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Abstract: In this study, a motion control algorithm based on deep imitation reinforcement learning is proposed for the unmanned
underwater vehicles (UUVs). The algorithm is called imitation learning (IL) twin delay deep deterministic policy gradient (DDPG)
(TD3). It combines IL with DDPG (TD3). In order to accelerate the training process of reinforcement learning, the supervised
learning method is used in IL for behaviour cloning from the closed-loop control data. The deep reinforcement learning employs
actor–critic architecture. The actor part executes the control strategy and the critic part evaluates current control strategy. The
training efficiency of IL-TD3 is compared with DDPG and TD3. The simulation results show that the training results of IL-TD3
converge faster and the training process is more stable than both of them, the convergence rate of IL-TD3 algorithm during
training is about double that of DDPG and TD3. The control performance via IL-TD3 is superior to PID in UUVs motion control
tasks. The average track error of IL-TD3 is reduced by 70% than PID control. The average tracking error under thruster fault is
almost the same as under normal condition.

1 Introduction
In recent years, unmanned underwater vehicles (UUVs) have been
increasingly applied in submarine terrain exploration, military
reconnaissance, and other fields. However, due to the complexity
of the underwater environment, the precise motion control of
UUVs is a difficult problem. At present, the control methods of
UUVs have been used are PID control, adaptive control, fuzzy
control, neural network control and several control methods
combined [1, 2].

Most of the UUVs applied PID as control algorithm. The
advantages of PID control algorithm are simple structure, easy
implementation and high-reliability. The shortcoming is that when
the underwater environment changes, such as current disturbance,
the PID parameters need to be re-adjusted. Many researchers
improved PID control algorithm and combined PID with other
algorithm [3, 4]. There are also some UUVs used model-based
control methods to tasks such as path following and trajectory
tracking of UUVs [5, 6]. However, model-based control algorithms
have requirements for the model accuracy of UUVs. If the model is
not accurate, it often fails to perform well. With the development
of deep learning technology and the improvement of computer
performance, researchers tried to find a model-free intelligent
algorithm to solve the problem of UUVs control.

Deep Q-Network (DQN) combines deep neural networks with
traditional reinforcement learning algorithms and shows good
results on many issues [7]. However, DQN cannot be used for
continuous motion space control, then deep deterministic policy
gradient (DDPG) was proposed [8]. The DDPG combined the
deterministic policy gradient (DPG) with the actor–critic
architecture to solve the problem [9]. DDPG can achieve great
performance sometimes, but it is frequently brittle concerning
hyperparameters and easy to overestimate current policy. The
performance is not ideal in complex environments. Therefore, the
twin delay DDPG algorithm (TD3) based on DDPG was presented
[10]. It successfully solved the problems of DDPG, and achieved
good results in the MuJoCo simulation environment [11]. However,
deep reinforcement learning (DRL) requires a large amount of data,
and agents often need many explorations to find the right strategy.

Many researchers have used expert demonstrations for DRL to
speed up the training process and achieved superb results [12, 13].

Some researchers proposed algorithms based on DRL in the
UUVs control. Cui et al. [14] applied DRL to implement the
adaptive neural network control of UUVs trajectory tracking.
Carlucho et al. [15] developed a DRL method for adaptive low-
level control of UUVs. Wu et al [16]. proposed a model-free DRL
algorithm of UUVs depth control. Preliminary research results
showed that DRL is feasible in the UUVs control and can achieve a
good motion control performance.

In this work, a model-free DRL algorithm is modified for
motion control of UUVs with the imitation learning (IL) method.
The IL method makes up for the shortcomings in the model-free
DRL algorithm. The control data given by PID algorithm are
collected as expert demonstrations for pre-training by supervised
learning. The parameters of policy part in DRL are initialised in
this way. The TD3 algorithm is used to achieve self-enhancement
based on PID control strategy. It compensates for the
approximation error in actor–critic methods. The motion control
tasks of UUVs are better completed by the IL-TD3 algorithm than
PID and other pure DRL methods. The innovation of this paper is
mainly reflected in the following two aspects: (i) the proposed
algorithm combines IL with DDPG (TD3). (ii) Combining the
proposed algorithm with the motion control of UUVs, a new
motion control algorithm for UUVs is proposed. The rest of the
paper is structured as follows: Section 2 presents the dynamic
model of UUVs. Section 3 describes the deep IL control algorithm.
The simulation and results analysis are presented in Section 4. The
summary is given in Section 5.

