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Abstract. Deep learning, also known as deep machine learning or deep structured 

learning based techniques, have recently achieved tremendous success in digital 

image processing for object detection and classification. As a result, they are rap-

idly gaining popularity and attention from the computer vision research commu-

nity. There has been a massive increase in the collection of digital imagery for 

the monitoring of underwater ecosystems, including seagrass meadows. This 

growth in image data has driven the need for automatic detection and classifica-

tion using deep neural network based classifiers. This paper systematically de-

scribes the use of deep learning for underwater imagery analysis within the recent 

past. The analysis approaches are categorized according to the object of detec-

tion, and the features and deep learning architectures used are highlighted. It is 

concluded that there is a great scope for automation in the analysis of digital sea-

bed imagery using deep neural networks, especially for the detection and moni-

toring of seagrass. 

Keywords: Deep learning • Underwater • Marine • Object detection • Seagrass 

• Neural network • Convolutional architecture.  

1 Introduction 

Oceans are like the lifeblood of Mother Nature, holding 97% of the earth’s water. They 

produce more than half of the oxygen and absorb most of the carbon from our environ-

ment. Maintaining these and other oceanic ecosystem services requires maintenance of 

critical marine habitats. Important among these are seagrass meadows and coral reefs, 

which are critical to marine foodwebs, habitat provision and nutrient cycling [29]. For 

example, dredging, physically remove benthic marine species, like seagrasses, can lead 

to their burial and can reduce the light necessary for photosynthesis [3]. Tourism, ship-

ping, urbanization and human intervention are damaging coral colonies, with 19% of 
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the world’s coral reefs having been destroyed by 2011 and 75% threatened [4]. Moni-

toring is an important aspect of any robust effort to manage these destructive impacts 

but can be an arduous task. Marine optical imaging technology offers enormous poten-

tial to make monitoring more efficient, in terms of both cost and time.  

Many marine management strategies incorporate remote sensing and tracking of ma-

rine habitats and species. In recent years, the use of digital cameras, autonomous un-

derwater vehicles (AUV) and unmanned underwater vehicles (UUV) has led to an ex-

ponential increase of availability of underwater imagery [9]. The Integrated Marine 

Observing System (IMOS) collects millions of images of coral reefs around Australia, 

but less than 5% go through expert marine analysis. For the National Oceanic and At-

mospheric Administration, the rate is even lower, only 1-2% [1].  For this reason, it is 

now a research priority to analyse marine digital data automatically. To solve this issue, 

deep learning, the state-of-art machine learning technology, provides potentially un-

precedented opportunities for many underwater objects [12]. 

Low-level manually designed features have been used in traditional classification 

solution so far. Face and texture classification is done by Gabor and Local Binary Pat-

terns (LBP) while features and object recognition is regularly done by Scale Invariant 

Feature Transform (SIFT) and Histogram of oriented gradients (HOG) hand-crafted 

features. In the case of specific task and data, careful execution of hand-crafted features 

have achieved good performances. But many of them cannot be reused for a new situ-

ation without core changing.  Moreover, Support Vector Machine (SVM), Linear Dis-

criminant Analysis (LDA), Principal Component Analysis (PCA) and other machine 

learning conventional tools are quickly saturated when the training data volume in-

creases. Hinton et al. [5] proposed learning features using deep neural networks (DNNs) 

to address these short comings. To make sense of texts, images, sounds etc., deep learn-

ing transforms input data through more layers than shallow learning algorithms [19]. 

At each layer, the signal is transformed by a processing unit, like an artificial neuron, 

whose parameters are 'learned' through training [20]. Deep learning is replacing hand-

crafted features, with efficient algorithms for feature learning and hierarchical feature 

extraction [21]. Deep learning attempts to make better representations of an observation 

(e.g. an image) and create models to learn these representations from large-scale data. 

 By the use of large amounts of training data, large and deep networks demonstrated 

excellent success. For example, convolutional neural network which is trained through 

ImageNet has achieved unprecedented accuracy in image classification [6]. They have 

been applied in the field of object detection [7], image classification [6], face verifica-

tion [22], digits and traffic signs recognition [23] etc. and demonstrated high perfor-

mance. However, deep learning has not been widely applied in marine object detection 

and classification.  

A survey on the current deep learning approaches for various marine object detection 

and classification would help researchers understanding the challenges and explore 

more efficient possibilities. To the best of our knowledge, this paper is the first survey 

on such approaches. 

https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
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The rest of the paper is organized as follows. The existing approaches for automated 

marine object detection on digital data are discussed in Section 2. Associated chal-

lenges, especially for seagrass identification have been outlined in Section 3 and finally, 

conclusions are drawn in Section 4. 

