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Abstract—Continuum (continuous backbone) robots are 

suitable for operation in unstructured environments thanks to 
their inherent compliance. They can adjust their shape to navigate 
through complex environments and grasp a wide variety of 
payloads with their compliant backbones. However, controller 
design for continuum robots is challenging due to their complex 
dynamics. In this paper, we introduce a new and novel strategy for 
trajectory control of continuum robot sections. The approach is 
based on a virtual discrete-jointed robot whose degrees of freedom 
are directly mapped to those of a continuum robot section. A 
conventional control strategy is developed for the virtual robot, for 
which inverse kinematics and dynamic equations are formulated 
and exploited, with appropriate transformations developed for 
implementation on the continuum robot. Simulations of the virtual 
robot computed torque control were executed and results indicate 
that the control method has good trajectory tracking performance. 
The control algorithm was implemented on a three degree of 
freedom section of the OctArm continuum manipulator, with 
decent tracking performance (steady state tracking error of 
merely 3mm during extension). 
 

Index Terms—Continuum Robot, Control, Kinematics. 
 

I. INTRODUCTION 
ontinuum or hyper-redundant manipulators belong to a 

special class of robotic manipulators, which are designed 
to exhibit behavior similar to biological trunks, tentacles, or 
snakes [1]. Unlike traditional rigid-link robot manipulators, 
continuum robot manipulators do not have rigid joints and have 
many degrees of freedom, and this enables continuum 
manipulators to have some very useful properties. Continuum 
manipulators can be compliant, extremely dexterous, flexible, 
and capable of dynamic adaptive manipulation in highly 
unstructured environments. These properties of compliant 
continuum robot manipulators make them uniquely suited for 
many applications, including search and rescue, underwater 
operations, and space exploration [2].  

Although continuum robots have been prevalent in research 
for many years [1-3], the development of high-performance 
control algorithms for these manipulators remains a significant 
challenge, due to both the complexity and the high degree of 
uncertainty in their dynamic models. There have been 
numerous approaches in which researchers have studied various 
formulations for the control of continuum robot manipulators 

[4]. Xu et al. [5] developed a computationally efficient 
torsionally compliant kinematic model of a concentric tube 
continuum robot. Using this computationally fast technique and 
deriving the robot’s Jacobian, a new position control approach 
is proposed. Chikhaoui et al. [6] describes theoretical 
investigations on automation of dual-arm robots constituted of 
two concentric tube continuum manipulators using motion 
coordination control. An optimization algorithm is developed 
to improve triangulation ability of the robot and thus enhance 
the arms’ collaborative operation. Falkenhahn et al. [7] 
developed a model-based MIMO controller in actuator space, 
that is based on a spatial dynamic model with one mass point 
per section. Gravagne et al. [8] discussed the dynamics of a 
planar continuum backbone section, incorporating a large-
deflection dynamic model, formulated a vibration-damping set-
point controller, and included experimental results to illustrate 
the efficacy of the proposed controller. Li et al. [9] developed a 
model-free method based on an adaptive Kalman filter to 
accomplish path tracking for a continuum robot using only 
input pressures and tip position. However, a common element 
in all these approaches is computational complexity. 

 
Fig. 1. Block Diagram for Continuum robot control based on virtual robot 
models 

The novel approach to continuum robot control introduced in 
this paper is motivated by reducing computational complexity. 
The key innovation is to formulate the overall control strategy 
using a virtual, conventional rigid link robot with discrete 
joints. The control strategy is developed in the virtual robot 
coordinates, taking advantage of the well-understood nature of 
conventional robot dynamics. The virtual robot is selected such 
that its degrees of freedom are directly mapped to those of the 
real continuum robot for which control is desired. 
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Transformations from the desired continuum robot trajectory to 
the virtual robot, and from the virtual robot control variables to 
the continuum robot inputs, are developed. This is a completely 
new approach to the control of continuum robots, to the best of 
our knowledge. Virtual rigid link robot models have been used 
to model continuum robot kinematics [10], but this concept has 
not been extended to controller development previously. 

