable for targets at the sub-

pixel level and those with structural information.

To increase the accuracy of mine target recognition,

Giovanneschi et al.23 proposed drop-off minibatch decen-

tralized online dictionary learning. It takes an advantage of

the fact that a large number of the training data may be
Figure 1. Mine target recognition based on sonar image. The
figure shows a vehicle turn and two mine-like features.

Figure 2. Example synthetic aperture sonar image chip of a truncated-cone-shaped target (a) on the seabed, (b) on the board of the flat
seabed and ripples, and (c) on seabed characterized by sand ripples.
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correlated. With this method, they trained the model on a

small batch iterative manner and deleted samples that are

no longer relevant. This method is faster and retains similar

classification performance as the classical online dictionary

learning and online dictionary learning correlation-based

variant methods.

Most of the above methods are based on the physical

meaning of geometric moments to recognize targets. But

the shape characteristics of the mines are more prominent.

Researchers can train a better model by combining the

description area and boundary characteristics to establish

a descriptor suitable for the shape of the mine targets or

using the deep learning algorithm. In the future, researchers

should focus on improving the accuracy of various shapes

of mine target recognition as well as excellent anti-

interference ability and timeliness.

Underwater manmade target recognition technology

At present, in addition to lethal mines, there are also many

manmade devices with detection, inspection, and strike

capabilities. How to accurately recognize underwater man-

made equipment is one of the current key research direc-

tions. Olmos et al.24 proposed an approach for detecting the

manmade targets in unconstrained underwater videos. This

algorithm can only detect targets with known contours. But

when the image quality is poor, it directly reduces the

recognition accuracy of the target.

In recent years, scholars used deep learning technology

for underwater target recognition, which can improve tar-

get recognition accuracy and recognize more types of tar-

gets. For the purpose of reducing the impact of different

environments on target recognition, Parma University used

multiple datasets to study the potential of vision-based tar-

get detection algorithms in underwater scenes.25 Through the

training of multiple datasets, the algorithm can accurately

recognize targets in different underwater environments

and provide new ideas for subsequent research on multidata

information fusion. Yu et al.26 built a model composed of

five convolutional layers and three fully connected layers

based on convolutional neural network (CNN) deep learning

theory. In the training procedure, both labeled in-air images

and unlabeled underwater images are used to train the model.

In the last two layers, the maximum mean distance feature

metric is added to regularize. This method shows good

robustness when recognizes underwater targets, with a rec-

ognition accuracy of up to 55.07%. The specific process is

shown in Figure 4.

In the underwater target recognition procedure, accurate

extraction of target feature information is the main factor

that affects the recognition accuracy. Hussain and Zaidi27

deblurred the image by reducing the noise in the image and

predicting the Euclidean shape. Ma et al.28 extracted the

targets of interest in underwater images by applying

color-based algorithms. Then, they used the improved

two-dimensional (2D) Otsu algorithm to remove the back-

ground color noise. Furthermore, a robust algorithm based

on shape signature was used to recognize the shape type of

a regular object. The experimental results indicate an ideal

outcome with an average recognition rate of shape type

(approximately 90%). For the purpose of improving the

real-time performance of the underwater target recognition

algorithm, Qing et al.29 proposed a new method based on

wavelet transform and improved Hough transform.

According to the experimental results, the proposed algo-

rithm can accurately detect the straight lines that existed on

manmade objects in complex underwater background.

It has excellent real-time performance, that is, only

17.22 ms per image of the best result.

In the process of recognizing dangerous targets, it not

only needs the target be accurately recognized but also

needs to calculate the target’s status information, such as

position, movement direction, and travel speed. Chen and

Xu30 established a DBN model and a stacked denoising

Figure 3. Schematic of the SRUN-based target detection method. SRUN: spectrum regularization unsupervised network.
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autoencoder model. They compared the underwater acous-

tic simulated data of different types of targets and different

states of one target and experimental data of different states

of one target recognized by DBN and other models (SVM,

GRNN, PNN, and SDAE). Table 1 presents the detail of

experiments results.

The introduction of deep learning technology promotes

the development of underwater target detection research.

On this basis, numerous researchers have proposed more

powerful models. All of the above algorithms are used for

specific application scenarios, which have certain univers-

alities but also have limitations. We summarize the advan-

tages and disadvantages of the above algorithms here, as

given in Table 2.

