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Abstract: With the rise of soft robotics technology and applications there have been increasing interests 

in the development of controllers appropriate for their particular design. Being fundamentally different 

from traditional rigid robots, there is still not a unified framework for the design, analysis and control of 

these high dimensional robots. This review paper attempts to provide an insight into various controllers 

developed for continuum/soft robots as a guideline for future applications in the soft robotics field. A 

comprehensive assessment of various control strategies and an insight into the future areas of research 

in this field is presented.        

 

1. INTRODUCTION 

Biological organisms exploit softness of the body for compliance to reduce the complexity in 

interacting with the environment. This characteristic is promising to advance robotic systems to 

operate robustly and adaptively in unstructured environments. Incorporating softness in robotic 

systems, in particular robotic manipulators which is the focus of this article, is studied under the 

domain of ‘soft robotics’.  This term is associated with two distinct design approaches: (i) compliant 

joints (active or passive) within rigid-link robots [70, 1]; (ii) continuum robotic manipulators [2]. The 

discussion in this article is restricted to the latter one.   

Although the field of continuum robotic manipulators was founded in the 1960s, a formal research 

on the design and control can be dated back to the early 1990s. These systems are the result of the 

evolution of manipulator design from discrete mechanisms constructed from a series of rigid-links to 

mechanisms without rigid-links but rather with elastic structures capable of continuous bending 

along their length (depicted in Fig 1). A novel sub-domain of continuum manipulators, referred to as 

‘soft robotic manipulators’ [3,4], has been rapidly growing in the past decade since roboticists found 

inspiration in boneless biological organisms such as octopus arms which are able to exploit the 

‘mechanically intelligent’ arrangement of just their muscles to exhibit dexterous advanced 

manipulation capabilities in cluttered environments. This has been translated into new range of 

continuum manipulators made up of soft materials such as silicone due to their ability to undergo a 

large deformation under normal operation. The underlying idea is to use principles of embodied 

intelligence [77 ] and morphological computation [78 ] to exploit the soft material properties to 

enable machines with properties such as inherent compliance, variable stiffness, and highly 

dexterous motion in unstructured environment.  The resulting systems have the ability to simplify a 

wide range of well-known complex tasks. Additionally, they offer a low-cost alternative to numerous 

robotic applications [4]. Furthermore, the deformability of the soft material offers compliance which 

facilitates safe human-robot interaction in comparison to their rigid counterparts. These desirable 

characteristics are the fundamental reason behind their rapidly increasing demand in industrial, 

surgical, and assistive applications.  



However, the long term success for the practical application of these systems is dependent upon the 

development of real-time kinematic and/or dynamic controllers that facilitate fast, reliable, accurate, 

and energy-efficient control. This is non-trivial because: (i) unlike rigid manipulators, the movement 

of which can be specified by three translations and three rotations, elastic deformation of soft 

robotic manipulators results in virtually infinite degrees-of-freedom (DoF) motions, (bending, 

extension, contraction, torsion, buckling, etc.) (ii) the material properties exhibit non-linear 

characteristics such as compliance and hysteresis that restricts high-frequency control (iii) the wide 

range of design and actuation techniques which makes each of these robots have unique properties 

(Refer to [5] for a detailed review on design and actuation technologies for soft robots). However, as 

this is an active field of research still in its infancy, the fundamental purpose of this survey is to 

provide an in depth assessment of various control strategies established within the domain of 

continuum robotic manipulators, in the past decade, with the aim to segue into a guide for 

researchers towards possible directions for developing controllers for soft robotic manipulators.    

 

FIG. 1. Evolution of rigid-link manipulators based on discrete mechanisms to bio-inspired continuum 

robotic manipulators based on structures capable of continuous bending, studied in detail in[3].  

Comprehensive reviews of control strategies for continuum robotic manipulators [6, 7, 2, 8, 9] are 

primarily focused on design, fabrication, modelling, and sensing. However, there is no in-depth 

analysis of the control approaches that have emerged over the years. Furthermore, they lack focus 

on the recent development of controllers via model-free approaches. This survey tries to firstly 

enumerate all such developments in this field in the past decade; secondly, it aims to provide a 

unified overview of key terminologies, advantages, and drawbacks of these controllers; finally, we 

aim to summarize these concepts in a table which, in addition to a systematic review, also provides 

the readers an overview into the chronological developments that have led to the current landscape 

and future prospects of development in this domain. As the focus of this paper is restricted to 

controllers developed within the domain of continuum manipulators that can be adopted for soft 

robotic manipulators, the paper does not dwell much into modelling techniques, theoretical studies, 

wearable robots and concentric tube robots.  The role of sensing and variable stiffness actuation for 

control is also beyond the scope of this paper. 

