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Abstract:  

The soft capabilities of biological appendages like the arms of Octopus Vulgaris and Elephant trunk has 

inspired roboticists to develop their robotic equivalents. Although there have been considerable efforts 

to replicate their morphology and behaviour patterns, we are still lagging behind in the dexterity and 

efficiency of these biological systems. This is mostly due to the lack of development and application of 

dynamic controllers on these robots which exploit the morphological properties that a soft bodied 

manipulator possesses. The complexity of these high dimensional nonlinear systems has deterred the 

application of traditional model based approaches. This paper provides a machine learning based 

approach for development of dynamic models for a soft robotic manipulator and a trajectory 

optimization method for predictive control of the manipulator in task space. To the best of our 

knowledge this is the first demonstration of a learned dynamic model and a derived task space 

controller for a soft robotic manipulator. The validation of the controller is done on an octopus inspired 

soft manipulator simulation derived from a piecewise constant strain approximation.    

1. INTRODUCTION 

Development of dynamic controllers for soft robotics application is a relatively unexplored area even 

with the rising progress and applications of soft robotics technologies. This is mainly because of the 

complexity involved with developing dynamic models and their resultant controllers. As a result current 

controllers developed for soft robotic manipulators are largely static controllers which do not 

completely exploit the manipulator capabilities. Majority of dynamic controllers developed for 

soft/continuum manipulators are model based approaches which rely on the development of analytical 

kinematic models and their corresponding dynamic model. Considering the fact that accurate kinematic 

models are difficult to develop themselves, dynamic models based on these kinematic models are even 

more error prone and parameter sensitive. Even if exact kinematic and dynamic models are available, 

controllers based on these would require high dimensional sensory feedback [1]. Moreover there is the 

problem of parameter estimation which would require proper excitation of dynamic system and highly 

robust and well thought optimization techniques. 

Due to the complexity involved with development of dynamic models for continuum/soft manipulators, 

the earliest dynamic controller was based on a model-free method [2]. The objective of the work was for 

closed loop control in the joint space. The control architecture is composed of a model-free feedback 



component based on a continuous asymptotic tracking control strategy for uncertain nonlinear systems 

[3] and a feedforward component made using neural networks. The feedforward component is used to 

compensate for the dynamic uncertainties and thereby reducing the uncertainty bound that improves 

the performance of the feedback controller. 

One of the first model-based approach for dynamics controllers used the constant curvature (CC) 

kinematics with the dynamic model in the configuration space being represented in the Euler-Lagrangian 

form using lumped dynamic parameters [4,5]. Building on this work experimental evaluation of a sliding 

mode controller for closed loop configuration space control was proposed in [6], however only on a 

planar manipulator. Comparisons to a simple feedback linearization based PD controller in the 

configuration space was also conducted and it was observed that the sliding mode controller performed 

better in terms of accuracy and speed indicating that model uncertainties were significant . 

The first dynamic controller for a completely soft planar manipulator was proposed in [7] using a 

trajectory optimization scheme for developing open loop task space controllers. Using the CC model, a 

methodically developed dynamic model in the configuration space was derived and estimated. A direct 

collocation approach is employed to simultaneously identify the optimal generalized torques and 

corresponding manipulator state with the systems kinematics, dynamics, boundary conditions and 

tracking objective as constraints. However, the dependency of the controller on the analytical model 

and parameter estimation technique is quite evident as an additional iterative learning scheme was 

required to re-identify the system parameters in between trials.  

Similar to [4], a joint space controller that considers the dynamics of the pneumatic actuators was 

proposed in [8, 9]. The control law is based on a decoupled PD computed torque controller. Again, the 

kinematic model is still based on the CC approximation. The performance of such reactive controllers for 

high frequency motion is still questionable considering the fact that model uncertainties are 

unavoidable and the slow response of soft systems. Another interesting work using model predictive 

controllers was described in [10]. Due to their unique manipulator design the kinematics and the 

dynamics of the system could be written similar to the case of rigid robots. The advantage of solving the 

control problem as an optimization problem is that it alleviates the need for a high level path planner. 

This paper proposes a methodology for learning forward dynamic models of a soft manipulator and to 

use this learned model for developing open loop predictive controllers. The main purpose of this 

research is to show that machine learning based approaches provide numerous advantages over 

traditional model-based approaches specifically for soft robotic manipulators. Using simulations of a 

cable driven under-actuated soft manipulator developed based on the piecewise constant strain 

approximation, we try to demonstrate that learning based controllers are easier to develop, apply and 

transferable, while being accurate at the same time. 

 

1.1 SIMILAR WORKS ON RIGID ROBOTS 



Contrary to the case of soft robots, learning forward or inverse dynamics of rigid robots have fairly well 

studied. Learning inverse dynamics is the most common among the two as it would need only single 

step-ahead predictions. Local Gaussian Process Regression and Locally Weighted Projection Regression 

for real time online model learning [11] and Local Online Support Vector Regression [12] are among 

some of the many approaches investigated. Inverse dynamics based controllers would not need long 

step ahead prediction accuracy, however there is additional burden in terms of specifying the desired 

state trajectories. Considering the response delay of soft systems and taking cue from biological systems 

[13, 14], predictive controllers using forward models should fare better.  

Learning forward models for rigid robots have also been keenly investigated. Most of the algorithms are 

concerned with the computational time, online learning abilities and with high dimensional systems. 