Specifically, in this paper we demonstrate the above 
approach, from model development to hardware 
implementation, for control of a single section of a planar 
continuum robot. The virtual robot used is a serial rigid-link 
Revolute-Prismatic-Revolute (RPR) joint planar robot with two 
in-plane rotations and a translation in the same plane. A detailed 
high-level overview of major system components of this 
approach is described in Figure 1. First, the desired arc length 
𝑠𝑠 and curvature 𝑘𝑘 is fed to continuum robot forward kinematics 
for desired Euclidean coordinates. Then these desired 
coordinates are adopted in the virtual RPR robot and controller 
to acquire the torques and force that brings the continuum robot 
to a desired coordinate set point. The torques and force are then 
converted to pneumatic pressure which is directly applied on 
the continuous backbone of the continuum robot. For modeling, 
the revolute and prismatic joints are replaced by torsion and 
extension springs; see Figure 2. The kinematics, dynamics, and 
controller development established in the following sections are 
based on this virtual RPR robot and its dynamic behavior. 

 
Fig. 2. Continuum robot CAD schematic 

In the following sections, first the continuum robot 
kinematics and necessary transformations, including forward 
and inverse kinematics, are modeled, referencing the RPR 
virtual robot. The dynamic model of the virtual robot is 
established in Section III. Then, based on the dynamic system 
model, a closed loop computed torque control for the virtual 
robot is introduced in Section IV. Finally, simulation (Section 
V) and experimental results (Section VI) are presented, along 
with related discussion. Conclusions are given in Section VII. 

II. ROBOT KINEMATICS 
Since continuum robots can change their shape at any point 

along their structure, their models necessarily differ 
significantly from those of conventional rigid-link robots, 
where configuration changes can occur only at a finite number 
of fixed locations along their structure (the joints between the 
rigid-links). In the following, we review the kinematics of a 

basic continuum robot element (section) in the plane and relate 
it to those for the selected virtual robot. 

A. Continuum Robot Forward Kinematics 
The first (and the most inspired by hardware) approach to 

continuum robot kinematics strongly exploits the constant 
curvature sections feature possessed by almost all continuum 
robots to date [11]. In the plane, a “virtual” three joint rigid-link 
manipulator, with identical (i.e., coupled) rotations as its first 
and third joints and a prismatic joint in the middle, can be used 
to model the kinematic transformation along any constant 
curvature planar backbone section [10]. Consequently, it is 
possible to find the corresponding kinematic model, using the 
conventional Denavit-Hartenberg (D-H) approach [10], for the 
virtual robot in (1) 
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  (1) 

 
The model (1) describes, within the 4 by 4 homogeneous 
transformation matrix [H], the forward kinematic relationship 
(3 by 3 orientation, top left of (1), and 3 by 1 translation, top 
right) between the kinematic variables for the virtual robot (two 
angles and one length) and task space. 

Continuum robot kinematics can now be developed by noting 
and substituting in the virtual robot kinematics, relationships 
between the joint variables for the virtual robot and 
corresponding configuration space variables for the continuous 
curve. Specifically, ([10], see Figure 3): 

 
Fig. 3. Geometry of constant curvature section in plane [10] 
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Substituting (3) and (4) into the model (1) and simplifying gives 
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  (5) 

 
The model (5) describes the forward kinematic relationship 

(3 by 3 orientation, top left of (5), and 3 by 1 translation, top 
right) between continuum curve shape (arc length and 
curvature) and task space. 