2. PRELIMINARIES 



Although a lot of classic terminologies used for rigid robots can be directly adapted to this field, 

special care must be given to understand the applicability and limitations of these terms. 

Consequently, we first state key terminologies and their corresponding definitions that will be used 

throughout the paper to describe the controllers in a unified manner. Next, we lay out the 

classification schema used to systemically analyse the controllers summarized in Table 1. 

2.1 Definitions  

 

Figure 2 provides the definitions and terminologies that we will be referring to throughout the paper. 

The purpose of the figure is to give the readers an idea of the different levels of mapping involved in 

the control of a continuum/soft manipulator and its differences from traditional rigid robot control. 

 

 

FIG. 2. Operating spaces of a continuum manipulator and their definitions. 

2.2 Classification Schema 

1. Modelling approach:  

a. Model-based controllers rely on analytical models for deriving the controller. 

b. Model-free controllers use machine learning techniques or empirical methods. 

c. Hybrid controllers combine model based and model free approaches. 

2. Design: 

a. Actuation: Tendon-driven, Pneumatic, Interleaved, Simulated platforms. 

b. Actuation details: No. of segments/actuators, arrangement, shape, material 

c. Manipulator details:  intended applications 



3. Control:  

a. Operating Space:  

i. Low-level: Joint and/or actuator space 

ii. Mid-level: Inverse Static/kinematic1, dynamic2 

iii. High-Level: Path planning3 

b. Controller details: tested for planar/non-planar applications, required sensors  

c. Performance: Error Measurements, Theoretical Error Convergence, Stability. 

3. Model-Based Static Controllers 

Soft robots present a formidable challenge to modelling due to their high dimensionality.  

Nonetheless, tractable kinematic models can be developed by adopting a steady-state assumption; 

i.e. under force equilibrium, the full configuration of the soft manipulator can be defined by a low 

dimensional state space representation. In all the papers that are reviewed this assumption is valid 

and therefore we interchangeably use the term ‘statics’ and ‘kinematics’ even though this is not a 

common practice in traditional robotics. The simplest and most commonly used kinematic/steady-

state model assumes that the configuration space of a three dimensional continuum/soft module 

can be parametrized by three variables, more commonly referred to as the constant curvature (CC) 

approximation [10]. It reduces an infinite dimensional structure into just three dimensions, thereby 

ignoring a large portion of the manipulator dynamics. This has been found to be a very good 

approximation if: (i) the manipulator is uniform in shape and symmetric in actuation design, (ii) 

external loading effects are negligible, (iii) and torsional effects are minimal. It is important to realize 

that the CC model arises due to a constant strain approximation along the length of the manipulator 

and therefore is a model truly valid only in the steady-state condition [13]. In [11] it was 

demonstrated that the variations in the kinematic manipulability ellipsoid is very less when going 

from a low dimension to a high dimension representation of the manipulator configuration. This 

could explain the relative success of the CC model. For multi-section continuum/soft manipulators, 

each constant curvature section can be stitched together to provide the Piecewise Constant 

Curvature (PCC) model [12]. Concurrently, more complex modelling approach using beam theory 

was pursued using beam theory [13] and cosserat rod theory [14]. However, the improvement in 

accuracy attained by a more complex was not significant compared to their computational and 

estimation cost and therefore have been limited in their usage.   

Once a kinematic model is established, it is necessary to invert the kinematics to obtain the desired 

actuator or configuration space variables. This can be pretty straightforward and has been widely 

studied for rigid manipulators and can be done with differential inverse kinematics [12, 15], by direct 

inversion [16] or by optimization [17]. Further, a low level controller takes care of tracking in the 

actuator/joint space, usually using a simple linear closed loop controller. Additionally, actuator 

compensation techniques might have to be used because of the presence of friction, hysteresis [18] 

or tendon coupling [19] that can cause deviations from the forward steady-state model.  

                                                           
1
 Static controllers are time invariant controllers where the control variables are zero order. 

2
 Dynamic controllers consider the configuration space and/or task space variables velocities in the control algorithm. 

3
 High level controllers which prescribe the reference path in task space are primarily application based. Since the area of 

soft robotics is still in its incipient phase, a review on high level controllers are beyond the scope of this paper. 
 



The need to model and compensate for slackening, tendon load coupling and tendon path coupling 

for multi-section manipulators was first addressed in [16]. A numerically estimated static model was 

used for the forward model and inverse model was obtained by optimization.  However, there still 

lacked an expression for friction effects and the approach was used only for configuration tracking. 