Some of the most popular methods use learning approaches like LWPR [15], LWBR [16], Gaussian 

Processes [17] or the recently proposed enhanced version of the Principal-Components Echo State 

Network [18]. Although, there have been good experimental validations using these methods, they still 

have the issue of error accumulation and instability. Nonetheless the purpose of this paper is not to 

compare these methods with the proposed approach. Application of learned dynamic models for control 

is also not a new field.  Learning dynamics using Gaussian Process regression for model predictive 

control was done in [19], where Gaussian processes also provide additional information about the 

uncertainty in prediction. Another approach where learned inverse dynamics models for computed 

torque control was discussed in [20]. However, none of these techniques has been applied for control of 

a continuum or soft manipulator. For a comprehensive review on different learning methods of forward 

and inverse models refer to [21, 22]. 

1.2 Contributions 

In this paper we demonstrate for the first time that the complete dynamics of a soft robot can be 

learned using a class of recurrent neural networks without any assumption about the form of the 

kinematic or dynamic model. We attempt to demonstrate that such an approach is very well suited for 

soft robots in particular and probably even superior to analytical models, with the ability to provide 

accurate, stable and scalable models. To the best of our knowledge our formulation of the dynamics of 

the system is unique and provides highly robust and stable dynamic models in combination with a 

recurrent neural network architecture. This allows us to develop arbitrarily complex models of the 

manipulator from data and the dimension of the sensory elements while dispelling the need to develop 

complex analytical models and parameter estimation experiments.  Finally using the learned dynamic 

model we show that open loop predictive controllers can be successfully implemented even with long 

control horizons. This is also the first demonstration of the usage of a learned dynamic controller in task 

space for a soft or continuum robotic manipulator and also the only implementation on a three 

dimensional manipulator. 

2. SIMULATION SETUP 

2.1 Model Description 



The simulation setup is built on an advanced dynamic model for soft robotics recently developed based 

on a discrete Cosserat formulation of the soft robot arm dynamics. In [23, 37], the continuous Cosserat 

model for soft robotics previously presented in [24] has been discretized by assuming a piecewise 

constant strain (PCS) condition, which allows an analytical integration of the continuous kinematics and 

dynamic equations. This led to a discrete formulation of the soft robots dynamics that turns out to be 

the geometrically-equivalent generalization of the traditional rigid robotics dynamics. From a simulation 

point of view, the main features of the model are the following: 

 Full multi-section dynamics capable of predicting the motion of complex soft robot arms. 

 Piecewise Constant Strain assumption allowing for a full 6 DOF deformation of each section. 

 Support of any kind of external load, including the interaction with a dense medium like water 

(which is used for this work). 

The development of the model is summarized next. In the Cosserat theory, a soft body is considered as 

an infinite stacking of infinitesimal micro-solids, whose configuration space is defined as a curve 

𝑔(∙): 𝑋 ↦ 𝑔(𝑋) ∈ 𝑆𝐸(3) of homogeneous transformation parameterized by the material abscissa 

𝑋 ∈ [0, 𝐿]. Then, the strain state of the soft arm is defined by the vector field along the curve 𝑔(∙) given 

by 𝑋 ↦ 𝜉(𝑋) = 𝑔−1𝜕𝑔/𝜕𝑋 = 𝑔−1𝑔′ ∈ 𝔰𝔢(3), where the hat is the isomorphism between the twist 

vector representation and the matrix representation of the Lie algebra 𝔰𝔢(3). The time evolution of the 

configuration curve 𝑔(∙) is represented by the twist vector field 𝑋 ↦ 𝜂(𝑋) ∈  ℝ6 defined by �̂�(𝑋) =

𝑔−1𝜕𝑔/𝜕𝑡 = 𝑔−1�̇�. 

With those definition at hand, we can obtain the kinematic equations relating the strains of the robot 

arm 𝜉 with the position 𝑔, velocity 𝜂 and acceleration �̇� for each infinitesimal micro-solid constituting 

the robot. The continuous kinematic equations are: 

𝑔′ = 𝑔𝜉 (1) 

𝜂′ = �̇� − ad𝜉𝜂 (2) 

�̇�′ = �̈� − ad�̇�𝜂 − ad𝜉�̇� (3) 

Where ad is the adjoint map, i.e. the adjoint representation of the vector field commutator in 𝔰𝔢(3). In 

addition, for later use, the coadjoint map ad∗ is defined as ad∗ = −ad𝑇. 

The Cosserat beam dynamics can be directly derived from the extension to continuum media of a 

variational calculus originally introduced by H. Poincare [25]. Applying this variational calculus to a 

Lagrangian density (𝔗(𝜂) − 𝔘(𝜉)) leads to the strong form of a Cosserat beam with respect to the 

micro-solid frames. 

ℳ�̇� + ad𝜂
∗ (ℳ𝜂) = ℱ𝑖′ + ad𝜉

∗ ℱ𝑖 + ℱ̅𝑎 + ℱ̅𝑒 (4) 

Where ℱ𝑖(𝑋) =
∂𝔘

∂X
  is the wrench of internal forces, ℱ̅𝑎(𝑋, 𝑡) is the distributed actuation loads, ℱ̅𝑒(𝑋) is 

the external wrench of distributed applied forces and ℳ(𝑋) is the screw inertia matrix. A linear visco-



elastic constitutive model has been chosen for the internal wrench: ℱ𝑖(𝑋) = Σ(𝜉 − 𝜉0) + Υ�̇�, where Σ 

and Υ are constant screw stiffness and viscosity matrices and 𝜉0 is the strain filed of the reference 

configuration. Regarding the distributed actuation load, in the case of cable driven actuation, we have: 

ℱ̅𝑎(𝑋, 𝑡) = −ℱ𝑎
′ − ad𝜉

∗ ℱ𝑎 , where ℱ𝑎 is the cable wrench acting on the micro-solid given by the cable 

tension and the cable path, as shown in figure 1. As for the external loads, we have considered the 

general case of underwater operation, i.e. distributed loads due to gravity and buoyancy, drag and 

added mass: 