B. Virtual Robot Inverse Kinematics 
The inverse kinematics of the continuum robot can be 

approximated by that of the planar RPR virtual robot. After the 
continuum robot end-effector’s cartesian coordinates are 
derived from the forward kinematics in (2), the 𝑥𝑥  and 𝑦𝑦 
coordinate can then be substituted into the inverse kinematics 
of the RPR robot to obtain the desired matrix 𝑞𝑞𝑑𝑑 =
[𝜃𝜃1 𝑑𝑑2 𝜃𝜃3]𝑇𝑇. The inverse kinematics of the RPR robot can 
be represented as 

 1 2 2
1 3 2tan , y d x y

x
θ θ−  = = = + 

 
  (6) 

III. VIRTUAL ROBOT DYNAMICS MODEL 
Consider the virtual Revolute-Prismatic-Revolute (RPR) 

manipulator shown in Figure 4. 

 
Fig. 4. 3-DoF Revolute-Prismatic-Revolute (RPR) virtual planar robot arm 

Let the coordinate system of the base frame (frame 0) be such 
that 𝑧𝑧0 is pointing out of the page and 𝑥𝑥0 is pointing to the right. 
Then, 𝑦𝑦0  is pointing towards top in the figure. The joint 
variables are 𝑞𝑞1 = 𝜃𝜃1, 𝑞𝑞2 = 𝑑𝑑2, and 𝑞𝑞3 = 𝜃𝜃3. Let the masses of 
the three links be 𝑚𝑚1 , 𝑚𝑚2 , and 𝑚𝑚3 . Since this is a planar 
manipulator and rotation is only about the 𝑧𝑧0  axis, only the 
inertia around the vertical axis is relevant; let 𝐼𝐼1,𝑧𝑧, 𝐼𝐼2,𝑧𝑧, and 𝐼𝐼3,𝑧𝑧 
denote the moments of inertia of links 1, 2, and 3, respectively, 
around the axis pointing out of the page (for each link, the 
moments of inertia are defined relative to a coordinate frame 
with origin at the center of mass of the link). 

If the planar motion of the manipulator is in the horizontal 
plane, then gravity terms are not relevant. If the planar motion 
of the manipulator is in the vertical plane, then gravity terms 
need to be considered. 

Let gravity be in the downward direction in the figure (i.e., 
in the −𝑦𝑦0 direction). Let 𝑙𝑙𝑐𝑐1  denote the distance from the base 
(origin of frame 0) to the center of mass of link 1. Let 𝑙𝑙1 be the 

length of link 1. Then, the combined length of links 1 and 2 is 
𝑙𝑙1 + 𝑞𝑞2. Also, assume that the linkage between links 1 and 2 is 
such that when joint 2 actuates, it shifts the center of mass of 
link 2 by distance 𝑞𝑞2. Let the distance from the point where 
links 2 and 3 meet to the center of mass of link 3 be 𝑙𝑙𝑐𝑐3. 
 The Euler-Lagrange formulation can be used to find the 
dynamics of this virtual manipulator. The angular velocity 
related Jacobian matrices for the three links are: 
 

 1 2 3

0 0 0 0 0 0
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J J Jω ω ω

   
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  (7) 

 
The linear velocity related Jacobian matrices for the three 
links are: 
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where 𝑠𝑠1 = sin(𝑞𝑞1), 𝑐𝑐1 = cos(𝑞𝑞1),  𝑠𝑠13 = sin(𝑞𝑞1 + 𝑞𝑞3), and, 
 𝑐𝑐13 = cos(𝑞𝑞1 + 𝑞𝑞3). Hence, the matrix 𝐷𝐷(𝑞𝑞) is given by: 
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where  
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 ( )12 21 3 3 3sincd d l m q= = −   (11) 
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c
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= = + +

+
 (12) 

 22 2 3d m m= +   (13) 
 ( )23 32 3 3 3sincd d l m q= = −   (14) 

 2
33 3, 3 3z cd I l m= +   (15) 

As described above, since the rotation of all the links is only 
about the 𝑧𝑧0 axis, only the moments of inertia about the axis 
pointing out of the page are relevant (i.e., 𝐼𝐼1,𝑧𝑧, 𝐼𝐼2,𝑧𝑧, 𝐼𝐼3,𝑧𝑧). 