One of the fundamental modelling difficulties involved with cable driven actuators is the path 

coupling among sections. For independent actuation methods, only the load coupling needs to be 

considered. Further on researchers started investigating the importance of sensors for compensating 

modeling uncertainties without the necessity for formulating very complex compensation 

techniques [20, 17]. As an extension of [16], a closed loop task space controller was proposed and 

experimentally validated for the first time in [17] with a 5 DoF per section kinematic model. For this, 

the inverse kinematics (IK) problem is formulated as a constrained nonlinear optimization problem 

where the desired joint configuration that reduces the current tracking error is estimated while 

satisfying the forward kinematic model and cable tension constraints (to avoid slacking). By 

representing the kinematics in the velocity level, their approach gains leverage in terms of higher 

accuracy (submillimeter) and robustness to model uncertainties, but would need to solve a high level 

path planner.. But (Refer Fig.3). The downside of the direct task space controller is instability (can be 

solved by lower control frequency; 5Hz for [17]) and slower convergence. In [20], a configuration 

space controller is proposed which uses external sensory information about the configuration and 

internal sensory information about the joint variables to achieve asymptotic tracking of a stationary 

configuration target. By providing additional tracking information and framing a cascaded controller 

they were able to reduce coupling effects and decrease the phase lag while tracking a time varying 

trajectory. Being a configuration space feedback controller, the control loop was run faster at 150 Hz. 

Interestingly, significant phase lag was observed even for tasks at 2 Hz and this is highly undesirable 

at the low level. Similarly in [21], two closed loop controllers in the task space (Fig. 4) and joint space 

(Fig. 5) was compared. The advantage of a direct closed loop task space controller is that it can 

provide asymptotic convergence of the error even with model uncertainties. On the other hand, a 

joint space controller can offer independent control of the joint variables allowing for individual 

tuning and hence more stability, especially if the joint/actuator motions are discrete. Note that for 

all the above mentioned controllers there is also a closed loop actuator space controller, usually a 

servo controller, which is assumed to provide perfect tracking. All these methods rely on the CC 

approximation for modelling. 

 

 

FIG. 3. A closed loop task space controller implementation. A* represents the desired variable value, 

A c represents the commanded variable value.  

 



 

FIG. 4. A closed loop task space controller implementation. 

 

FIG. 5. A task space controller implemented by closed loop control in the joint space. Ae represents 

the variable estimate. 

 Following the strong coupling between continuum manipulator’s kinematics and static force model, 

controllers foraying into compliance/force control started to emerge [22, 23, 24]. In [23] it was 

demonstrated that by knowing the current internal actuation forces and the configuration space 

variables an estimate of the external generalized forces can be formed. Using the estimate of the 

external force and the compliance matrix (maps the change in actuator forces to the tip wrenches) a 

configuration space controller for reducing tip forces for surgical purposes was proposed. As an 

extension of [23], a hybrid position/force controller in the configuration space was realized in [24] 

(Fig. 6). Desired twist and wrench vectors are projected orthogonally (for decoupling the control 

effort into feasible motions) and transformed to configuration space references using differential 

inverse kinematics and the configuration space compliance matrix (maps the change in configuration 

space variables to the tip wrenches) respectively. Hybrid position/force control was realized in [22] 

without the need of force sensors. This was done by numerically calculating the transformation 

matrix that maps the transformation from the tip of an unloaded continuum manipulator to the tip 

position when acted on by external forces using cosserat rod theory. With the transformation 

formulation, the desired joint position that attains a particular end effector force and orientation 

was estimated using fixed point iteration.  Compensating models deviations due to friction and other 

nonlinear material behavior remains an open research topic. 

 

FIG. 6. Closed loop tasks space control of position and force implementation. A v represents the first 

order derivative of the variable. 



Further on researchers started to focus on more complex kinematic formulations by extending the 

CC model, mostly due to the rise of biologically-similar tapering continuum robots. The first such 

method was the use of the Variable Constant Curvature (VCC) approximation which models a single 

module as n segments of constant curvature; where the curvature of each segment depends on the 

radius of the segment, thus creating a high dimensional configuration space [25, 26, 27]. The VCC 

model for a three section pneumatically actuated continuum robot, with the procedure for 

segmentation of the sections, was first elucidated in [26, 27]. A resolved motion rate algorithm was 

used for the closed loop control of the robot due to the double advantage of redundancy resolution 

and the robustness it provides to model uncertainties (Fig. 7). Visual servo control of a two 

dimensional image feature point in three dimensional space using a cable driven soft conical 

manipulator was proposed using the VCC model in [25]. A differential kinematics based controller, 

similar to the one in [26], with the control objective of reducing the feature point tracking error was 

proposed. An adaptive algorithm for depth estimation was also described. Similarly, efficient 

numerical techniques for solving in real time the complex cosserat models were detailed in [73], 

however no control experiments were demonstrated. 

 

 

FIG. 7. First order resolved motion rate algorithm for closed loop task space control. Note the 

similarity to the first implementation in Fig. 3. The additional feedforward component allows for 

faster convergence.  