ℱ̅𝑒(𝑋)  =  (1 −
𝜌𝑤

𝜌
) ℳAd𝑔𝑟𝑔(𝑋)

−1 𝒢 − 𝒟|𝜂|𝑣𝜂 

 

(5) 

ℳ𝑎 = ℳ + 𝒜. (6) 

Where |∙|𝑣 takes the norm of the translational part of the operand, 𝜌𝑤 is the water density, 𝒢 is the 

gravity twist, 𝑔𝑟 is the transformation between the spatial frame and the base frame of the soft 

manipulator, 𝒟(𝑋) is the screw matrix of the drag fluid dynamics coefficient and 𝒜(𝑋) is the screw 

matrix of the added mass fluid dynamics coefficient. Note here that replacing ℳ by ℳ𝑎 in (dynamics 

equation) allows modeling inertial hydrodynamics forces exerted along the arm. Finally, we have 

introduced the Adjoint representation (Ad) of Lie group SE(3), while the coAdjoint map is defined by 

Ad∗ = Ad−𝑇. 

 
Figure 1. Depiction of the tendon actuation for one section. 

The discretization of the continuous model outlined above is achieved through the piecewise constant 

strain assumption. At any instant 𝑡, considering the strain field 𝜉 constant along each of the 𝑁 sections 

of the soft arm, indicated by [0, 𝐿1), (𝐿1, 𝐿2) ⋯ (𝐿𝑁−1, 𝐿𝑁], we can replace the continuous field with a 

finite set of 𝑁 twist vectors 𝜉𝑛 (𝑛 ∈ {1,2, ⋯ , 𝑁}), which play the role of the joint variables of traditional 

rigid robotics. Under this assumption, the continuous kinematics equations (1)-(3) become linear and 

the matrix differential equation which can be analytically solved at any section 𝑛 using the variation of 

parameters method, with the appropriate initial value [26]. Applying this integration and rearranging the 

terms [37], we obtain the discrete kinematics equation: 



𝑔(𝑋) = 𝑔(𝐿𝑛−1)𝑒(𝑋−𝐿𝑛−1)�̂�𝑛 = 𝑔(𝐿𝑛−1)𝑔𝑛(𝑋) (7) 

𝜂(𝑋) = Ad𝑔𝑛(𝑋)
−1 (𝜂(𝐿𝑛−1) + AD𝑔𝑛

(𝑋)�̇�𝑛) (8) 

�̇�(𝑋) = Ad𝑔𝑛(𝑋)
−1 (�̇�(𝐿𝑛−1) − adAD𝑔𝑛�̇�𝑛

𝜂(𝐿𝑛−1) + AD𝑔𝑛
(𝑋)�̈�𝑛) 

 

(9) 

 

Where we have used the following results on the Lie Group 𝑆𝐸(3) [36]: 

𝑔𝑛(𝑋) = 𝑒𝑥�̂�𝑛 = 𝐼4 + 𝑥𝜉𝑛 + 1 𝜃𝑛
2⁄ (1 − cos(𝑥𝜃𝑛))𝜉𝑛

2 + 1 𝜃𝑛
3⁄ (𝑥𝜃𝑛 − sin(𝑥𝜃𝑛))𝜉𝑛

3 
 

(10) 

Ad𝑔𝑛(𝑋)               = 𝑒𝑥ad𝜉𝑛

= 𝐼6 + 1 2𝜃𝑛⁄ (3 sin(𝑥𝜃𝑛) − 𝑥𝜃𝑛 cos(𝑥𝜃𝑛))ad𝜉𝑛

+ 1 2𝜃𝑛
2⁄ (4 − 4 cos(𝑥𝜃𝑛) − 𝑥𝜃𝑛 sin(𝑥𝜃𝑛))ad𝜉𝑛

2

+ 1 2𝜃𝑛
3⁄ (sin(𝑥𝜃𝑛) − 𝑥𝜃𝑛 cos(𝑥𝜃𝑛))ad𝜉𝑛

3

+ 1 2𝜃𝑛
4⁄ (2 − 2 cos(𝑥𝜃𝑛) − 𝑥𝜃𝑛 sin(𝑥𝜃𝑛))ad𝜉𝑛

4  

 

(11) 

AD𝑔𝑛
(𝑋)             = ∫ Ad𝑔𝑛(𝑠)𝑑𝑠

𝑋

𝐿𝑛−1

= 𝑥𝐼6 + 1 2𝜃𝑛
2⁄ (4 − 4 cos(𝑥𝜃𝑛) − 𝑥𝜃𝑛 sin(𝑥𝜃𝑛))ad𝜉𝑛

+  1 2𝜃𝑛
3⁄ (4𝑥𝜃𝑛 − 5 sin(𝑥𝜃𝑛) + 𝑥𝜃𝑛 cos(𝑥𝜃𝑛))ad𝜉𝑛

2

+ 1 2𝜃𝑛
4⁄ (2 − 2 cos(𝑥𝜃𝑛) − 𝑥𝜃𝑛 sin(𝑥𝜃𝑛))ad𝜉𝑛

3

+ + 1 2𝜃𝑛
5⁄ (2𝑥𝜃𝑛 − 3 sin(𝑥𝜃𝑛) + 𝑥𝜃𝑛 cos(𝑥𝜃𝑛))ad𝜉𝑛

4  

(12) 

With 𝜃𝑛 is the norm of the rotational part of the constant strain 𝜉𝑛 and 𝑥 = 𝑋 − 𝐿𝑛−1. A schematics of 

the piece-wise constant strain kinematics is shown in figure 2. 