2 Dynamics of UUVs
In this section, the dynamic model of UUVs is presented. In
general, two reference systems are defined, namely the body-fixed
frame and the inertial frame. The position and attitude of the UUV
in inertial frame are represented by vector
η = x y z φ θ ψ T, x, y, z ∈ R denote the Cartesian
position of the UUV, and φ, θ, ψ ∈ R denote the attitude of roll,
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pitch and yaw, respectively. The vector ν = u v w p q r T

represents the linear and angular velocities of UUVs in the body-
fixed frame, u, v, w ∈ R represent the surge, sway and heave
velocities, respectively, p, q, r ∈ R represent the roll, pitch and
yaw angular velocities, respectively. The relation between the
vector in the inertial frame and the vector in the body-fixed frame
is [17]

η̇ = J η ν (1)

where J η = J1, 03x3; 03x3, J2  and (see (2)) , where c ⋅ , s ⋅  and
t ⋅  imply cos ⋅ , sin ⋅  and tan ⋅ , respectively.

The dynamic model of UUVs is given by

MRB + MA ν̇ + CRB + CA ν + D ν ν + g η = τ (3)

where M = MRB + MA is the inertia matrix, MRB represents the
rigid body mass matrix and MA represents the mass matrix of
additional terms. C ν = CRB + CA is a Coriolis term and
centrifugal matrix, composed of the rigid body parts CRB and the
additional mass parts CA. D ν  is hydrodynamic loss term matrix,
g η  is the static (gravity and buoyancy) term matrix.
τ = X Y Z K M N T is the force and torque vector in the
body-fixed frame.

It is assumed that the UUV has n thrusters. They can generate
three horizontal and three rotational forces and torque, such that the
UUV can complete 6 degrees of freedom motion. Therefore, τ can
be described as τ = E6 × nFn × 1, where E6 × n is the layout matrix of
the n thrusters and Fn × 1 is the vector represents the force of each
thruster.

3 Previous researches background
In this section, the basics of reinforcement learning and IL are
introduced. These consists the fundamental of deep imitation
reinforcement learning (DIRL) control design for UUVs, which
will be introduced in the next sections.

3.1 Reinforcement learning statement

Reinforcement learning refers to the process in which the agent
gradually learns the optimal strategy according to the reward signal

in the constant interaction with the environment. Unlike supervised
learning, agents do not have an explicit action specification, but
instead, try to find out which behaviours can produce the greatest
reward by trying different strategies.

The standard model of reinforcement learning is shown in
Fig. 1. At each time step t, the agent performs the action at ∈ A in
state st ∈ S. Where A represents a set of control actions. S presents
a set of all possible states. It receives the reward rt and the next
state st + 1[18]. In the case of UUVs, at refers to the motion of
UUVs, such as the thrust of thrusters. st refers to the states of
UUVs, such as position, the linear and angular velocities of UUVs,
these states are measured by sensory system. The reward rt is used
to measure the difference between the states of the UUVs and the
target values. The policy π is a state-to-action mapping, which
refers to a distribution on the UUV motion set for the state of UUV
and π a s = p at = a st = s . The state-action value function when
carrying out a in s following π is [7]

Qπ s, a = Eπ ∑
k = 0

∞
γkrt + k + 1 st = s, at = a (4)

where γ ∈ 0, 1  is a discount factor used to calculate the
cumulative return. The UUV's goal is to find the optimal policy πμ
to achieve desired state from the beginning of distribution
J μ = Esi ∼ ρπ, ai ∼ π R0  with the parameters μ.

3.2 Actor–critic architecture

The proposed DIRL algorithm employs an actor–critic method.
The actor–critic method is a merger of value-based and policy-
based reinforcement learning algorithms [19]. As shown in Fig. 2,
two neural networks are used to implement this method. Fig. 2a is
the policy gradient network (actor). The input of this network is
state st, and the output is action at, then it can get the next state st + 1.
Fig. 2b is the state-action value network (critic). The input of this
network is the state st and action at, and the output is the state-
action value Qπ st, at  under policy π. The value function under
policy π is recursively defined by the bellman equation as [7]

Vπ s = Eπ rt + γVπ st + 1 st = s (5)

J1 η =
c ψ c θ c ψ s θ s φ − s ψ c φ c ψ s θ c φ + s ψ s φ
s ψ c θ s ψ s θ s φ + c ψ c φ s ψ s θ c φ − c ψ s φ

−s θ c θ s φ c θ c φ

J2 η =

1 t θ s φ c φ t θ
0 c φ −s φ

0 s φ
c θ

c φ
c θ

(2)

Fig. 1  Reinforcement learning model of UUV
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The value of Vπ s  is obtained by the critic network, with st and at
as input. The temporal difference error δt of state is calculated by
[7]

δt = Qπ st, at − Vπ st (6)

Then, the weights ω of critic network and the weights θ of actor
network are updated by [9]

ω ← ω + βδt∇ωVπ st, ω (7)

θ ← θ + αδt∇θlog π at st, θ (8)

The symbol ∇ represents calculation of the gradient, where α and β
are the learning rates of the actor and critic, respectively.