 The Christoffel symbols 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖13T become 

 1
2

kj ijki
ijk

i j k

d dd
c

q q q
 ∂ ∂∂ = + − 
∂ ∂ ∂  

  (16) 

For 𝑖𝑖 = 1,2,3; 𝑗𝑗 = 1,2,3; 𝑘𝑘 = 1,2,3 , and writing the matrix 
𝐶𝐶(𝑞𝑞, 𝑞̇𝑞) with its (𝑘𝑘, 𝑗𝑗)𝑡𝑡ℎ element being 

y

x
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we obtain 
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The potential energy of the manipulator is given by: 
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The dynamic equations of the manipulator are given by: 
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,
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where 𝜏𝜏1 is the applied torque at the first joint (revolute), 𝑓𝑓2 is 
the applied force at the second joint (prismatic), and 𝜏𝜏3 is the 
applied torque at the third joint (revolute). 

IV. OVERALL CONTROL METHOD 
We seek and exploit simple, relatively computationally 

inexpensive control methods used in (rigid-link) robot control 

systems [12] to design the controller in the virtual robot 
coordinates.. Classical control and intelligent control methods 
are widely used in the robot industry. Each control method has 
advantages and disadvantages. However, the main aim for the 
system is to provide robustness, stability and high frequency 
updates. In this work, we adopt the computed torque (feedback 
linearization plus PD control, see Figure 5) approach for the 
virtual robot, with the sensing and actuation transformed from 
and to the continuum robot, respectively. 

 
Fig. 5. Classical control block diagram of the robot arm 

Conventional PD control [13] is the most popular core 
control method in many robot implementations because of its 
steady state and transient response performance in time-
invariant systems. In classical pure PD control, the chosen 
parameters, 𝐾𝐾𝑝𝑝  and 𝐾𝐾𝑑𝑑  remain constant during the process. 
Therefore, such a controller is inefficient because the controller 
contains ambiguity when environmental conditions or 
dynamics change. In addition, it is inefficient because of time 
delays and nonlinearity conditions. Hence, we include the 
dynamics to linearize prior to the PD control. 

The dynamic model of the virtual robot arm is given in (33), 
In this equation, 𝜏𝜏, 𝐷𝐷(𝑞𝑞), 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞), 𝐺𝐺(𝑞𝑞), and 𝑛𝑛 are expressions 
for the 𝑛𝑛 × 1  dimensional joint torque, 𝑛𝑛 × 𝑛𝑛  dimensional 
inertia matrix, 𝑛𝑛 × 1   dimensional Coriolis and centrifugal 
vector, 𝑛𝑛 × 1  dimensional gravity vector, and the degrees of 
freedom of the robot, respectively. The errors of the robot link 
variables are 
 ,  ,  d d de q q e q q e q q= − = − = −        (34) 
where 𝑒𝑒, 𝑒̇𝑒, 𝑒̈𝑒 expresses the position, velocity and acceleration 
error vectors and 𝑞𝑞𝑑𝑑, 𝑞𝑞𝑑̇𝑑, 𝑞𝑞𝑑̈𝑑  expresses the desired position, 
velocity and acceleration of the link variables. The torques 
required for each joint of the virtual robot arm are calculated 
from (33) and the errors from (34). The linearization is achieved 
as follows 
 ( )( ) ( ) ( ),dD q q u C q q q g qτ = − + +     (35) 
The control signal that is obtained from (35) is expressed as 
follows 
 ( ) ( ) ( )1 ,du q D q C q q q g q τ−= + + −       (36) 

If the signal u is selected as the PD feedback controller, the 
torque value of each joint will be obtained from (37) and (38). 
 d pu K e K e= − −   (37) 

 ( )( ) ( ) ( ),d d pD q q K e K e C q q q g qτ = + + + +      (38) 
where 𝐾𝐾𝑑𝑑 is the derivative gain and 𝐾𝐾𝑝𝑝 is the proportional gain. 