Few-shot target recognition

Due to the diverse shapes of underwater artificial devices in

the real environment, it is hard to collect target images and

train a satisfactory model. These factors lead to low target

recognition accuracy in the real environment. At present,

transfer learning theory can effectively transfer the source

domain training model to the target domain. Because of the

convenience of collecting samples on land and in the air,

the trained model can be transferred to underwater targets

by training on existing targets. Based on this theory,

Xiamen University integrated deep learning and transfer

learning to recognize underwater manmade targets.26 This

method is superior to traditional methods in underwater

manmade target recognition tasks. It is suitable for long-

term research and development.

Based on a cycle-consistent adversarial network and a

conditional generation adversarial network, Li et al.31 pro-

posed a trainable end-to-end system of an underwater mul-

tistyle generation adversarial network to solve the problem

of fewer underwater image dataset. The system can gener-

ate diverse underwater images from aerial images using

hybrid countermeasures and unpaired methods. Chen

et al.32 proposed a new two-level feature alignment

method. With it, a typical deep domain adaptation network

can deal with the domain shift problem between two mod-

alities in data generating process. For evaluating the quality

of the generated images, Liu et al.33 used similarity values,

structural similarity index, and multiscale structural simi-

larity index to calculate the color and structure similarity

level. Rao et al.34 introduced a multimodal model, which

can complete the recognition task based on experience in

Figure 4. The training process of CNN-based target recognition. Conv means the convolutional layer and fc means the fully connected
layer. CNN: convolutional neural network.

Table 1. The experiments results of different algorithms.

Experiment SVM GRNN PNN DBN SDAE

Underwater acoustic data
of three kinds of target

96.2% 94.2% 92.5% 96.8% 98.2%

The same target at
different navigation
states

90.4% 90.2% 87.6% 92.2% 92.1%

Experiment data of
different states of one
target

88.6% 86.2% 84.8% 90.5% 91.8%

SVM: support vector machine; GRNN: general regression neural network;
PNN: probabilistic neural network; SDAE: stacked denoising
autoencoder.

Table 2. Comparison of underwater dangerous target
recognition methods.

Methods Advantages Disadvantages

Target
recognition
based on
shape feature

Simple algorithm and
fast recognition
speed

Affected by known
information, the
anti-interference
ability is weak

Unsupervised
recognition
technology

High recognition
accuracy

The recognition
accuracy is limited
by the quantity and
quality of the
training dataset

Deep learning
theory based
on CNN

High recognition
accuracy, reducing
the need for training
samples

The training process
is complicated and
the preparation
process takes a
long time

CNN: convolutional neural network.
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the case of fewer training sample images. The method pro-

posed by Cho et al.35 can generate simulated images

through simple underwater images, which makes target

recognition more accurate. To compute the similarity

between the template image and sonar image, they define

a correlation array of SjðiÞ and TkðiÞ as

Rj;kðiÞ ¼
Xrt

l¼1

Sjðiþ lÞT kðlÞ ð1Þ

where Rj;kðiÞ is the correlation array for 1 � i �
rs � rt þ 1.

The problem of few-shot image recognition can be

solved not only by generating new samples but also by

transfer learning. Jin and Liang36 proposed a framework

for underwater few-shot image recognition based on trans-

fer learning. Firstly, an improved median filter was used to

suppress the noise of fish images. A classical operation is

used to describe the denoising results quantitatively. The

peak signal-to-noise ratio (PSNR) for RGB images is com-

puted using the standard formula

PSNR ¼ 10log10

2552

3 Xj jð Þ�1
X

c¼R;G;B

X
x2X

yc xð Þ � ŷc xð Þð Þ2

0
BB@

1
CCA

ð2Þ

where x is a 2D spatial coordinate that belongs to the image

domain X � Z2, the subscript c 2 R;G;Bf g denotes the

color channel, y is the original image, and ŷ denotes

the denoised image. The larger the PSNR, the better the

denoising.

Then, the neural network is pretrained by the ImageNet

that is the largest image recognition database in the world.

Finally, they used the preprocessed target image to fine-

tune the pretrained neural network. Thus, the recognition

accuracy on the test dataset reaches 85.08%, which has

made a significant improvement.

Traditional point-based feature methods often perform

poorly because of biofouling, corrosion, and other effects

that lead to dramatic changes in target visual appearance. Li

et al.37 used supervised learning to relearn the target and

combined the particle filtering framework to automatically

recognize the target. The solutions for few-shot target rec-

ognition are given in Table 3.