2 Approaches for Underwater Marine Object Detection 

All the known machine learning approaches especially those using deep neural network 

in digital marine data analysis, image annotation, object detection and classification are 

discussed in this section. The approaches are categorized according to the object of 

detection. Features and classifiers used in each of the approaches are also highlighted 

and summarized in Table 1 and discussed in the follow sections.  

2.1 Deep Learning in Fish Detection and Classification 

Before 2015, very few attempts were taken to integrate deep learning on fish recog-

nition. Haar classifiers were used by Ravanbakhsh et al. [13] to classify shape features. 

Principal Component Analysis (PCA) modelled the features. To get a balance of accu-

racy and processing time for underwater fish detection, Spampinato et al. [15] used 

moving average algorithm. Both of these methods have limited ability to process large 

amount of underwater imagery.  Li et al. [8] first introduced deep convolution network 

for fish detection and recognition. They used Fast Region-based Convolutional Neural 

Network (Fast-RCNN) to detect fish efficiently and accurately. They also constructed 

a clean fish dataset of 24272 images over 12 classes, a subset of ImageCLIEF training 

and test dataset. As illustrated in Fig. 1, they pre-trained an AlexNet on a large auxiliary 

dataset (ILSVRC2012) with five convolutional layers and fully connected three layers 

by caffe CNN library which is an open source one. They modified AlexNet so that the 

Fast R-CNN can be adopted to train the Fast-RCNN parameters; they used stochastic 

gradient descent (SGD). Their experimental outcome showed better performance with 

a higher maximum a posteriori estimation (mAP). They got an average 9.4% higher 

precision than Deformable Parts Model (DPM). Table 2 shows the performance of their 

approach in fish detection compared to different other approaches using non-deep 

learning techniques. 

 

 

Fig. 1. Architecture of Fish detection and recognition using Fast-RCNN (adapted from [8]). 
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Table 1.    Summary of deep learning approaches for marine object detection  

Target 

group 

Author 

(Publica-

tion year) 

Type of Image or Dataset Feature Used Classifier 

Fish  Li et al. 

(2015) 

[8] 

RBG photos and videos 

from LifeCLIEF Fish 

Task of ImageCLIEF 

 RGB color space Fast- RCNN 

Villon et 

al. (2016) 

[25] 

Marine Biodiversity Ex-

ploitation and Conserva-

tion Dataset 

Motion from  previ-

ous sliding window  

Soft max Classi-

fier with Deep 

Network  

Plank-

tons 

Dieleman 

(2015) 

[30] 

Grey scale images pro-

vided by National Data 

Science Bowl  

Shapes and  

rotational symmetry  

ConvNNet in-

spired by Ox-

fordNet 

Py et al. 

(2016) 

[26] 

Grey scale images pro-

vided by National Data 

Science Bowl 

Inception module for 

multi scale architec-

ture 

Deep CNN in-

spired by Goog-

leNet 

Lee et al. 

(2016) 

[27] 

Woods Hole Oceano-

graphic Institution 

(WHOI-Plankton) dataset 

Transfer Learning to 

reduce Class imbal-

ance 

CIFAR 10 Con-

volutional Neu-

ral Network 

Dai et al. 

(2016) 

[28] 

ZooScane System Dataset Data Augmentation 

to increase the da-

taset.  

ZooPlanktoNet 

inspired by 

AlexNet and 

VGGNet 

Corals  Shiela et 

al. (2008) 

[14] 

Video stills of coral reef 

transects from the Great 

Barrier Reef  

Local Binary Pattern 

(LBP) for texture &  

Normalized Chro-

maticity Coordinates 

histogram for color 

Linear Discrimi-

nant Analysis 

followed by a 

three layer back 

propagation 

neural network. 

Elawady 

(2014) 

 [24] 

Moorea Labeled Corals 

and Heriot-Watt Univer-

sity Atlantic Deep Sea 

Digital dataset 

Color 

Shape 

Texture feature De-

scriptors 

Supervised Con-

volutional Neu-

ral Networks 

(CNNs) 

Mahmood 

et al. 

(2016) 

[10] 

Moorea Labelled Coral 

(MLC) dataset 

Texton and color 

based hand- crafted 

features 

Spatial Pyramid 

Pooling (SPP) 

VGGNet  

Table 2. Fish recognition accuracy comparison (adopted from [12]). 

Method Accuracy (%) 

LDA+SVM 80.14 

Raw-pixel SVM 82.92 

Raw-pixel Softmax 87.56 

Raw-pixel Nearest Neighbor 89.79 

VLFeat Dense-SIFT 93.58 

Deep-CNN 98.57 
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Villon et al. [25] evaluated the effectiveness of the deep learning against Ground-

Truth dataset made by the Fish4Knowledge project. They also compared the perfor-

mance of deep learning for fish detection with a traditional system combined with Sup-

port Vector Machines (SVM) classification and HOG feature extraction. The architec-

ture of their deep network had nine inception layers, 27 layers with a soft max classifier 

and was inspired by the GoogleNet [32].  