 
Figure 2. Schematic of the kinematics of the piece-wise constant strain model. 



In order to develop the discrete Cosserat dynamic model for soft robots a relation between the 

kinematics quantities 𝜂, �̇� and a joint vector for soft robotics needs to be established. To do so, we back 

track to the base the velocity term 𝜂(𝐿𝑛−1) on the right end side of (discrete velocity equation), which 

becomes: 

𝜂(𝑋) = ∑ (∏ Ad𝑔𝑗(min(𝐿𝑗,𝑋))
−1

𝑖

𝑗=𝑛
)

𝑛

𝑖=1

AD𝑔𝑖
(min(𝐿𝑖 , 𝑋))�̇�𝑖 = ∑ 𝑆𝑖(𝑋)�̇�𝑖

𝑛

𝑖=1

= 𝐽(𝑋)𝜉
̇
 

 

(13) 

Where we have defined the softs robot geometric Jacobian 𝐽(𝑋) ∈ ℝ6⨂ℝ6𝑁 and the soft robots joint 

vector 𝜉 = [𝜉1
𝑇 , 𝜉2

𝑇 , ⋯ , 𝜉𝑁
𝑇]𝑇 ∈  ℝ6𝑁. Similarly, by taking the time derivative of (velocity Jacobian 

equation), equation (discrete acceleration equation) can be written as: 

�̇�(𝑋) = 𝐽(𝑋)𝜉
̈
 +  𝐽(̇𝑋)𝜉

̇
 (14) 

At this point, we are able to obtain the discrete Cosserat dynamics by projecting the continuous 

dynamics (continuous dynamics) into the joint space with the Jacobian transpose 𝐽𝑇, substituting the 

discrete model of velocity (velocity Jacobian equation) and acceleration (acceleration Jacobian equation) 

and integrating over the different piece of the soft arm. Mathematically, we obtain: 

𝑀(𝜉)𝜉
̈
+ ( 𝐶1 (𝜉, 𝜉

̇
) − 𝐶2 (𝜉, 𝜉

̇
)) 𝜉

̇
= 𝜏(𝜉 ) + 𝑁(𝜉)Ad𝑔𝑟

−1𝒢 − 𝐷 (𝜉, 𝜉
̇
) 𝜉

̇
 (15) 

Where we recognize the structure of the Lagrangian model of rigid serial manipulators and we have 

introduced the soft robotics generalized actuation vector: 𝜏 = [𝜏1
𝑇 , 𝜏2

𝑇 , ⋯ , 𝜏𝑁
𝑇 ]𝑇  ∈  ℝ6𝑁. The different 

terms of (soft Lagrangian dynamics) are specified below block-element-wise [37]. 

𝑀(𝑛,𝑚) = ∑ ∫ 𝑆𝑛
𝑇ℳ𝑎𝑆𝑚 𝑑𝑋

𝐿𝑖

𝐿𝑖−1

𝑁

𝑖=𝑚𝑎𝑥(𝑛,𝑚)

 (16) 

𝐶1(𝑛,𝑚)
= ∑ ∫ 𝑆𝑛

𝑇ad
𝐽�⃗⃗�

̇
∗ ℳ𝑎𝑆𝑚

𝐿𝑖

𝐿𝑖−1

𝑁

𝑖=𝑚𝑎𝑥(𝑛,𝑚)

 𝑑𝑋 (17) 

𝐶2(𝑛,𝑚)
= ∑ ∫ 𝑆𝑛

𝑇ℳ𝑎ad∑ 𝑆𝑗�̇�𝑗
𝑖
𝑗=𝑚+1

𝑆𝑚

𝐿𝑖

𝐿𝑖−1

𝑁

𝑖=𝑚𝑎𝑥(𝑛,𝑚)

 𝑑𝑋 (18) 

𝐷(𝑛,𝑚) = ∑ ∫ 𝑆𝑛
𝑇𝒟𝑆𝑚  |𝐽𝜉

̇
|

𝑣
𝑑𝑋

𝐿𝑖

𝐿𝑖−1

𝑁

𝑖=𝑚𝑎𝑥(𝑛,𝑚)

 (19) 

𝑁(𝑛) = (1 − 𝜌𝑤/𝜌) ∑ ∫ 𝑆𝑛
𝑇ℳAd𝑔

−1 𝑑𝑋
𝐿𝑖

𝐿𝑖−1

𝑁

𝑖=𝑛

 (20) 

Finally, for cable driven soft arms, the actuation load at each section is given by: 



𝜏𝑛 = (𝐿𝑛 − 𝐿𝑛−1) (∑ ℱ𝑎𝑗

𝑁

𝑗=𝑛

− ℱ𝑖𝑛) (21) 

Where ℱ𝑎𝑛 indicates the contribution of the cables attached at 𝐿𝑛 (Figure 1) and ℱ𝑖𝑛 is the constant 

internal load of the section 𝑛. 

Simulation results and experimental comparisons against real soft robotics prototypes for the piece-wise 

constant strain model can be found in [23, 37]. 

2.2 Soft Arm Design Description 

The simulated prototype is shown in figure (prototype) and described in [24], to which we refer to for 

more exhaustive details. In short, the prototype is composed of a single conical piece of silicone, with a 

base radius 𝑅𝑚𝑎𝑥 and a tip radius 𝑅𝑚𝑖𝑛, actuated by 12 cables embedded inside the robot body. The 

cables run parallel to the midline at a distance 𝑑𝑗 (𝑗 ∈  {1,2, ⋯ ,12}) and are anchored four at a time at 

three different lengths along the robot arm (𝐿1, 𝐿2, 𝐿3) and with a relative angle of 90 degrees (Figure 

(prototype)). The soft arm operates underwater. For this paper, we use two configurations of the 

manipulator for our controller (Figure 3). The first case has only two sections, actuated only in the 

proximal section by three cables and the second case has all the four sections and is actuated in the 

same way. 