Target recognition under environmental
interference conditions

Due to the harsh underwater environment, the quality of the

collected target images is poor. The change of target state

and the object shelter also has a huge impact on the target

recognition procedure. Zhou et al.38 introduced a com-

pound convolutional neural network based on shared latent

sparse feature and DBN. Experimental result shows that

this approach is more stable for different dataset and has

the highest accuracy of up to 93.34%. Experimental result

is presented in Table 4.

To effectively recognize targets of different depths and

reduce radiation noise, Yang et al.39 combined deep long

short-term memory network (DLSTM) and deep autoenco-

der neural network together. They used pretrained DLSTM

model and softmax classifier to classify ship radiation

noise. Based on the long short-term memory network,

Zhang and Xing40 proposed a novel method, which inte-

grates multiple feature data and softmax classifier to effec-

tively remove underwater noise interference. In multiple

experiments, the best results reach the accuracy of 97%.

The feature fusion schematic is shown in Figure 5.

In the underwater target recognition process, the light

intensity changes greatly as the depth increases. When the

illumination of the target surface is uneven, shadows will

be generated, which will cause a part of appearance

Table 3. Comparison of different methods for few-shot
underwater target recognition.

Methods Advantages Disadvantages

Transfer
learning

The land and air targets
have a lot of samples.
They can be
smoothly transferred
to the target domain.

After the transfer to the
target domain, the
model is fixed and is
greatly affected by the
existing target
domain.

Supervised
learning

The recognition
accuracy is high and
overfitting is not easy
to occur.

Model parameters are
difficult to obtain. The
model is less flexible
and sensitive to
abnormal samples.

Generative
adversarial
network

There is no need to
design a model that
follows any kind of
factorization. The
generator network
and the discriminator
network will
automatically adjust
the network.

No need to premodel.
The model is too
unstable to control.

Table 4. Comparison of five methods on different datasets.a

Models CSDN
VGG-
DBN

SSD-
DBN

RFCN-
DBN

SCDAE-
CNN

Dataset A 93.34% 89.83% 77.90% 83.61% 67.86%
Dataset B 92.27% 89.16% 78.27% 82.43% 67.59%

CSDN: compound convolutional neural network; VGG: visual geometry
group; DBN: deep belief network; SSD: single shot multibox detector;
RFCN: region-based fully convolutional network; SCDAE: stacked con-
volutional denoising auto-encoder; CNN: convolutional neural network.
aDataset A is collected in the Philippine Sea, includes the air gun samples
and bomb samples with depths of 50 and 220 m. Dataset B is collected in
the South China Sea, only contains bomb samples with the depths of 7,
50, and 300 m.
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information loss. Zhang and Negahdaripour41 combined

shadow information to reconstruct the shape of three-

dimensional targets to minimize the impact of shadows.

Song et al.42 used the AUV equipped with visual image

acquisition equipment to compensate the target with differ-

ent light intensity so that the algorithm could extract the

image features and color features of the target image. In

this way, it can reduce the influence of uneven illumination

on target information.

Aiming at the shortcomings of traditional backpropaga-

tion (BP) neural network, such as slow convergence and

tending to local minima, Tang et al.43 proposed a novel

approach of BP neural network design based on immune

genetic algorithm. This algorithm overcomes the problems

of genetic algorithm in search efficiency, individual diver-

sity, and premature. It effectively improves the conver-

gence performance.

Because of the turbidity, absorption, and scattering of

the water, the images collected underwater become

blurred, which greatly affects the accuracy of target rec-

ognition. To reduce these impacts, Li et al.44 proposed an

effective defogging model to restore the visibility, color,

and natural appearance of underwater images. Ding

et al.45 proposed a new underwater image enhancement

strategy combining adaptive color correction and model-

based defogging. By contrast with original underwater

images, enhanced images help to reveal more feature

points. This strategy effectively improves the quality of

underwater images and makes the algorithm more accu-

rate to recognize underwater target.

Due to the problems of low contrast, blue–green projec-

tion and low visibility, the captured underwater environ-

ment images appear green and blue.46 This leads to

distortion of the captured images. Ahn et al.47 proposed a

data enhancement method based on the principle of retina

to promote the visibility of captured images. Chuang

et al.48 used feature learning technology and error-proof

classifiers to preprocess the collected images to improve

the image clarity. Zhang et al.49 applied visual inspection to

underwater image feature extraction. Before underwater

image preprocessing, dark channel is applied to eliminate

haze and enhance the contrast of underwater images.