Although the actor–critic algorithm has the advantage that it
updates faster than the traditional policy gradient method, there is a
shortcoming, that is the algorithm depends on the critic's value
judgment. In order to solve this problem, DDPG algorithm was
proposed. DDPG used an actor–critic approach on the DPG
algorithm in the actor section. Where DPG is a policy-gradient
method, and the state-action value function of DPG is [9]

Qω st, at = E r st, at + γQω st + 1, μ st + 1 (9)

where μ st + 1  represents the actor network output with the input
state st + 1. DPG uses off-policy method to update the parameters of
Q function. It updates the policy parameter θ by [9]

∇θJβ θ = Es ∼ ρβ ∇aQω s, a s = st, a = πθ st ∇θπθ s s = st (10)

where Qω st, at  is the Q function, πθ st  represents deterministic
strategy, ρβ is the probability distribution function of states, and
J θ  is the performance function.

The DDPG adopts two deep neural networks to approximate
Qω s, a  and πθ s , together with the ideas of the replay buffer and
target networks. Replay buffer is applied to break the Markov
nature between the sampled data, and the two target networks are
used to ensure the stability of the training process.

Although DDPG can usually achieve good performance, it is
often vulnerable to hyperparameters and other kinds of tuning [20].
DDPG algorithm TD3 adds three tricks to solve these problems.
The first one is double critic networks, the second one is target
policy smoothing, and the last but not least is policy delays.

In this paper, the input of the actor network is the UUV's sensor
states, the output of the actor network is the UUV's thrusters'
output. The input of the critic network are the sensor states and
thrusters' output of the UUV, the output is the state-action value Q.

3.3 Deep IL

DRL algorithms based on actor–critic method have shown great
performance in the simulation environments. However, considering

DRL is a model-free method, it requires a large amount of training
data, and it has high trial and error cost in the real environment,
which is difficult to be directly applied to UUVs motion control.

In order to solve this problem, the method DIRL combing IL
and DRL is proposed to accelerate the training process of DRL and
maintain the stability of the UUVs during training. In the IL part,
the existing expert strategy trajectory is used to quickly initialise
the model and then reinforcement learning method is applied to
explore and feedback the environmental state.

IL refers to learning from the demonstrations provided by the
expert. The simplest way to implement IL is supervised learning.
Decision data from human experts are generally provided as
P1, P2, …, Pm . Each decision contains a sequence of states and

actions Pi = s1
i, a1

i, s2
i, a2

i, …, an
i . It abstracts the state-action pairs to

construct a new set D = s1, a1 , s2, a2 , s3, a3 , … . The action
strategy made by the expert for each state is used as the sample
label for supervised learning. This method is called behaviour
cloning. The IL part is used as pre-training, the combination of
DRL is called DIRL.

4 DIRL control design for UUVs
In this section, the motion control of UUVs and previous
researches are combined, the framework of DIRL control and
detailed steps are introduced. The motion control of UUV is a
continuous control task, so the TD3 based on actor–critic
architecture is adopted. The state of UUV are consist of position
vector η and velocity vector ν, the command of UUV is thrust
vector F.

4.1 Framework of DIRL control

The proposed DIRL control algorithm is IL-TD3 (IL-TD3), which
is based on TD3 algorithm. Fig. 3 is the overall framework, where
the ‘actor’ and ‘critic’ represent actor network and critic network,
respectively. Six independent deep neural networks are adopted to
implement TD3.

As can be seen in the framework, the raw data of UUV are
obtained from the sensory system. UUV's state vector
st = xt yt zt φt θt ψt ut vt wt pt qt rt

T. The UUV
is assumed to have eight thrusters, the thrust vector
Ft = F1t F2t F3t F4t F5t F6t F7t F8t . First, the PID
control algorithm is used to control the UUV. The formula of PID
algorithm is [3]

u t = Kpe t + Ki∫
0

t
e t dt + Kd

de t
dt (11)

In IL part, vectors st and Ft during the PID control processes are
abstracted to construct a set s1, F1 , s2, F2 , …  as expert
demonstration data. Then these data are randomly sampled for pre-
training actor network with supervised learning. After that the
behaviour cloning is completed. In the RL part, the training
progress is similar as that in TD3.

Fig. 2  Structure of the actor and critic networks
(a) Actor network, (b) Critic network
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4.2 Specific steps applied to UUVs

Algorithm 1 is the pseudocode of the proposed algorithm. The
detailed steps of DIRL control design for UUVs are outlined
(Fig. 4). 