Contrary to ongoing developments, use of simplified kinematic models for control was proposed in 

[28]. The idea behind this is that the reduced accuracy due to the inaccurate kinematics can be 

compensated or even improved with the increased control cycle frequency gained due to the low 

computational cost. However, the method was validated only on simulations and would not be 

directly transferable to a real setup at the same frequency without considering the low level 

dynamics as observed in [20]. On the other spectrum, a numerically exact approach for statics 

modelling using asynchronous Finite Element Analysis (FEM) was described in [29]. Optimization 

using quadric programming (QP) algorithm was used to obtain the inverse solution which is used to 

control the actuators at high frequencies while a low frequency loop FEM simulation feeds the 

inputs to the QP solver.  

Recent developments in terms of model based static controllers are factored on the design aspects. 

A Closed loop task space controller was applied on an interleaved continuum-rigid manipulator in 

[30]. The main idea of the approach is to use the well behaved rigid links in tandem with the flexible 

elements to compensate for the errors obtained while tracking a desired tip position thereby 

obtaining much lower bound on the tracking error. However, the scalability of such designs for high 

dimensional systems is still a question mark. Currently the manipulator is designed with the rigid 

components set up at the base, but it will be tricky to add further components in serial. On the other 

hand, kinematic control of a pneumatically actuated soft manipulator entirely made from a low 



durometer elastomer was detailed in [31]. The control architecture is similar to [20] and tries to 

achieve tracking of configuration space variables using a cascaded PI-PID in the configuration space 

and actuator space (cylinder displacement, in this case) respectively. The task space to configuration 

space inverse kinematics is obtained a nonlinear constrained optimization. Both the above 

mentioned approaches used the CC approximation for the configuration space model.  

3.1 Summary of Model-Based Static Controllers 

Model-based static controllers are currently the most widely used and studied strategy for control of 

continuum/soft robots. Majority of the model-based controllers rely on the CC approximation since 

more complex models are computationally expensive and are design specific. However, with 

validation of the CC model for a completely soft robot [31] and its wide application for control of 

many continuum/soft robots it is still one of the most reliable and easily applicable method for static 

control of uniform, low mass manipulators. More complex methodologies have not achieved 

exceptional performance improvements because of their computational cost and numerous 

parameters that have to be estimated. This was also observed in recent comparisons among various 

modelling approaches on the same platform [69]. In light of this, model-free approaches provide an 

alternative means to develop more complex yet accurate, design specific models without any prior 

knowledge about the underlying structure.  

 In terms of operating space, a closed loop configuration space controller or joint space controller 

would provide more stable and faster controllers, however cannot guarantee error convergence 

(Unless there is a perfect forward model available).  Closed loop task space controllers can 

theoretically provide the best accuracy. In terms of actuation, tendon driven systems are more 

difficult to model, whereas pneumatic manipulators would need more sensors.  

4. Model-Free Static Controllers 

Model-free based approaches for control of continuum/soft robots is a relatively new field and 

offers a wide range of possibilities. Although, these data dependent methods have been used 

effectively in the field of rigid manipulators [72], the same cannot be said for continuum 

manipulators even though model-free approaches intuitively should fare better in this case.  

The first usage of a model-free approach for development of a static controller was proposed in [32]. 

The approach was a straightforward direct learning of the inverse statics of a non-redundant (with 

respect to the actuator space and task space) soft robot using a neural network.  Although the 

method was correctly able to predict the reference cable tensions for reaching a target in the task 

space in simulations, the approach cannot be scaled for redundant systems and does not consider 

the stochastic nature of real soft robots. An experimental validation of the same approach was done 

in [33] for a two DoF and a three DoF [34] cable driven soft manipulator and compared with an IK 

model derived from a numerically exact model. Interestingly, the simple neural network based 

approach performed significantly better than the computational complex analytical method. The 

final controller is similar to the diagram shown in Fig. 8 without the feedback component.  

 An efficient exploration algorithm for generating samples for IK learning was proposed in [35]. The 

main idea is to use goal babbling to generate samples from the task space to actuator space for high 

dimensional redundant systems. Since the exploration is goal oriented, it can allow for efficient 

exploration (by avoiding revisiting an explored task space/actuator space region) and in selecting a 



desired redundancy resolution scheme. Finally, self-organizing maps are used to learn the IK 

mapping with generated samples. A feedback scheme for reducing tracking error due to the 

stochasticity of model is implemented by virtually shifting the target positions proportional to the 

error in tracking to generate modified reference positions (Fig. 8).   

 

FIG. 8. A general model free closed loop task space controller implementation. A m represents an 

auxiliary variable. 