2.2 Deep Learning in Plankton Classification 

Planktons are frequently the foundation for aquatic food webs and therefore are fre-

quently monitored as indicators of ecosystem condition. Conventional plankton moni-

toring and measurement systems are not adequate to meet the scope of large scale stud-

ies. In 2015, The National Data Science Bowl [30], a data science competition, was 

held to classify the images of plankton with the support of Hatfield Marine Science 

Centre of Oregon State University. The winning team was a group of researchers lead 

by Prof. Joni Dambre from Ghent University in Belgium using convolutional neural 

network. While it generally thought that enormous datasets are required for the deep 

learning approaches, the classification accuracy in this case was 81.52% where there 

were about 30000 examples for 121 classes and some of the classes had less than 20 

examples in total.  The winning team’s output feature maps were the same as the input 

maps and the pooling and overlapping had window size 3 and stride 2. By starting with 

a fairly shallow model of six layers and, gradually increasing more layers, the final 

structure had 16 layers.  To give network the ability to use the same feature extraction 

pipeline to look at the input from different angles, a cyclic pooling technique was used 

where the same stack of convolutional layers were applied and fed into a stack of dense 

layers and at the top the feature maps were pooled together. Finally, the stacks of cyclic 

pooling output feature maps from different orientations were combined into one large 

stack and then the next layer was learned on this combined input which adds four times 

more filters than it actually had. The operation that combines feature maps from differ-

ent orientations was named a ‘roll’ (Fig. 2). 

 

Fig. 2. Roll operation with cyclic pooling (adopted from [31]). 

Using the same dataset of National Dataset Bowl of 2015 and inspired by Goog-

leNet, another published approach of plankton classification was done by Py et al. [26].  
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They proposed and developed an inception module with a convolutional layer for dis-

tortion minimization and maximization of image information extraction. Inside the net-

work, improved utilization of computing resources was the hallmark of their network 

architecture. Data augmentation was done to co-op with rotational and translational in-

variant and rotational affine was applied to data augmentation. They divided a deep 

convolutional Neural Network into classifier part and feature part. But they found, this 

kind of design of classifier part is prone to overfitting if the dataset is not large enough 

and, replacing the last two fully connected layers with small kernels was better for such 

dataset. Performance of their model was better than the state of the art models for par-

ticular size of images [26].  

Deep network approach for classification of plankton using a much larger dataset 

was done by Lee et al. [27].  They worked with the WHOI-Plankton dataset (developed 

by Woods Hole Oceanographic Institution) which had 3.4 million expert-labeled im-

ages of 103 classes. In their approach, they mainly focused on solving the class imbal-

ance problem of a large dataset. For the reduction of bias from class imbalance, they 

chose the CIFAR 10 CNN model as a classifier. Their proposed architecture had three 

convolutional layers followed by two fully connected layers. At first their classifier was 

pre-trained on class normalized data and then re-trained on the original data which 

helped reducing the class imbalance biasness [27].  

Introduction of deep convolutional network solely for the classification of Zooplank-

ton was done by Dai et al. [28].  Their dataset was consisting of 9460 microscopic and 

grey scale zooplankton images of 13 different classes captured by ZooScan system. 

They proposed a new deep learning architecture called ZooplanktoNet for zooplankton 

classification which is strongly inspired by AlexNet and VGGNet. After experimenting 

with different sizes of convolution, they concluded that ZooplanktoNet with 11 layers 

can provide the best performance so far. To support their claim, they did a comparative 

experiment with other deep learning architectures like AlexNet, CaffeNet, VGGNet 

and GoogleNet and found that ZooplanktoNet performs better with an accuracy of 

93.7% [28]. 

 

2.3   Deep Learning in Coral Classification  

The color, size, shape and texture of corals may vary according to the class difference. 

Moreover, the boundary differences are ambiguous and organic. Furthermore, currents, 

algal blooms, density of planktons can change the turbidity of water and light availa-

bility, affecting the image color. These kinds of challenges make conventional annota-

tion techniques like, bounding boxes, image labels or full segmentation inappropriate 

[1].  

Local Binary Pattern (LBP) for texture and Normalized Chromaticity Coordinate 

(NCC) for color were used by Shiela et al. [14]. They used a three layer back propaga-

tion neural network for classification purposes. However, Beijbom et al. [1] first ad-

dressed automated annotation on a large scale for coral reef survey image by introduc-

ing the Moorea Labelled Corals (MLC) dataset. They proposed a method based on color 

and texture descriptors over multiple scales and it out performed traditional methods 
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for texture classification. Elawady et al. [24] used supervised Convolutional Neural 

Networks (CNNs) for coral classification. They worked on Moorea Labeled Corals and 

Heriot-Watt University’s Atlantic Deep Sea Dataset and computed Phase Congruency 

(PC), Zero Component Analysis (ZCA) and Weber Local Descriptor (WLD). With spa-

tial color channels they also considered shape and texture features for input images 

[24].  