As can be seen in the first line of Algorithm 1, the
hyperparameters need to be set before training are shown in
Table 1. 

In Table 1, actor-lr 1, actor-lr 2 and critic-lr denote the learning
rate of actor network in IL, the learning rate of actor network in
DRL and the critic network learning rate in DRL, respectively.
soft-lr represents the soft update rate. The size1 and size2 denotes
the sample size. Iteration 1 and iteration 2 represents the number of
iterations in IL and RL, respectively.

By randomly initialise the weights ω1, ω2 and θ of the critic
networks and the actor network, the corresponding weights ω1′, ω2′
and θ′ are assigned to the target critic networks and the target actor
network. At the beginning of each training loop, the exploration
noise is initialised, the expected state Sexp and the initial state S1 are
randomly initialised.

From line 9 to line 34 is the inner loops of each episode. The
current state St is taken as the input of the actor network. The
action is selected according to the amount of data in ℛℬ. When
ℛℬ < mmax, it outputs the result of PID algorithm. Otherwise, it
acts from the actor network with random noise

Ft = πθ St + 1
σ 2π

exp − t2

2σ2 (12)

where 1
σ 2π

exp − t2

2σ2  is Gauss noise with parameter N 0, σ2 .

The reward rt is calculated based on the state st and action Ft at
time t, then it gets the state st + 1 of the next moment. st, Ft, rt, st + 1

is the state transition tuple. When ℛℬ < mmax, the data are
obtained from PID control, and a batch of experience tuples si, Fi
are sampled with size K from ℛℬ. The state st is taken as input
and action Ft is used as label to train the actor network with
supervised learning. The loss function is defined as

L θ = 1
2K ∑

i = 1

K
Fi − πθ si

2 + 0.5 ∥ θ ∥ 2
2 (13)

Regular terms ∥ θ ∥ 2
2 are used to prevent overfitting. The

coefficient of the regular term is set to 0.5. Thus,the gradient of
loss function is

∇θL θ = − 1
K ∑

i = 1

K
Fi − πθ si

∂πθ si
∂θ + θ (14)

The weights of the actor network are updated by the random
gradient descent method with T times per episode.

When ℛℬ ≥ mmax, N state transition tuples si, Fi, ri, si + 1 i = 1 ∼ N
are randomly sampled for mini-batch training. si + 1 in the random
sampled data is taken as the input of the target actor network. The

Gauss noise 1
σ~ 2π

exp − t2

2σ~2  with scale c and parameter N 0, σ~2

is added on the output Fi to get Fi′ as

Fi′ = πθ′ si + 1 + 1
σ~c 2π

exp − t2

2σ~2 (15)

The Q-value label yi is calculated by

yi = ri + γ min j = 1, 2 Qω′ j si + 1, F′i (16)

The loss functions of critic networks are defined as

L ω1 = 1
N ∑

i = 1

N
yi − Qω1 si, Fi

2 (17)

L ω2 = 1
N ∑

i = 1

N
yi − Qω2 si, Fi

2 (18)

After that, the gradient of the loss functions is

∇ω1L ω1 = − 2
N ∑

i = 1

N
yi − Qω1 si, Fi

∂Qω1 si, Fi

∂ω1
(19)

∇ω2L ω2 = − 2
N ∑

i = 1

N
yi − Qω2 si, Fi

∂Qω2 si, Fi

∂ω2
. (20)

The ‘delay’ method is applied in the policy part. That is, in each
episode, the critic part is updated ℐ times, while the actor part
ℐ/ f  times. The gradient used to update the actor network is

∇θJ θ = 1
N ∑

i = 1

N
∇aQω1 s, F

s = si, F = πθ si

∇θπθ s
s = si

. (21)

Adam is employed to update the weights of the actor and critic
networks [21]. Finally, target network is updated with soft update
method as

ω′i ← 1 − ξ ω′i + ξωi i = 1, 2 (22)

θ′ ← 1 − ξ θ′ + ξθ (23)

Fig. 3  Overview of the control system
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Fig. 4  Algorithm 1: DIRL algorithm for UUV motion control
 

Table 1 Hyperparameters for training
Parameter Symbol Parameter Symbol
episodes T noise1 σ
steps M noise2 σ~

size1 K noise2 scale c
size2 N actor-lr 1 λ
iterations 1 T actor-lr 2 α
iterations 2 ℐ critic-lr β
frequency f soft -lr ξ
storage limit mmax, mmin discount γ
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when the amount of data in replay buffer ℛℬ reaches its storage
limit, the oldest tuple is removed to keep the training data more
meaningful.