In order to exploit the dynamics equations developed above, the soft manipulator has been modeled as 

a stack of four cylindrical constant-strain sections defined by 𝐿1, 𝐿2, 𝐿3, 𝐿4, with a radius equal to the 

mean of the prototype radius for each section (𝑅1, 𝑅2, 𝑅3 and 𝑅4 in Figure 3). The value of the 

parameters used in the simulation is reported in Table 1. 

                

Figure 3. Schematic of the soft manipulator used in the simulation. (a) Two section manipulator (b)Four 

section manipulator 

Table 1. Design parameters of the simulated prototype. 

Parameter Value Parameter Value 

𝑹𝒎𝒂𝒙 15 mm 𝑑1, 𝑑2, 𝑑3 9 mm 

𝑹𝒎𝒊𝒏 4 mm Gravity Acceleration 𝑔𝑟 9.81 m/s
2
 

𝑳𝟏 98 mm Drag Coefficient x 𝐶𝑥 0.01 

𝑳𝟐 203 mm Drag Coefficient y 𝐶𝑦 2.5 

𝑳𝟑 311 mm Drag Coefficient z 𝐶𝑧 2.5 

A B 



𝑳𝟒 418 mm Added Mass Coef. y 𝐵𝑦 1.5 

Young Modulus 𝑬 110 K Pa Added Mass Coef. z 𝐵𝑧 1.5 

Shear Viscosity Modulus 𝝁 300 Pa sec 𝜌𝑤 1.02 kg/dm
3
 

Poisson Ratio 𝝂 0.5 𝜌 1.08 kg/dm
3
 

 

3. LEARNING THE FORWARD DYNAMICS 

Assume that the infinite dimensional configuration space can be approximated using an 𝑛-dimensional 

state space. The kinematics of the manipulator can now be represented as: 

𝒙 = 𝐹(𝒒) (22) 

Where, 𝑥 is the task space variable. In order to obtain the inverse kinematics, a necessary condition is 

that the dimension of the task space variable is also 𝑛. Consequently all instances of the configuration 

space variable, 𝑞 can be replaced by the task space variable 𝑥.  

Using these assumptions, it is possible to transform the forward dynamics of the manipulator from the 

usual form given in equation 23 to a form using only the task space variables as shown in equation 24: 

𝑀(𝒒)�̈� + 𝑉(𝒒)�̇� + 𝑃(𝒒) = 𝝉 (23) 

�̅�(𝒙)�̈� + �̅�(𝒙)�̇� + �̅�(𝒙) = 𝝉 (24) 

Here, 𝜏 ∈  ℝ𝑚 are the control inputs. 𝑀, 𝑉, 𝑃 represents the inertia matrix, Centripetal-Coriolis forces 

and potential energy stored due to gravity/deformation respectively. �̅�, �̅�, �̅� are the corresponding 

matrixes obtained after the transformation. This implies that, under these assumptions, it is always 

possible to learn a direct mapping between the states of the task space variables and the control inputs: 

(𝝉, 𝒙, �̇�) → �̈�.  

Consequently, by varying the dimension of the task space (number of sensory inputs), the user can 

arbitrarily increase or decrease the complexity and accuracy of the dynamic/kinematic model (Refer to 

section 3.1.2 for demonstration). This is a huge advantage that machine learning provides for learning 

the dynamics of a soft manipulator. On the contrary, for model-based approaches, the analytical 

dynamic model determines the sensory requirements. For rigid robots, the dimension of the joint space 

(equivalently to the configuration space) is finite and therefore the number of sensors required is fixed.  

Taking cue from our previous works on learned controllers [27, 28], we modify the mapping in terms of 

absolute values, there obtaining the new mapping: (𝝉𝒄, 𝒙𝒑, 𝒙𝒄) → 𝒙𝒏 , where the superscript p 

represents the previous value of the variable, c represents the current value and n represents the next 

value. The new mapping is an approximation of the continuous dynamic model using a finite difference 

approximation. Another way to see it is that the current acceleration is a function of the previous, 

current and next position values and the current velocity is a function of the previous and current 

position. This would restrict the learned dynamic model to have a fixed step size. But by representing 

the variables only in absolute terms, we gain three main advantages; primarily, such a mapping allows 

us to represent the dynamic model using a recurrent neural network (see figure 4). The advantages of a 



NARX network for long-term time series prediction has been widely discussed [29, 30]. Additionally, 

representing the dynamic model using only absolute terms also helps in encoding the boundary 

conditions in the data which further helps in the stability of the network. Finally, this way we can avoid 

taking first order and second order derivatives of the position term which would increase the variance of 

any noise present. This would further deteriorate the prediction performance. 

The structure and learning algorithm of the network is described in the next section. 

3.1 RECURRENT NEURAL NETWORK DESCRIPTION AND LEARNING 

For developing a multi-step prediction model for the forward dynamics we are using a nonlinear 

autoregressive network with exogenous inputs (NARX). The advantage of using a recurrent-dynamic 

network over a recursive feedforward-dynamic network is twofold; recurrent networks are more 

accurate as the training is done to reduce the cumulative error over the whole continuous training set 

(feedforward networks try to only reduce the prediction error for each step and thereby prone to 

overfitting and instability) and the prediction is slightly faster. In the MATLAB implementation of the 

NARX network a single second prediction takes 41 milliseconds while the same prediction takes 47 

milliseconds using a recursive open loop multilayer perceptron.  The architecture of the dynamic model 

with the recurrent network is shown in Figure 4. Note that the inputs are normalized inside the network. 