A highly robust, accurate and generic approach for closed loop task space control of continuum 

robots was proposed in [36] (Fig. 9). The paper proposes an optimal control strategy based on 

empirical estimation of the kinematic Jacobian matrix online by incrementally moving each actuator. 

Optimization is done to minimize the control effort and to keep the cables taut. There is no internal 

model used for control and therefore the authors have called the approach as a ‘model-less’ 

technique.  Although such a strategy solves a lot of difficulties in the control of continuum robots, 

even allowing manipulation in an unstructured environment, the  very low control frequency is of 

practical concern. The same principal was extended for hybrid force/position control in [37], where 

the stiffness matrix is also computed empirically. Similar to other hybrid force/position controllers, 

the reference position and forces are projected orthogonally when the manipulator is in contact.     

 

FIG. 9. Model-less control strategy.  

Recent model free approaches have mostly focused on learning the IK representation of continuum 

robots. In [38], an approach for learning the direct mapping between task space and joint space 

(potentiometer voltage, in this case) is proposed. This involves learning the forward kinematic model 

first using a neural network and then inverting this learned network using Distal Supervised Learning. 

However, this approach did not consider the stochasticity of the manipulator and did not implement 

a feedback error correction scheme. As an improvement of the previous work, in [39], the authors 

try to address the stochasticity of the mapping between the joint space (potentiometer values) and 

actuator space (chamber pressures) by developing an adaptive sub-controller. This is because for the 

case of tendon-driven actuation, the actuator space and joint space are linearly related, whereas, for 

pneumatic actuation an additional non-linear mapping between the actuator space and the joint 

space must also be considered. The sub-controller comprises of a Modified Elman Neural Network 

which emulates the actuator kinematics and a Multilayer Perceptron controller that learns to control 



the actuator variables accordingly. However, the kinematic mapping between the joint space and 

task space is considered to be non-stochastic which is not necessarily the case.  Another technique 

for learning the IK was proposed in [40, 41], where the IK problem is formulated like a differential IK 

problem using local mappings. This allowed for redundancy resolution as well as reducing stochastic 

effects. However, the approach was validated only by simulations on a continuum [40] and soft arm 

[41]. Another advantage of such an approach is that it allows multiple solutions to the IK problem 

globally and can work even if some of the actuators are nonfunctional after the learning process. A 

similar modelling method strengthened with a feedback controller was experimentally validated in 

[68]. It was also observed that even with a simple feedback controller, intelligent behaviors can be 

obtained in an unstructured environment. 

An attempt towards transfer learning has also been made, however, limited to simulation [42]. 

Authors develop an algorithm to transfer the reaching skills from a simulated non-CC octopus arm to 

a simulated CC soft robotic manipulator. The idea is to design dynamic motion primitives through a 

weighted combination of Gaussian functions representing the joint distribution of the data. This is 

combined with a statistical regression approach making it robust to external perturbations in the 

environment. Although this approach seems promising, it requires more experimental work to 

demonstrate its potential. In a recent work [76], the authors optimize multiple objectives within a 

reinforcement learning architecture to learn deterministic stationary policies for a soft robot arm 

module. Although it works in high-dimensions, it is sensitive to external disturbances.  An attempt 

towards fuzzy logic based controllers was attempted in [43]. The idea was to develop numerical 

estimates of the kinematic Jacobian using prior knowledge based local approximations and 

interpolation functions. This allows for faster computation, but the advantage of such a method over 

data driven machine learning approaches is not apparent. Finally, hybrid controller combining both 

model based and model free approach was proposed in [44], [74] and [75]. In [44], the manipulator 

is modelled as multiple sections with one translational and two rotational degrees of freedom. Then, 

multiple neural networks are used to resolve redundancy and to obtain the mapping from the task 

space to the high dimension configuration space. The configuration space to actuator space mapping 

is done analytically as it was found to be more straightforward. A noticeable limitation of such a 

method is the high sensory information required, which in the paper, the authors have synthesized 

from certain empirical data. A polar method was adopted in [74] with the configuration space to task 

space mapping being analytically modelled using the PCC approximation. The actuator space to 

configuration space mapping is learned also considering possible first order viscoelastic effects. A 

feedback strategy like in [35] was also employed to provide high tracking accuracy however only for 

a planar manipulator. In [75], it was shown that by learning only the model error incurred by an 

analytical model (a CC model), better forward and inverse kinematic models could be obtained. In 

this way it is also possible to leverage the advantages of an analytical model (like null space motions) 

along with the generality of learning methods. 