5 Simulations
In order to verify the superiority of the proposed IL-TD3
algorithm, the simulations are carried out in this section.

ODIN UUV with four vertical thrusters and four horizontal
thrusters is applied as simulation model. In simulation, the control
tasks only involve heave, pitch and roll motions in the three
degrees of freedom, that is, only four vertical thrusters are used.
The simplified thruster layout matrix E3 × 4 is

E =
−1 −1 −1 −1
Rs Rs −Rs −Rs
Rs −Rs −Rs Rs

(24)

where Ris the distance between ODIN's centre and the centres of
each thruster, sdenotes the angle between the straight line (through
the thruster's centre and the ODIN's centre) and the horizontal line.

The ODIN dynamic equations are as follows [22]:

Z = B − W cos θcos φ + m + Zẇ ẇ + Zww + Zw w w w
K = Ixx ṗ + Kpp + K ṗ ṗ + Kp p p p
M = Iyyq̇ + Mqq + Mq̇q̇ + Mq q q q
ż = cos θcos φw
φ̇ = p + qtan θsin φ
θ̇ = cos φq

(25)

The dynamic parameters of ODIN are given in Table 2 [22]. In
Table 2, m represents the mass of the UUV; W and B represents the
UUV's weight and buoyancy force; the inertia moment in x and y
directions are represented by Ixx and Iyy. Zẇ, K ṗ and Mq̇ denote the
hydrodynamic added mass coefficients of the UUV; Zw, Kp and Mq
represents the body lift force and moment coefficients; Zw w w, Kp p
and Mq q  are the cross-flow drag coefficients.

The deep learning framework PyTorch is used for training
under Ubuntu system. All training processes are done on the
computer with an i7-8750H processor and an NVIDIA GeForce
GTX 1060 GPU. Dynamic model of ODIN is set up by Python
libraries Scipy and Sympy. In simulations, deep full connection
networks are used to implement both the actor part and the critic
part. For the actor network, the input are the states of UUV, and
three hidden layers are used, and the numbers of neurons are 300,
200 and 100, respectively. ReLU is employed in hidden layers as
the activation function. Tanh is applied as activation function in the
output layer to regularise the actions to −1, 1 . The input of critic
networks are the states and actions of the UUV, and the numbers of
neurons of the three hidden layers are 400, 300 and 200,
respectively to ensure the training effect. The activation function of
hidden layers is ReLU, to avoid gradient disappearance. The output
of critic part is Q value. The target networks adopted the same
structure of actor and critic networks.

5.1 Control task 1: constant depth and attitude control

In this control task, the state vector st = zt φt θt wt pt qt
T

for the depth, roll angles and pitch angles and the corresponding
velocities information of the UUV is obtained from the sensory
system. Ft = F1t F2t F3t F4t

T is the thrust vector of four
thrusters in the vertical direction at time t . The thrust of each
thruster is limited to −60N, 60N . Before training, the
hyperparameters in Table 1 are set as

T = 400, M = 600, K = 64, N = 100,
T = 10, ℐ = 4, f = 2, σ = 0.1, σ~ = 0.3, c = 0.5,
mmin = 60000, mmax = 120000, α = β = 0.001,
λ = 0.001, γ = 0.99, ξ = 0.005

(26)

These parameters are confirmed after many experiments, and good
training effects can be obtained under these parameters. The reward
function is designed as (see (27)) . The expected state vector is set
as sexp = zexp φexp θexp wexp pexp qexp

T. d zt , d φ  and
d θt  are the absolute value of the errors between the expected
values and the actual values. Λ = diag 1.5 5.0 5.0  is the
diagonal matrix used to weight the importance of each state
variable. ∑i = 1

4 Fit  is the sum of the absolute thrust values of the
thrusters. ∥ Ft − 1 − Ft ∥ is set to prevent thruster thrust mutation.
Case 1 represents d zt ≤ 0.05, d φt ≤ 0.01 and d θt ≤ 0.01. Case
2 represents d zt ≥ 4.5, d φt ≥ 0.2 and d θt ≥ 0.2. During
training, if rt = − 100, the current training episode is terminated
early. Before the RL, the supervised learning method is used to pre-
train the actor network, and the curves of the average loss in per
episode are shown in Fig. 5. The loss function in the IL part goes
down with the training episodes increase, changed from about 2.5
to 0.2. After 100 episodes training, the behaviour cloning is almost
complete. Average rewards curves with 300 training episodes of
each algorithm are shown in Fig. 6. It can be seen that the least
reward TD3 and DDPG achieved is −43 and −39, respectively,