Robustness and real time of the algorithm have been greatly

improved. Yu et al.50 proposed a novel framework named

underwater GAN for image restoration. It uses a convolu-

tional patchGAN classifier to learn structure loss. Based on

the underwater image generator model, a more realistic

image is generated through simulation. The influence of

abnormal image contrast in the target recognition process

is reduced.

Figure 5. Mutilclass feature fusion recognition.

Teng and Zhao 7



Since the underwater environment is accompanied by

time-varying ocean currents, the signal obtained by the

imaging sensor has a corresponding relationship with time.

When the variable ocean currents cause fluctuations in the

image refractive index in the imaging path, the task of

target recognition is more difficult.51 Florida Atlantic Uni-

versity52 used compressed line sensing to reconstruct

images after ocean current interference so that the imaging

system can recover target information under various turbu-

lence intensities. The network in the literature53 refers to

the network structure of Kupyn et al.54 It restores the under-

water distorted image sequence through GAN. Moreover,

the training process is directed by the Wasserstein distance.

Smaller the distance means higher similarity between real

and fake image. This method can effectively restore the

distorted images and make the images restoration degree

higher. It reduces the impact of time-varying ocean currents

on target information collection. The network architecture

is shown in Figure 6.

In the future, multi-AUV underwater target recognition

will inevitably develop in the direction of real-time, high

accuracy, and autonomy. The accuracy of target recogni-

tion in complicated underwater environments needs to be

further improved. Table 5 summarizes the classification of

target recognition methods to reduce the impact of the

complex underwater environment.

Different algorithm under the same dataset

With the development of deep learning, target recogni-

tion technology has also made considerable progress.

Deep learning has a strong learning ability. It can learn

useful information in images from a large amount of

training dataset and effectively detect objects in

images. Since R-CNN55 was proposed by Girshick, the

field of target recognition has gained great attention

and become an emerging research hotspot. Since then,

many new models have been proposed, such as fast R-

CNN,56 faster R-CNN,57 FPN,58 YOLO,59 SSD,60 and

so on. These algorithms have their own advantages and

disadvantages. Some researchers apply them to the

same dataset to verify the capabilities of different

algorithms.

Wang et al.61 proposed a new underwater target detec-

tion dataset, called UDD, which contains three categories

(sea cucumber, sea urchin, and scallop) with a total of 2227

images. YOLOv3, RentinaNet, and other networks were

selected for comparison. The comparison results are given

Figure 6. Network structure of He’s method.
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in Table 6. To make a fair comparison, all models were

trained from scratch with the same hyperparameters and

data augmentation methods were used with the same para-

meter settings.

As presented in Table 6, CenterNet was the best perfor-

mer at 33FPS, followed by YOLOv3 and Foveabox at

32FPS and 28FPS, respectively. In terms of accuracy,

YOLOv3 performed best at 46.8%, followed by RPDet at

45.1% and FCOS at 44.9%. Overall, YOLOv3 performed

best, ranking among the best in terms of accuracy and

detection speed.

Underwater Robot Picking Contest in 2018 provided an

underwater object target detection dataset, including sea

urchins, sea cucumbers, scallops, and starfish. To test the

detection effect of different algorithms, Zhang et al.71

tested the regular faster R-CNN, FPN, and R-FCN. They

also tested faster R-CNN and R-FCN with deformable con-

volution. All the models used the same hyperparameters

and were tested on the same computer. The experimental

results are presented in Table 7.

In the traditional target detection algorithm, R-FCN has

the best performance, with mAP reaching 66.5%, which is

much better than faster RCNN and FPN. Moreover, com-

pared with the original network, the performance of the

network is improved after the new deformable convolution

is adopted. The best performer was deformable R-FCN at

85.7%.

In recent years, the field of underwater target recogni-

tion has developed rapidly, and new algorithms are pro-

posed every year. These algorithms have fast detection

speed and high accuracy, but they are generally targeted

Table 5. Summarize of target recognition method in complex
underwater environment.

Problems Research method Principles and characteristics

Radiation
noise

1) Filter
processing

Through the noise reduction
preprocessing of the
collected information, it is
suitable for the situation
with low noise.

2) Radiated noise
modeling

The radiated noise was
modeled by the neural
network and then denoise
based on the model
information.