4.1 Summary of Model-Free Static Controllers 

One of the primary advantages of model-free approaches is to circumvent the need to define the 

parameters of the configuration space and/or joint space and is independent of the manipulator 

shape. Due to this, arbitrarily complex kinematic models can be developed depending upon the 

abundance of the sample data and sensory noise. This is probably why model-free approaches have 

fared better for systems that are highly nonlinear, non-uniform [33], influenced by gravity [35,68], or 



act within unstructured environments where modelling is almost impossible [36]. However, for well-

behaved compact manipulators in known environments, model-based controllers are still more 

accurate and reliable. Furthermore, due to their black box nature, stability analysis and convergence 

proofs are difficult to establish.Static/kinematic controllers assume little or no dynamic coupling 

between sections.  

As mentioned in the beginning, static/kinematic controllers rely on the steady state assumption, 

which hinders accurate and fast motion of soft manipulators. Hence, controllers that consider the 

dynamic behavior of these manipulators are important for faster, dexterous, efficient, smoother 

tracking and in situations where coupling effects cannot be ignored. 

5. Model-Based Dynamic Controllers 

Probably the most challenging field in the control of continuum/soft robots is the development of 

non-static controllers that considers the complete dynamics of the whole manipulator. Development 

of dynamic controllers would require the formulation of the kinematic model and an associated 

dynamic formulation. The fact that kinematic models are difficult to develop themselves; a dynamic 

formulation based on these imprecise models aggravates the model uncertainties [45]. On the other 

hand, even if exact kinematic and dynamic models are available, an appropriate controller would 

then require high dimensional sensory feedback [46]. Moreover, some dynamic 

properties/disturbances are inherently uncontrollable due to their under-actuated nature [47]. 

Development of reliable parameter estimation algorithms and accurate sensory information is also 

crucial. 

One of the first theoretical studies on the dynamic control of continuum robots was done in [48]. In 

[48], it was validated through simulations of a planar single multi-section continuum robot that a 

simple feedforward and feedback PD controller can achieve exponential tracking of a set point. The 

feedforward component inputs the actuator torques that satisfies the static holding torques and the 

feedback component ensures the convergence of the set point position. A similar experimental 

study showed that a simple proportional controller can regulate the orientation of a planar 

continuum robot and a PD controller with coupling compensation can damp out manipulator 

vibrations [47]. Nonetheless, these studies were conducted on simplified models which do not 

capture the true nonlinearities of continuum/soft robots. 

The first closed loop task space dynamic controller for continuum robots was demonstrated in [49], 

although, only by simulations. The kinematic for the two dimensional multi-section robot was 

formulated using the CC model and the corresponding dynamic model in the configuration was 

presented in the Euler-Lagrangian form using lumped dynamic parameters. One main difference of 

such a model from the dynamic model of a rigid robot is the addition of the potential energy due to 

bending and extension (dependent only on the kinematic configuration). In this dynamic equation 

the task space state variables can be substituted in place of the configuration state variables using 

the kinematic model. Note that by this way small errors in the kinematic model will exponentially 

rise when computing the higher order states and thereby affects the accuracy of dynamic model. 

The implemented controller can be described as a PD computed torque controller where the 

auxiliary control signal is represented in terms of the task space variables. An additional term for 

controlling the configuration space in the null space is also added. Although the robustness of the 

controller is shown by adding Gaussian white noise, the performance of such a controller can only be 



validated experimentally since it hinges on the CC approximation. However, the validity of the CC 

model for the same model was concurrently questioned in [45]. Furthermore, it must be bought to 

the attention of the reader that the stability proof was derived assuming that the kinematic and 

dynamic model is perfect.  A different control approach for the same kinematic and dynamic model, 

in simulation, was done using a sliding mode controller in [50], however, only for closed loop 

configuration space control. A first order (assuming that the input output relative degree is two) 

sliding surface is defined as the filtered tracking error for this purpose.  The advantage of a sliding 

mode controller over a simple inverse dynamics based PD controller is the higher robustness to 

model uncertainties; the downside being the slower error convergence, chattering and higher gain 

requirements. An experimental evaluation of this method was conducted with a planar three section 

continuum arm in [51], along with comparisons to a simple feedback linearization based PD 

controller in the configuration space. It was observed that the sliding mode controller performed 

better in terms of accuracy and speed indicating that model uncertainties were significant. 

Additionally, a task space controller for teleoperation was demonstrated using the controller 

mentioned in [49], which showed good tracking performance for a low frequency reference.  