Table 2 Dynamic parameters
Parameters Value Parameters Value
m 125.0 Zw w 148
Zẇ 62.39 Zw 100
Ixx 4.629 Kp p 280
Iyy 4.629 Kp 230
K ṗ 0 Mq q 280
Mq̇ 0 Mq 230
B 1224.17 W 1226.25
R 0.381 s sin 1/4π

 

rt =

−0.01∑
i = 1

4
Fit − 0.1 wt

2 + pt
2 + qt

2 − 0.001 ∥ Ft − 1 − Ft ∥ case 1

−100 case 2

− st − sexp Λ st − sexp
T − 0.01∑

i = 1

4
Fit − 0.1 wt

2 + pt
2 + qt

2 − 0.001 ∥ Ft − 1 − Ft ∥ others

(27)

Fig. 5  Average loss in IL for constant depth and attitude control
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while the least reward IL-TD3 achieved is about  − 9. During the
training process, after about 200 episodes, the IL-TD3 algorithm
can stabilise about the maximum reward, while TD3 and DDPG
still have drastic changes. It can be concluded that the IL-TD3
algorithm converges faster and more stable during training constant
depth and attitude control of UUV.

The average rewards of three algorithms during the 300 training
episodes are sampled per 30 episodes. The sampled rewards are
shown in Table 3, it's obviously that the IL-TD3 achieved the best
performance during the training process, and the DDPG performed
worst. The reward of DDPG is least in all comparison data.

After completing the training, trained model of IL-TD3 is tested
under normal conditions and with current disturbance, respectively.
Then, the contrast simulations of motion control are carried out
with PID control algorithm.

Three PID for depth control, roll angle control and pitch angle
control are applied, respectively. (Kp, Ki, Kd) are set as (55, 1.2,
0.02), (10, 0.9, 0.01) and (10, 0.9, 0.01), respectively. The initial

state vector of UUV is s1 = 0.2 1.0 −1.0 0 0 0 T, and the
desired state vector is sexp = 5.0 0.0 0.0 0 0 0 T. The
simulation results of the depth, pitch angle and roll angle given by
two different control algorithms are shown in Figs. 7 and 8. In
Fig. 7, the initial depth of UUV under PID and IL-TD3 control
0.3 m.

It can be seen that both IL-TD3 and PID can complete the
control task under normal circumstances, but the IL-TD3 algorithm
only takes 12 s while the PID takes 25 s almost. The depth tracking
error in PID control caused by overshoot is 0.3 m, from 12 to 22 s.
While the IL-TD3 response faster and has no overshoot in const
depth and attitude control.

In order to test the robustness of our algorithm, current
disturbance is set as

τNoise = 30sin t
50π 15sin t

50π 15sin t
50π

T
(28)

The disturbance is added to the torques in the Z, M, N directions.
Figs. 9 and 10 show the control results of the IL-TD3 and PID
algorithms, respectively. The average tracking error of depth is
>0.4 m from 12 to 20 s is in PID control. The average tracking
error of depth is proposed algorithm is <0.1 m, from 10 to 60 s in
proposed algorithm. The average tracking error of roll and pitch
angles are >0.1 rad in PID control. The average tracking error of
roll and pitch angles are <0.05 rad in proposed algorithm. Compare
with PID, the average tracking error of depth is reduced by 75%,
the average tracking error of attitude angles are reduced by 50%. It
can be seen that the IL-TD3 algorithm can still perform the control
tasks well. However, the PID control algorithm can't complete
control task in this case. Fig. 11 shows the outputs of the four
thrusters of UUV using IL-TD3 control algorithm and PID control
algorithm. It can be seen thatthe thruster output by IL-TD3 is

Fig. 6  Average return reward curves in DRL for constant depth and
attitude control

 
Table 3 Sampled rewards of three algorithms in constant
depth and attitude control
Episodes IL-TD3 TD3 DDPG
1–30 −9.05 −2.76 −39.45
31–60 −1.03 −1.49 −33.59
61–90 −5.60 −37.69 −11.54
91–120 −1.37 −9.86 −4.98
121–150 −1.89 −4.13 −3.77
151–180 −2.09 −1.28 −0.96
181–210 −1.66 −1.64 −1.50
211–240 −2.44 −1.27 −2.10
241–270 −1.50 −1.35 −1.04
271–300 −0.50 −0.99 −0.86

 

Fig. 7  Depth by PID and IL-TD3 without current disturbance, initial
depth is 0.2 m

 

Fig. 8  Pitch and roll angles by PID and IL-TD3 without current
disturbance, initial roll angle is 1.00 radian, initial pitch angle is − 1.00
radian

 

Fig. 9  Depth by PID and IL-TD3 current disturbance, initial depth is 0.2 
m
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different from PID. The four thrusters vary in different amplitude
to maintain the control performance with current disturbance.It can
be concluded that the robustness of IL-TD3 control is better than
that of PID control in this control task. While IL-TD3 algorithm
takes more thruster usage than PID algorithm.