The network has a single hidden layer with 35 units. The transfer function in the hidden layer is Tan-

sigmoid and a linear transfer function is used in the output layer. 

 
Figure 4. The architecture of the dynamic model using the NARX network. 

3.1.1 Sampling and Training 

For the purpose of this paper samples for learning is obtained from the simulated cable driven two-

section soft manipulator described in section 2.2. The second section is unactuated and the first section 

is actuated by three radially arranged cables. The exploration is done by inputting pseudorandom 

variable-amplitude square wave sequences, with a 50 percent probability of the actuator being idle. The 

exploration signals are decided based on empirical data. The maximum force applicable by the cables is 

fixed to 3 Newtons. Sampling is done at a fixed frequency of 100 Hz and consists of 7000 samples, 

mounting to a duration of 70 seconds. The corresponding explored workspace is shown in Figure 5. 

Additionally, more goal directed explorations can be done after learning the forward dynamics with the 

initial sample for more efficient and complete exploration.  



 
Figure 5. Workspace of the manipulator obtained by the random exploration. 

Training of the network is done in two steps. Initially, the network is training in open loop by unfolding 

the recurrent network and training by Bayesian Regularization. However, this trained network is prone 

to over fitting and therefore the network is closed and further trained using the same network weights 

(closing the loop does not change the size of the network). The performance function for the open 

network is calculated as: 

MSE =
1

𝑇
 ∑‖𝑋𝑡 − 𝑓(𝑋𝑡−1, 𝑈𝑡)‖2

𝑇

𝑡=0

 (25) 

Where, 𝑋 is the input vector and 𝑈 is the exogenous input vector. The function 𝑓 represents the 

mapping formed by the neural network. For training the recurrent network Levenberg-Marquardt 

backpropagation is used and a validation set is used to avoid overfitting. Directly training the closed loop 

network from randomly initialized weights is not desirable as the training would be highly susceptible to 

the gradient exploding problem. Also, the training and testing set is divided into continuous (to keep 

time correlations intact) blocks in the ratio 70:30 for the first step and a training, testing and validation 

set in the ration 70:15:15 for final step. The performance function is now represented as: 

MSE =
1

𝑇
 ∑‖𝑋𝑡 − 𝑓(�̂�𝑡−1, 𝑈𝑡)‖

2
𝑇

𝑡=0

 (26) 

Here, �̂� is the prediction of the NARX network in the previous iteration. Now the learning algorithm is 

not trying to reduce the single-step error, but the whole multi-step prediction error. The next section 

describes how the number of task space variables is decided.  

3.1.2 Deciding task space dimension 



As mentioned before, the dimension of task variables that determine the underlying dynamic model is 

up to the user to decide. Clearly, more the information provided about the state of the manipulator, 

better would be the prediction. The mean prediction error for different number of task space 

parameters are shown in Figure 6. The prediction is done by the recurrent network for the whole sample 

data by a single multi-step simulation (A 70 second simulation). For the three dimensional case only the 

Cartesian position of the end effector is used for prediction. For the six dimension case two scenarios 

are compared; the first one uses the Cartesian position of the tip of both sections and the second case 

uses only the Cartesian positions of the second section tip (end effector) and mid-section (can be 

replaced by the orientation of the tip). For the twelve dimensional case Cartesian positions of each 

sections tip and mid-section is used. For all the cases, the network size is fixed (35 neurons). 

Furthermore, we also try to investigate how the prediction accuracy is affected by material properties 

and force limits (Figure 6). As expected, varying these parameters increase the chaoticity of manipulator 

dynamics and thereby deteriorates the prediction accuracy. For all cases better accuracy can be 

obtained by increasing the task space dimension. 

 

Figure 6. Mean multistep prediction error using the NARX network for different manipulator 

characteristics.  

The time evolution of prediction error for the single 70 second simulation of the manipulator is shown in 

Figure 7. Slight overfitting of the data can be seen from the apparent increase in error near the training 

set. However, more importantly the errors are bounded even for such a long simulation. The 

corresponding error plot for the open loop network obtained after the first training is also shown in 

Figure 7. Both the plots are obtained for the twelve dimensional case. The stability advantages of the 

NARX network over the open loop network obtained from the first learning can be seen in Figure 8, 

where the inputs forces are all set to zero. The error accumulation problem causes the open loop 

network to become highly unstable even for this simple case. 



 

Figure 7. Time evolution of the multistep prediction error for the recurrent network and open loop 

network. 

 

Figure 8. Instability of the open loop network for a zero actuation case. The response of the recurrent 

network and the simulation is given for reference. 

Although the learned dynamic model may not be as accurate as a detailed analytical formulation, the 

recurrent neural network runs much faster. A two second simulation of the forward model takes 63 

milliseconds using the recurrent neural network, whereas, the same simulation using the PCS model 

takes 523 seconds. 

4. TRAJECTORY OPTIMIZATION 

Once we obtain the learned dynamic model of the manipulator, trajectory optimization can be 

performed for developing an open loop predictive controller. For this purpose we are employing a single 

shooting technique for obtaining the optimal control policies. 



Let the fixed control horizon be 𝑡𝑓 discretised by a fixed step size of d𝑡 (10 millisecond in our case). 

Given the control policy, the trajectory of the dynamic system can be simulated using the recurrent 

neural network. 