Considering the fact that the actuator dynamics of pneumatic actuators are slower and more 

nonlinear than tendon driven actuators, works focusing on optimal dynamic controllers for 

pneumatically actuated manipulators started to emerge. One such approach for trajectory 

optimization was demonstrated using simulations in [52], where the objective was to estimate the 

optimal trajectory that reduces the transition time and actuator jerk. The nonlinear optimization 

problem is formulated with kinematic constraints (CC model), actuator dynamic constraints and 

boundary constraints with the mass flow as the trajectory variable. Along the same lines, a trajectory 

optimization scheme for a comprehensive dynamic model of a soft planar manipulator was 

described in [53] (Fig. 10). Using the CC model for expressing the kinematics of the manipulator, a 

dynamic model was derived in the configuration space. A detailed derivation for calculating the 

generalized torques from the cylinder displacement and reference input is described in the paper. A 

direct collocation approach is employed to simultaneously identify the optimal generalized torques 

and corresponding manipulator state with the systems kinematics, dynamics, boundary conditions 

and tracking objective as constraints. The objective function is to reduce the final end effector 

velocity. An optimization problem is used for obtaining the optimal reference inputs to the actuator 

to realize the initial trajectory. Another advantage of a solving the control problem as an 

optimization problem is that it alleviates the need for a high level path planner. The open loop policy 

was successfully able to reach statically unreachable target points with high probability; the first 

demonstration in the field of continuum/soft manipulators. Even then an iterative learning control 

scheme to re-identify the system parameters was required in between trials for best performance.     



FIG. 10. Trajectory optimization algorithm for open loop dynamic task space control. 

Another comprehensive model-based controller, seemingly a variation of [49], based on the 

dynamics of the joint space was proposed in [54]. The kinematics is based on the CC model and the 

dynamic model is represented in the joint space. A PD computed torque controller in the joint space 

is proposed. In order to transform the generalized torques used in the dynamic model to the desired 

actuator pressures’, an inversion scheme is proposed. Experimental results even without the PD 

term showed decent results, validating the dynamic model. An extension of [54], which also 

considers the dynamics of the pneumatic chambers, was proposed in [55] (Fig. 11). With this, an 

inner loop decoupled PD computed torque controller is cascaded to the existing controller. 

Consideration of the pneumatic dynamics is important because its response is slower and more 

nonlinear compared to the dynamics of electromagnetic actuators. Since the controller does not 

consider the actuator and kinematic constraints, the performance is currently limited.    

 

FIG. 11. Joint space dynamic controller by feedback linearization. 

A recent interesting approach in the field of soft robotic manipulators in terms of design and control 

was stated in [56]. This soft humanoid robot was constructed such that the joints are similar to 

traditional rotational joints. Therefore, the kinematics of the manipulator can be modeled like 

traditional rigid robots allowing for much simpler dynamics models, which are identified empirically. 

The authors have ignored gravitational and cross coupling effects and the relationship between joint 

torques and pressure is derived. Due to the simplified model and design, a model predictive 

controller (MPC) in the joint space could be implemented at high frequency (300 Hz).  

5.1 Summary of Model-Based Dynamic Controllers  

Dynamic controllers are important for industrial applications where time and cost is also important 

along with the accuracy. Model based dynamic controllers for continuum/soft manipulators are still 

in their nascent stage, and consequently, there are a multitude of gaps that should be addressed in 



design, modelling, and control. Dynamic models directly mapping the control inputs (voltage, 

pressure or encoder values) to the task space variables should provide the ideal performance for any 

model based control approach. Currently, most of the dynamic control approaches are focused on 

the joint space control with an exception of few [53]. Even in this case, due to the computational 

complexity, the controller had to be designed in open-loop for a planar uniform manipulator. 

However, if the feedforward controller is perfect, this would be the most ideal choice. MPCs are 

ideal candidates for control of these continuum/soft manipulators, allowing for low gain accurate 

control. Their application is currently limited only because of the computational complexity of the 

current dynamic models.  

With the increase in computational power, sensing capabilities and intelligent controllers, we can 

expect better developments in model based dynamic controllers. Alternatively, another route to 

consider are machine learning based approaches, either for learning open loop controllers, for 

dynamic compensation or for learning black box dynamic models.  

6. Model-Free Dynamic Controllers 

Model-free approaches for dynamic control of continuum/soft manipulators are still a relatively 

unexplored area. Nonetheless, the earliest usage of machine learning techniques for control of 

continuum robots was implemented for compensating for dynamic uncertainties in [57] (Fig. 12). 

However, the methodology was described only for closed loop dynamic control of the joint variables. 

The control architecture is composed of a feedback component which is based on a continuous 

asymptotic tracking control strategy for uncertain nonlinear systems (similar to a second order 

sliding mode controller) [58] and a feedforward component made using neural networks. The 

objective of the neural network is to compensate for the dynamic uncertainties and thereby 

reducing the uncertainty bound that improves the performance of the feedback controller. 

 

FIG. 12. Model-Free dynamic controller in the joint space.  