In order to test the fault-tolerant ability of the proposed control
algorithm in the case of UUV thruster fails, the fourth thruster is
assumed to be failed and the thrust is reduced to 50%. The fault
simulation method is the same as [23]. In this case, the depth, pitch
angle and roll angle of the UUV are shown in Figs. 12 and 13. The
thruster outputs are shown in Fig. 14. It can be seen that the IL-
TD3 control method has good fault tolerant control capability in
the case of thruster fault, the average tracking error of depth is
0.1 m and the average tracking error of attitude angles are about
0.1 rad. The tracking error are not much different from normal.

5.2 Control task 2: depth trajectory tracking control

In this control task, the control law is designed to make the UUV
tracking the reference trajectory. The reference depth trajectory reft
is set as

reft =

2.75 m if depth ≥ 2.75 m

2sin t
30 + 2 m else

1.25 m if depth ≤ 1.25 m

(29)

During training this control task, the hyperparameters are roughly
the same as control task 1, and only the reward function and input
state have changed. st = zt wt  represents the depth, the velocity
in the z-direction at time t. The initial state vector of UUV is
s1 = 2.0 0.0 . The reward function is designed as (see (30)) . The
IL-TD3 algorithm, the TD3 algorithm and the DDPG algorithm are

employed to train the UUV depth trajectory tracking control task,
respectively. The actor network is trained by the supervised
learning method with 100 episodes. As shown in Fig. 15, the
average loss decreased as the training episodes increased, changed
from about 0.44 to about 0.04. In RL, the average reward curves of
each algorithm with training 200 episodes are shown in Fig. 16. It
can be seen that due to pre-training, IL-TD3 receives higher
rewards than TD3 and DDPG at the beginning of training. The
least reward of IL-TD3, TD3 and DDPG are about −9, −30 and
−36, the biggest reward of three algorithms are about −0.5, −0.6,
−2.5. During the training process, after about 100 episodes, the IL-
TD3 and TD3 can stabilise about the maximum reward, while
DDPG still have drastic changes. The convergence rate of IL-TD3
algorithm during training is about double that of DDPG and TD3.
In the whole training process, the IL-TD3 algorithm achieves the
best performance, and the DDPG algorithm performs the worst.

Fig. 10  Pitch and roll angles by PID and IL-TD3 with current
disturbance, initial roll angle is 1.00 rad, initial pitch angle is − 1.00
radian

 

Fig. 11  Thruster outputs by PID and IL-TD3 control with current
disturbance

 

Fig. 12  Depth by the proposed method with thruster fault, initial depth is
0.2 m

 

Fig. 13  Pitch and roll angles by the proposed method with thruster fault,
initial roll angle is 1.00 radian, initial pitch angle is − 1.00 radian

 

Fig. 14  Thruster outputs by the proposed method with thruster fault
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The IL-TD3 algorithm converges faster than TD3 and the learning
process is very stable.

Consider the reward curves of three algorithms are hard to
intuitive analysis. The average rewards of three algorithms in 200
episodes are sampled per 20 episodes. The sampled rewards are
shown in Table 4, it can be concluded that the IL-TD3 is the best
algorithm for training this control task among them. 

The model trained by IL-TD3 is saved to implement the depth
trajectory tracking control task and is compared with the PID
algorithm. The PID parameters Kp, Ki, Kd is set as 90, 1.2, 0.01 . In

the case of no-current disturbance, the depth trajectory control of
the IL-TD3 and PID algorithms are shown in Fig. 17. It can be seen
that the UUV's trajectory controlled by IL-TD3 algorithm almost
identical to the reference trajectory, completes the control task
well. However, due to the overshoot of the PID, the overshoot
amount is about 0.15 m, the control performance is unsatisfactory.

Then, the current disturbance τnoise = 30cos t /50π 0 0 T is
added in the vertical direction to test the robustness of IL-TD3
control in depth trajectory tracking control. As shown in Fig. 18,
the proposed algorithm can still track most of the reference depth
trajectory with current disturbance, with average tracking error of
depth is about 0.15 m. While the depth error under PID control
algorithm is about 0.5 m. The average tracking error of depth is
reduced about 70% in proposed algorithm than in PID. It can
conclude that the proposed algorithm can maintain a good
robustness in this control task. The thruster outputs of two
algorithms are shown in Fig. 19. The usage of thrusters under the
proposed algorithm is about 50% more than the usage of thrusters.
It outperforms the PID algorithm in this control task.