𝑥𝑖+1 = 𝑓(𝑥𝑖 , 𝑥𝑖−1 , 𝜏𝑖)   ∀ 𝑖 = 1 . .  
𝑡𝑓

𝑑𝑡
 (27) 

Where, 𝑥𝑖 , 𝑥𝑖−1 and 𝑥𝑖+1 represent the current previous and next state positions of the manipulator.  𝜏𝑖 

is the forces applied on all the cables at each time step and 𝑓 represents the learned mapping. To 

simplify the optimization problem and for computational reasons we reduce the number of variables by 

reducing the control frequency to 1/𝑡𝑠 (𝑡𝑠 is 50 millisecond in our case). The control inputs for each time 

step d𝑡 to can now be written as: 

𝜏𝑖 
𝑚 ≡ {

 𝜏𝑖−1 
𝑚 , 𝑚𝑜𝑑(𝑖, 𝑡𝑠/d𝑡) ≠ 0

�̅�𝑘 
𝑚  , 𝑚𝑜𝑑(𝑖, 𝑡𝑠/d𝑡) = 0

   ∀  𝑚 = 1 . . 𝑀 

𝑖 =  ⌊
𝑡

𝑑𝑡
⌋      ∀ 𝑡 = 0 . . 𝑡𝑓  

𝑘 =  ⌊
𝑡

𝑡𝑠
⌋      ∀ 𝑡 = 0 . . 𝑡𝑓  

(28) 

Here, 𝑀 is the number of actuators and 𝑡 is the current time. Note that there are other ways to reduce 

the dimensionality of the optimization problem which ensure smoother transition of the control inputs 

(by linear or polynomial interpolation), however since we are working only on simulations, this is not 

necessary. The time dependent control policy is represented by the low dimensional vector  �̅�: 

Π(𝑡) = �̅�𝑘 
𝑚      ∀  𝑚 = 1 . . 𝑀 

𝑘 =  ⌊
𝑡

𝑡𝑠
⌋      ∀ 𝑡 = 0 . . 𝑡𝑓  (29) 

The optimal policy can be estimated by minimizing the objective function given below: 

Π(𝑡)∗ =  min
𝜏

 ‖𝑥𝑡𝑓

𝑑𝑡

𝑡𝑎𝑠𝑘 − 𝑥𝑑𝑒𝑠‖

2

+ ∑ 𝜏𝑘
𝑇𝑅 𝜏𝑘

𝑘

 

subject to 0 ≤ 𝜏𝑘
𝑚 ≤ 𝜏𝑚𝑎𝑥 

𝑚   ∀  𝑚 = 1 . . 𝑀 𝑎𝑛𝑑 𝑘 = 0 . .  
𝑡𝑓

𝑡𝑠
 

 

(30) 

The control objective is formulated to reach a desired position as the end of the control horizon while 

simultaneously optimizing the control effort. 

For solving this nonlinear optimization problem we use the iterative sequential quadratic programming 

(SQP) algorithm [31]. Since the dynamic model is represented by neural networks with continuous and 

smooth transfer functions, the objective function is always twice continuously differentiable. The 

derivatives and double derivatives are estimated by numerical methods for the objective function. 

MATLAB fmincon function is used for optimization. After optimization we obtain an optimal policy that 



controls the manipulator to the desired position in the commanded time period. Running on a computer 

with Intel(R) Core(TM) i7-3630QM CPU @ 2.40 GHz and 8 Gb RAM using parallel processing on 4 cores, a 

10 step iteration for a control horizon of 1 second (60 variables) takes 6.2 seconds in average. This is not 

fast enough for implementing a closed loop Model Predictive controller, therefore the developed 

controller is fully open loop with no feedback.    

5. SIMULATION RESULTS 

First we present the tracking error incurred by the open loop predictive controller using the described 

learned dynamic model and trajectory optimization algorithm for a two section soft manipulator (See 

section 2). Fifty points are randomly selected from the end effector workspace and the objective 

function is designed so that the end effector reaches the target at the end of the control horizon (2 

seconds) with minimal control effort. The actuators forces are limited to 2.5 Newtons and the 

optimization algorithm is run for 20 iterations.  The results are summarized in Table 2. The optimization 

on average takes 25 seconds. 

Table 2. Reaching error for 50 random targets 

 Mean Error (m) Standard Deviation (m) 

Predicted by RNN 0.001 0.001 

From Simulation 0.007 0.002 

Difference between Prediction 
and simulation 

0.007 0.002 

 

The simulations conducted next are done so to showcase four important characteristics that we 

consider important.  The first simulation is to showcase the need for dynamic controllers when actuator 

forces are limited or scenarios where energy conservation is vital. The second simulation is to validate 

the approach for more realistic scenarios, which is simulated by adding artificial noise to the sample 

data. The third simulation is to highlight the high dexterity and manipulability that a soft manipulator 

can achieve with the help of dynamic controllers. The final simulation is to exhibit the scalability of the 

proposed to higher dimensional nonlinear soft manipulators.  

5.1 Dynamic Reaching 

The advantage of using a dynamic controller is not only limited to energy and time considerations. 

Furthermore, they can expand the workspace of manipulators with fixed actuator forces. To exhibit this 

and to validate the trajectory optimization approach with the learned model, a dynamic reaching 

simulation is conducted. The tests are conducted using the two section soft manipulator with three 

cables. The distal section is underactuated. The maximum forces applicable by the cable are also limited 

to 1 Newton. The reachability of the manipulator if it only relied on a static controller is shown in Figure 

9(a).  This is achieved by giving constant forces to each cables (shown in brackets in the figure) and 

letting the manipulator stabilize for 10 seconds. For showing the dynamic boundaries, a set of targets 

are set circumferentially around the home position. The trajectory optimization algorithm is run on the 



learned dynamic model for 10 iterations. The time period is set at 5 seconds. The predicted boundaries 

of the manipulator are shown in Figure 9(a) with the actual end effector position obtained using the 

numerical simulation using the obtained open loop policy. The predicted path generated by the 

optimization algorithm in conjunction with the learned model for one case is shown in Figure 9(b). The 

corresponding trajectory for the same policy for the numerical simulation is shown in blue.  