The overall controller of the virtual robot is shown in Figure 
5. The PD coefficients of the system were tuned experimentally, 
and the ideal gain values were used. The input desired trajectory 
was represented in terms of Cartesian coordinates 𝑥𝑥 and 𝑦𝑦, and 
was calculated from the continuum robot arc length 𝑠𝑠  and 

dq

dq

dq

pK

dK

( )D q ROBOT

( ) ( ),C q q q g q+ 

q

q
τe

e

+
+

+

+ + +
+

−
−

u
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curvature 𝑘𝑘 using the forward kinematics discussed in section 
II. Subsequently the virtual robot variables: rotation 𝜃𝜃1, 𝜃𝜃3 and 
translation 𝑑𝑑2  were derived from the inverse kinematics in 
section II and fed into the control system as a desired reference 
input signal. Their derivatives and double derivatives were 
calculated and input to the controller. The output of the 
controller, 𝑢𝑢, is then used to establish the torque signal along 
with systems 𝐷𝐷(𝑞𝑞), 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞), and 𝑔𝑔(𝑞𝑞) matrix. The torque was 
then converted and applied to the physical robot system which 
feeds back the current continuum robot shape, subsequently 
converted to virtual robot rotation and translation signals input 
to the PD controller to form the error and drive the control 
action. 

V. SIMULATION RESULTS 
Simulations of the virtual robot computed torque control 

were executed in the Simulink environment given the input of 
the system is a reference signal of the arc length 𝑠𝑠 and curvature 
𝑘𝑘 . Feeding into the forward kinematics to form Cartesian 
coordinates 𝑥𝑥 and 𝑦𝑦, the reference signal illustrated here is a 
chirp signal in which the frequency increases with time shown 
in Figure. 6.  
 
 

The resulting output torque for the virtual robot is illustrated 
in Figure. 7. The first and third subplots are the rotational torque 
of the first and last virtual torsion springs 𝜏𝜏1 and 𝜏𝜏3 while the 
second plot is for the translation force 𝑓𝑓2 of the virtual extension 
spring located in between the two virtual torsion springs. The 
torsion coefficient can be calculated by selecting a torque of a 
given time and identifying the twist angle 

 tk τ
θ

= −   (39) 

The spring constant of the extension spring can be calculated 
using the same method: 

 2

2
e

fk
d

= −   (40) 

where 𝑓𝑓2 is the force exerted by extension spring illustrated in 
Figure 7 and 𝑑𝑑2 is the elongation of the virtual spring. 

The comparison between desired and actual 𝑥𝑥  and 𝑦𝑦 
coordinates of the continuum robot end effector is depicted in 
Figure 8. There is a large overshoot observed when the end 
effector is attempting to reach the first desired 𝑥𝑥 location, but 
then the system becomes stabilized. The overshoot of the 𝑦𝑦 
coordinate is zero and it also become stable after the first chirp 
signal peak. 

The desired and actual  𝜃𝜃1, 𝜃̇𝜃1, 𝑑𝑑2, 𝑑̇𝑑2, 𝜃𝜃3, 𝜃̇𝜃3 of the virtual 
robot can be observed in Figure. 9. All signals eventually reach 
a high tracking precision, indicating that the controller 
accomplished its task of bringing the extension and torsion 
springs to the desired position and velocity. The derivative 
terms all have overshoot issues that can be neglected in the 
practical implementation (see next section). 