In the last, the ability of the IL-TD3 algorithm for fault-tolerant
control is also tested. It is assumed that the fourth thruster failed
and could not work at all at the beginning of the control process. In
this case, the depth trajectory tracking control results is shown in
Fig. 20. In addition, the thruster outputs are shown in Fig. 21. The
average tracking error of depth is about 0.15 m, not much different

rt =

−5 reft − zt − 0.1wt
2 − 0.01∑

i = 1

4
Fit − 4 × 10−4 ∥ Ft − 1 − Ft ∥ if reft − zt < 1.0

−50 if reft − zt ≥ 3.5

−5 reft − zt
2 − 0.1wt

2 − 0.01∑
i = 1

4
Fit − 4 × 10−4 ∥ Ft − 1 − Ft ∥ else

(30)

Fig. 15  Average loss in IL for depth trajectory tracking control
 

Fig. 16  Average return reward curves in DRL for depth trajectory
tracking control

 
Table 4 Sampled rewards of three algorithms in depth
trajectory tracking control
Episodes IL-TD3 TD3 DDPG
1–20 −11.10 −9.30 −8.22
21–40 −1.52 −23.15 −4.89
41–60 −1.19 −8.11 −3.95
61–80 −0.98 −3.47 −2.12
81–100 −0.72 −1.80 −1.64
101–120 −0.83 −0.99 −2.41
121–140 −0.62 −0.94 −2.15
141–160 −0.70 −0.56 −2.53
161–180 −0.59 −0.67 −1.80
181–200 −0.52 −0.60 −1.69

 

Fig. 17  Depth trajectory tracking results by IL-TD3 and PID without
current disturbance, initial depth is 2.00 m

 

Fig. 18  Depth trajectory tracking results by IL-TD3 and PID with current
disturbance, initial depth is 2.00 m
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from normal case. It can be seen that the IL-TD3 algorithm can
allocate thruster thrust wisely, make the UUV still perform the
control task well even when the thruster fault happens.

6 Experiments
To further demonstrate the proposed method, tank experiments
based on the underwater vehicle BlueROV2 Heavy are conducted.
BlueROV2 Heavy is a ROV developed by Blue Robotics. As
shown in Fig. 22, it is composed with four vertical thrusters and
four horizontal thrusters like ODIN UUV. 

The BlueROV2 Heavy is equipped with some sensors to obtain
state information, the state information are processed on a
PixHawk autopilot by the open source software ArduSub, then the
information are uploaded to principal computer by Raspberry Pi
on-board computer, Raspberry Pi on-board computer use
MAVLink protocol to complete communication task. The control

command is issued by principal computer, converted to pulse-
width modulation (PWM) value to the ROV's thrusters.

Constant depth and attitude control task are completed in the
tank test. During the experiments, the ROV's software are modified
to achieve individual drive of ROV's thrusters. The IL-TD3
algorithm runs on principal computer, the control strategy is same
as control task 1 in simulation part. Thrusters forces are computed
on principal computer, then PixHawk delivers PWM signals to
each thruster, respectively.

After training, the experimental data are shown in Figs. 23–25. 
The depth of ROV is quickly achieved expected value, take about
2 s. The data shows that the vehicle has basic depth and attitude
control ability, while it still has large oscillation amplitude. The
depth error is about 0.25 m, the pitch angle error is about 0.05 rad
and the roll angle error is about 0.02 rad.

Fig. 19  Thruster outputs by IL-TD3 with current disturbance
 

Fig. 20  Depth trajectory tracking results by the proposed method with
thruster fault, initial depth is 2.00 m

 

Fig. 21  Thruster outputs by the proposed control method with thruster
fault

 

Fig. 22  Tank test of BlueROV2 Heavy
 

Fig. 23  Depth of BlueROV2 during the tank test
 

Fig. 24  Pitch angle of BlueROV2 during the tank test
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7 Conclusion
In this paper, the IL-TD3 algorithm for UUVs motion control is
presented. This algorithm combines the advantages of IL and DRL.
Using the data of PID algorithm as expert data to pre-train the actor
network, it can accelerate the training process of DRL and the
control performance of trained model is better than PID. From the
simulations of two control tasks, it can be concluded that IL-TD3
algorithm has good robustness compared with PID, and achieved
good performances in fault-tolerant control. However, the IL-TD3
algorithm still has some shortcomings. In the IL part, behaviour
cloning based on supervised learning alone is not enough to make
actor network achieve good effects in pre-training and the usage of
thrusters in IL-TD3 are more than these in PID. In the future, more
effective IL algorithms will be adapted. IL-TD3 algorithm will be
compared with some popular DRL algorithm, such as proximal
policy optimisation and soft actor–critic.
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