For making the conventional point-annotated marine data compatible to the input 

constraints of CNNs, Mahmood et al. [10] proposed a feature extraction scheme based 

on Spatial Pyramid Pooling (SPP) (as shown in Fig. 3). They used deep features ex-

tracted from the VGGNet [10] for coral classification. They also combined texton and 

color based hand-crafted features to improve capability of classification. The block di-

agram of the combined approach is illustrated in Fig. 4.  

 

 

Fig. 3. Local-SPP based feature extraction scheme (adopted from [10]). 

 

 

Fig. 4. Block diagram for Combined CNNs architecture applied for coral identification 

(adopted from [10]). 

2.4   Deep Learning Opportunities for Seagrass Detection and Classification 

For the stabilization of sediment, sequestration of carbon and provision of food and 

habitat for enormous oceanic animals, sea grasses are very vital [7]. To improve the 

understanding of the temporal and spatial patterns in species composition, reproductive 

phenology and abundance of seagrass and the influence of commercialization and hu-

man interaction, it is very important to monitor seagrass in more and more areas.  
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In 2013, Teng et al. [17] performed the binary classification of seagrass using hy-

perspectral images from seagrass habitats to separate tube worms from rest of the 

seagrass surface. More specific work to quantify the presence of the seagrass Posidonia 

oceanica in Palma Bay was performed by Campos et al. [2]. They used analogic RGB 

data. They chose Logistic Model Tree (LMT) classifier and Law’s energy measure-

ments. Grey level co-occurrence matrix was used to identify the differences in texture. 

Oguslu et al. [11] used sparse coding and morphological filter to detect seafloor pro-

peller seagrass scars in shallow water using panchromatic images captured using 

WorldView2 orbiting satellite. This approach was only effective in the shallow coast-

line and for detecting the scars in the shore line. 

Presently, as a conventional digital imagery approach approved by Commonwealth 

Scientific and Industrial Research Organization (CSIRO) and Health Safety and Envi-

ronment Policies (HSE), Australia, images approximately 60 × 80 cm are taken from a 

digital camera every three seconds. The camera is normally kept attach to a frame towed 

behind a boat travelling at 1.5-3 knots which ensures the images are spaced approxi-

mately 2-3 meters apart. These images are then analyzed using photo Grid or Transcet-

Measure (®SeaGIS) software. A regular grid of 20 dots are superimposed (Fig. 5) and 

a human operator identifies the presence and species of seagrasses [18]. It typically 

takes a technician several hours to process image data for a single transect of 50 m and 

with 25-50 images. As most surveys require several hundreds of meters of seabed to be 

covered, it can require several days to perform the analysis. Furthermore, different tech-

nicians may vary in their ability to detect seagrass within images.  Deep learning ap-

proaches may increase efficiency and simultaneously remove observer bias for the anal-

yses. However, to best of our knowledge, there is no approach existing that applies 

deep learning to digital images for seagrass detection.  Therefore, there is a great op-

portunity to use deep neural network to analyse the deep sea bed, detect and classify 

the species of seagrasses. We are going to focus in this matter in our future work.  

 

 

Fig. 5. A screenshot of the TransectMeasure software, used to analyze seagrass [18]. 
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3 Challenges 

Visual content recognition is the most important problem and a quite challenging task 

for underwater imagery analysis. Intra-class variability produces the variation of visual 

content through views, scales, illumination and non-rigid deformation. Especially, for 

the detection and classification of seagrasses, the boundary differences in different clas-

ses are much more ambiguous than for fish or corals. Also in the digital images, visual 

content becomes more ambiguous as the depth of the water increases. 

4 Conclusion 

In this paper, recent approaches for detecting and classifying various underwater ma-

rine objects using deep learning are discussed. Approaches are categorized according 

to the targets of detection. Features and deep learning architectures used are summa-

rized. It was necessary to highlight all the approaches of marine data analysis in a single 

paper so that it becomes easy to focus on the possibilities of future work based on deep 

neural network method. It has been found that more works have be done for coral de-

tection and classification using deep learning but no work has been done for the case of 

seagrass which is equally vital for oceanic ecosystem. The effectiveness, accuracy and 

robustness of any detection and classification algorithm can be increased significantly 

if both color and texture based features are combined. Accumulation of hand-crafted 

features and neural network may bring better results for seagrass detection and classi-

fication. Therefore, the opportunity exists to develop an efficient and effective deep 

learning approach for underwater seagrass imagery, which will be the focus of our fu-

ture work. 
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