Fig. 6. Desired continuum robot arc length s and curvature k input to the 
simulation of the virtual robot computed torque control 

Fig. 7. Torques and force applied to the springs: (a) torque applied to torsion 
spring 𝜏𝜏1 , (b) force applied to extension spring 𝑓𝑓2, (c) torque applied to 
torsion spring 𝜏𝜏3 

Fig. 8. Desired and actual continuum robot end-effector X and Y coordinate to 
the simulation of the virtual robot computed torque control 

 2512



 6 

VI. EXPERIMENTAL RESULTS 
1The controller was implemented on the tip section of the 

OctArm continuum manipulator [14]. The OctArm, pictured in 
Figure 10, is a pneumatically actuated, three section, nine 
degree of freedom (DoF) continuum manipulator. Each section 
is capable of bending in any direction (curvature k and direction 
φ) and extending (arc length s), providing three DoF for each 
section. The tip section of the device (the right-most section in 
Figure 10) is comprised of three McKibben extension muscles 
[15] arranged radially at 120° intervals.  

A set of experiments utilizing the OctArm and the described 
model were implemented. The model and controller were 
implemented in MATLAB/Simulink [16]. Interfacing with the 
OctArm was accomplished using two Quanser Q8-usb data 
acquisition boards [17]. State estimation of the system was 
provided through internal measurements of the OctArm via a 
series of string encoders that run along the length of each 
section muscle. After controller output torques and force are 
calculated, they are converted to pneumatic pressure in voltage 
form which then can be applied onto the three McKibben 
extension muscles at the tip section.  

A. Extension  
The first experiment is pure extension of the OctArm 

continuum manipulator. In this experiment, the system is fed 
with arc length 𝑠𝑠 being a sinusoid with an amplitude 0.03m of 
and a frequency of 0.08Hz and curvature 𝑘𝑘 being 0m-1. For the 
extension experiment, the calculated extension force 𝑓𝑓2  that 

results from the model is equally applied to the three muscles 
to achieve balanced pure extending movement. The section 
desired and actual arc length are presented in Figure 11. During 
the experiment, the OctArm initiated from its natural 
unpressurized length of 0.34m and immediately converged to 
the desired arc length with minor error in the crest of the sine 
wave. The actual arc length settles relatively fast and no 
obvious overshoot or oscillations are detected. The arc length 
error plot illustrated in Figure 12 shows that the control 
algorithm implemented on the extension of OctArm only 
outputs an error of ±3 mm which is considered within a 
reasonable range for this robot. The extension force applied to 
the OctArm through the pneumatic actuators can also be 
observed in Figure 12. If the OctArm is considered as an 
extension spring during this experiment, then the spring 
constant for the spring can be calculated from (40) after 
knowing the extension force amplitude of 28.71N from Figure 
12 and arc length amplitude of 0.03m. The spring constant 𝑘𝑘𝑒𝑒 
is approximately equal to 957N/m. 
 

B. Bending 
In the second experiment, a bending test on the OctArm is 

carried out. The objective of the experiment is to have the 
OctArm maintain a constant arc length 𝑠𝑠  at 0.395m while 
bending the continuum robot section to track a sinusoid 
curvature 𝑘𝑘  with an amplitude of 0.2m-1 and frequency of 
0.08Hz. Figure 13 depicts the bending experiment, showing the 
tip section of the OctArm and the travel between the maximum 
and minimum curvature values.  

Fig. 9. Desired and actual robot arm joint variables 𝜃𝜃1, 𝜃̇𝜃1, 𝑑𝑑2, 𝑑̇𝑑2, 𝜃𝜃3, 𝜃̇𝜃3 

Fig. 10. The OctArm Manipulator Fig. 11. Desired and actual arc length s during pure extension of the OctArm 
continuum manipulator 