In the domain of reinforcement learning, a simulated multi-segmented dynamical planar model of 

the octopus arm was developed in [59]. The authors then addressed the task of reaching a point by 

modelling the problem as a Hidden Markov Model that was solved online through a non-parametric 

Gaussian temporal difference learning algorithm. The underlying idea is to learn an action-value 

function via Bayesian inference from which an optimal control policy can be derived. In [60] it was 

demonstrated that an actor-critic based reinforcement learning approach could solve the same 

problem in the context of continuous action-spaces. A significant challenge, however, remains to 

adopt such methods in practice is to reduce the real-time costs for generating solutions.   



Recently, the first direct actuator space to task space dynamic controller was experimentally 

demonstrated on a 3D soft pneumatic manipulator [71]. The approach involved learning the forward 

dynamic model using a class of recurrent neural network and employing trajectory optimization on 

the learned model just like [53]. Such types of controllers reveal a different region of dynamic 

behavior that a soft manipulator can attain in terms of speed, workspace volume and efficiency. The 

advantages of a model free approach are clearly evident in terms of the ease of modelling, accuracy 

and low sensory requirements. However, the controller is purely open loop due to the 

computational complexity and it was experimentally validated only on a single section manipulator.  

6.1 Summary of Model-Free Dynamic Controllers  

To sum up, although model-free approaches offer a relatively simpler path for developing dynamic 

controllers, practical applications are limited either due to training time or stability concerns [61]. 

Nonetheless, it is a possibility that should be looked upon, especially with the growth of more robust 

algorithms for training recurrent dynamic network [62]. That being said, hybrid controllers that 

merge model-based and model-free approaches could also be a viable approach to consider. 



Table 1. Comparison of the state of the art control strategies presented in this paper 

 



 

8. DISCUSSIONS 

From our survey on the current control approaches in soft robotics,  it is apparent that the design of 

controllers for continuum/soft manipulators is not only application dependent but also influenced by 

the manipulator design, actuator and sensor availability. Therefore it is difficult to compare and 

contrast all the approaches under the same umbrella. However, depending on the design, actuation 

and application there are some trends observed.  Classification of a manipulator as continuum or 

soft did not affect the controller design; at least, it is not evident. This means that controllers 

developed for continuum manipulators can be easily transferred to their soft sub-group. Medical 

applications that rely on compact manipulators, manufactured with high precision, tend to employ 

model-based approaches because of its reliability and high controlled environment. Likewise, 

manipulators with non-uniform geometry and high nonlinearity tend to employ model-free methods 

for a lack of better analytic models. For manipulation in unstructured environments, currently only 

model-free methods have shown promising results   

Another interesting observation is the absence of dynamic controllers developed for tendon-driven 

manipulators. This could be because of the non-uniform loading for cable actuation contrasting to 

the high damping and low force actuation provided by pneumatic actuators. Non-uniform loading 

occurs due to the physical interactions between the cable guide and the cable due to friction and 

this leads to irregular actuation of the manipulator DoFs. High damping coupled with low force 

actuation reduces overall energy supplied to the system therefore reducing the chaotic nature of the 

manipulator dynamics.  

The controller regime to some extent depends on the sensor availability. For instance, closed-loop 

configuration space controllers require vision sensors. Model based closed loop kinematic 

controllers for pneumatically actuated manipulators used wire cable potentiometers.  This is 

because joint space estimation for pneumatic actuation in not so straightforward like rigid robots. 

With regards to unexplored fields of research, clear voids are evident in hybrid control approaches 

and model-free approaches for dynamic control. Application of machine learning for learning the 

dynamic mapping from the actuator space to task space/configuration space is a viable method to 

be investigated. Similarly, hybrid learning approaches incorporating both model-based and model-

free methods is a highly promising line of research. Additionally, machine learning algorithms 

incorporating prior knowledge of the system would also provide a way for faster and more stable 

learning [63]. Another overlooked topic is the importance of the low level controllers (actuator 

dynamics) in the overall stability and response of the higher level control architecture.   

Continuum/Soft manipulators offer a technological solution to complex tasks in sensitive 

environments. Leveraged by their light weight, compact and inherently safe structure, they can be 

employed in various complex scenarios with elementary control strategies [6, 7].  Current trends in 

soft robot are individual efforts based on novel actuation, design, sensing and control technologies 

for particular applications. However, an overlooked aspect is the interdependencies of these 

elements among themselves and with the environment [64]. The possibility of outsourcing 

computational burden to the body (morphological computation) has been widely deliberated and 

even experimentally proven [65] along with the effect of sensory feedback [66]. In a control 



perspective, this corresponds to a zero lag adaptive feedback controller. Exploitation of this intrinsic 

controller has been achieved in some cases [67]. We believe that the future evolution of controllers 

for soft robotic manipulators would also be in this direction, where the morphological properties of 

the complex manipulators would also be utilized for more accurate, robust and dexterous 

manipulation. 
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