Uneven light 1) 3D object
reconstruction

Through the known target
information combined with
shadow information to
reconstruct the shape of the
three-dimensional object,
the accuracy of target
recognition is increased.

2) Illumination
compensation

Filling up the target with lighting
equipment is greatly affected
by the distance of the light
source under water.

3) Algorithm fix The algorithm is used to unify
the brightness of the pixels
of the collected image to
reduce the impact of uneven
illumination on the
recognition algorithm.

Turbid
water

1) Dehazing
algorithm

According to the principle of
minimum information loss
and optical characteristics
of underwater imaging, the
influence of water turbidity
on image quality is
eliminated. The visibility of
the image is increased.

2) Image
enhancement

Dehaze the image through
adaptive color correction
based on the atmospheric
scattering model.

Low
contrast

1) Contrast
enhancement
algorithm

Through the contrast
enhancement algorithm,
image artifacts are reduced
and the target details are
clearer.

Time varying
ocean
current

1) Image
restoration

Using deep learning technology
to use underwater
distortion image sequence
for image restoration.

2) Imaging
reconstruction

Through the reconstruction of
the image after turbulence,
the influence of time-varying
ocean current on the target
image is reduced.

Table 6. Comparisons for different algorithm on UDD dataset.

Method Backbone Params FPS mAP

SSD60 MobileNetV2 3.05M 11 22.7%
YOLOv362 DarkNet-53 61.9M 32 46.8%
RetinaNet63 ResNet-18 19.81M 14 24.6%
RetinaNet63 ResNet-50 36.15M 10 34.2%
FCOS64 ResNet-50 31.84M 27 44.9%
Foveabox65 ResNet-50 36.02M 28 30.0%
FreeAnchor66 ResNet-50 36.15M 25 32.7
RPDet67 ResNet-50 36.6M 22 45.1%
GA-RetinaNet68 ResNet-50 37.15M 12 36.1%
CenterNet69 DLA-3470 18.12M 33 36.6%

Table 7. Comparisons for different algorithms on URPC 2018
dataset.

Method
Sea

urchin
Sea

cucumber Scallop Starfish mAP

Faster R-CNN57 58.4% 78.2% 27.1% 68.1% 58.0%
FPN58 61.7% 85.5% 33.9% 72.9% 63.5%
R-FCN72 66.4% 87.5% 40.3% 75.7% 66.5%
Deformable faster

R-CNN71
66.7% 86.4% 41.5% 76.3% 67.5%

Deformable
R-FCN71

89.9% 90.1% 73.5% 89.2% 85.7%
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at specific application scenarios. The poor universality of

algorithms is always a big problem in this field. In the

future, the research direction should focus on developing

the algorithm with strong universality.

Summary

With the continuous development of underwater weap-

ons and equipment, researchers pay more attention to

underwater safety issues. The underwater dangerous tar-

get recognition has become one of the focuses of

research. Due to the vast sea area and the complex under-

water environment, it is difficult to collect dangerous

target images. To solve these problems, many scholars

have conducted research on few-shot target recognition,

such as transferring the trained models of aerial or land

targets to the field of underwater dangerous targets

through transfer learning, increasing the number of sam-

ples through reinforcement learning, and using GAN to

perform dangerous target image generation. The target

recognition accuracy of deep learning can be improved

by increasing the training samples. Some scholars used

methods, such as target reconstruction, image defogging,

and image restoration, to reduce the actual underwater

interference environment (such as uneven illumination,

turbid water quality, and time-varying ocean currents,

etc.) on the target image to improve the accuracy of tar-

get recognition.

With the development of the cluster system, multiple

AUVs are used for collaborative work to collect target

information from different angles and reduce the limitation

of collecting information from a single perspective. The

comprehensive utilization of various marine information

can offset or reduce the impact caused by the special under-

water environment of the ocean. It will be an important

research direction to further improve underwater target

recognition.

For the development of diversified shapes of underwater

dangerous targets, as well as the shapes of unknown enemy

dangerous targets, the accuracy of target recognition cannot

be guaranteed only by training dataset. Current metalearn-

ing can make algorithms to have learning capabilities. Tar-

get recognition methods based on metalearning may enable

the higher recognition accuracy of underwater dangerous

targets.

In summary, the underwater target recognition method

will develop in the direction of intelligence, autonomy,

high precision removal rate, strong robustness, and real-

time performance. It will play a more powerful role in the

military and civilian fields.
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