Fig. 12. Arc length s error and PD controller extension force during pure 
extension of the OctArm continuum manipulator 
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To achieve bending, the average of 𝜏𝜏1 and 𝜏𝜏3 is calculated 
first as 𝛥𝛥𝛥𝛥. Then the applied pneumatic pressure onto the two 
McKibben extension muscles at the back of the tip section 
(pictured on the right hand side of the OctArm in Figure 13) is 
calculated as 𝑃𝑃1 = 𝑘𝑘𝑝𝑝(𝑓𝑓2 + 𝛥𝛥𝛥𝛥)  and the applied pneumatic 
pressure onto the one extension muscle at the front of the tip 
section (pictured on the left hand side in Figure 13) is calculated 
as 𝑃𝑃2 = 𝑘𝑘𝑝𝑝(𝑓𝑓2 − 𝛥𝛥𝛥𝛥)  where 𝑘𝑘𝑝𝑝  is the conversion gain from 
torque to pressure. The difference of pressure given to two 
distinct sets of extension muscles at front and back will generate 
a bending effect of constant curvature that matches the 
continuum robot kinematics model.  

The section arc length and curvature are both depicted in 
Figure 14 with the desired and actual values compared. The rise 
time and settling time for the arc length is 64s and 88s 
respectively and no overshoot is observed. The curvature, on 
the other hand, displays a relatively fast response compared to 
arc length, with an overshoot of 8%. The reason for a slower 
response from the arc length is posited to be the following: 
during bending, the continuum robot is attempting to achieve 
the desired sinusoid curvature that could lead to a shrinkage of 
the robot that contradicts and neutralize the extension force. 
The error between desired set-point of arc length and curvature 
and actual values can be observed in Figure 15. 

The comparison between desired and actual 𝑥𝑥  and 𝑦𝑦 
coordinates of the continuum robot end effector is depicted in 
Figure 16. There is a large undershoot observed when the end 
effector is attempting to reach the desired 𝑥𝑥 location, but the 
system ultimately becomes stabilized. The overshoot of the 𝑦𝑦 
coordinate is relatively small, and it also becomes stabilized 
after three cycles of the sine wave. 

The desired and actual 𝜃𝜃1, 𝑑𝑑2, 𝜃𝜃3 of the virtual robot model 
can be observed in Figure 17. The values 𝜃𝜃1 and 𝜃𝜃3 converge to 
the desired set-point successfully thanks to the overwhelming 
tracking performance of the curvature whereas 𝑑𝑑2 has inferior 
performance due to the long rise time and settling time of the 
arc length control. The resulting output torques for the virtual 
robot during bending are illustrated in Figure 18. 

After successfully employing the control method of the 
virtual discrete-jointed robot model onto the OctArm, both 

extension and bending tests deliver relatively ideal tracking 
performance. The results from both test procedures show decent 
consistency with the simulation results of computed torque 

Fig. 13. Oscillating curvature experiment 
Fig. 14. Desired and actual arc length s, curvature k of OctArm continuum 
manipulator during oscillating curvature experiment 

Fig. 15. Arc length s and curvature k error of OctArm continuum manipulator 
during oscillating curvature experiment  

Fig. 16. Desired and actual X, Y coordinate of OctArm continuum manipulator 
end-effector during oscillating curvature experiment 
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approach for the virtual robot, and good potential for use in 
continuum controller implementation. 

VII. CONCLUSION 
This paper introduces a new and novel approach to the 

control of continuum robots. The main innovation is the use of 
a virtual, conventional rigid-link robot model, in whose 
coordinates the controller is developed, to generate the real-
time control inputs for the continuum robot. The key advantage 
of the control approach presented in this paper is that it can be 
implemented very efficiently. The proposed controller was 
shown to provide reasonable performance in both simulations 
and experiments, without the need for excessive online or pre-
computation.  
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Fig. 17. Desired and actual 𝜃𝜃1, 𝑑𝑑2, 𝜃𝜃3 of OctArm continuum manipulator 
during oscillating curvature experiment 

 

Fig. 18. Torques and force applied to the OctArm continuum manipulator 
during during oscillating curvature experiment: (a) torque applied to torsion 
spring 𝜏𝜏1 , (b) force applied to extension spring 𝑓𝑓2, (c) torque applied to torsion 
spring 𝜏𝜏3 
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