  

Figure 9(a). Static reachable boundaries of the manipulator and the reachability of the manipulator with 

a dynamic controller. (b) Illustration of the complex path the manipulator takes to reach one example 

target. 

The average errors and standard deviation of the controller in the reaching task is shown in Table 3 for 

the eight reaching targets. Since the target points are handpicked and since the forces and time horizon 

is limited, the errors are not true indicators of the performance of the learned model or the trajectory 

optimization algorithm. The validity of the learned model can be seen from the difference between the 

prediction and simulation positions. 

Table 3. Reaching error for the targets with limited actuation forces 

 Mean Error (m) Standard Deviation (m) 

Predicted by RNN 0.033 0.021 

From Simulation 0.026 0.022 

Difference between Prediction 
and simulation 

0.007 0.004 

 

5.2 Effect of Noise 

One of the main concerns of modelling using machine learning is its performance under sensory noise 

especially for dynamic models. The purpose of this section is to show how the proposed learned model 

and predictive controller would fare with artificially added noise in the sample data during training. 

A B 



Since the NARX network is trained to minimize the overall prediction error in a large time series 

prediction, it is to some extend able to weed out the effects of noise. Additionally, neural networks are 

also good at dealing with noisy data.  

A zero mean Gaussian noise of standard deviation 0.005m is added to the task space positions obtained 

from the simulation. Since the representation of the network in only in absolute coordinates, we do not 

need to take the first order and second order derivatives of the position to obtain the velocity and 

acceleration of the manipulator. This makes our network more robust to sensor noises as stated earlier. 

We are using the 12 DoF task space model for this scenario. Learning is performed with this data and the 

performance of the trajectory optimization algorithm is compared with the previously learned model. 

The control horizon is only 2 seconds for this case, however the actuator limits are increased to 2 

Newtons and the optimization algorithm is run for 10 iterations. The performance of the controller with 

the new learned dynamic model is shown in Table 4 with the corresponding error for the original model 

for comparison. The same eight targets in the previous section are used. 

Table 4. Performance of the controller with noise contaminated sample data. 

 With Noise Without Noise 

 Mean Error (m) Standard 
Deviation (m) 

Mean Error (m) Standard 
Deviation (m) 

Predicted by RNN 0.03 0.019 0.019 0.02 

From Simulation 0.043 0.031 0.021 0.019 

Difference between 
Prediction and 
simulation 

0.026 0.015 0.006 0.002 

 

5.3 Dexterity 

Another advantage of a high dimensional robot coupled with a dynamic controller is that it can provide 

highly dexterous and fast motion which is also inherently safe with only few actuators.  Furthermore, 

the compliance of the body makes them very well suited for tasks like dynamic grasping and placing 

without the need for highly accurate motion controllers. To partially demonstrate this we devise a 

scenario where the manipulator aims to reach a target position while avoiding certain obstacles in the 

path. The obstacles are shown in Figure 10. The objective function is modified such that the end effector 

tries to stay as far away as possible from the obstacles while ensuring that the target is reached.  



 

Figure 10. Highly dexterous motion achievable due to the manipulator properties and controller 

formulation. 

5.4 Scalability 

Another aspect of interest is the scalability of this approach to higher dimensional systems. For this the 

same approach is tested on a four section manipulator (See Figure 3(b)). The samples collected are for 

the same 70 second duration with the task space dimension summing to 24 (6 for each section). Three 

actuators arranged in the same configuration as the previous case, are the only inputs. After learning 

the forward dynamics, same experiments of reaching static target using the end effector is done for 10 

randomly selected points. The control horizon is for 2 seconds, the forces are constrained to 2 Newtons 

and the optimization algorithm is run for 10 iterations. The results are summarized in Table 5. Figure 11 

shows one example case of the manipulator performing the reaching task. 

Table 5. Performance of the controller for the four section manipulator.  

 Mean Error (m) Standard Deviation (m) 

Predicted by RNN 0.005 0.007 

From Simulation 0.018 0.004 

Difference between Prediction 
and simulation 

0.016 0.004 

 



  

 

 

Figure 11. Reaching task executed by the four section manipulator. Each section is differently colored, 

with the base and only actuated section fixed at [0,0,0]. The target is shown in green. 

7. CONCLUSION 

This paper presents a novel approach for learning forward dynamic model of soft robotic manipulators. 

With the help of traditional trajectory optimization algorithm we show that this dynamic model can be 

used for open loop predictive control of the manipulator even for long control horizons. Since the 

approach is completely model free, there is no need to develop complex analytical models or have risky 

assumptions about the model. Additionally, the methodology is scalable and general and can be applied 

to any kind of continuum/soft robotic manipulator. The limiting factor for this approach is the sensor 

availability and sampling frequency. Systems with highly chaotic behaviour are also undesirable, but 

they are intractable even with model based approaches. 

The use of predictive controllers is more important for soft robots especially due to their longer 

response delay. Reactive controllers would perform poorly due to this. Also, high accuracy can be 



achieved even with low control frequencies. However since the controller is purely open-loop, it is not 

robust to external disturbances. This could be addressed with techniques like model based 

reinforcement learning. For example in [32], control policies and value functions are approximated using 

nonparametric regression techniques. Reinforcement learning approaches for optimal controllers using 

learned dynamic model was done in [33] and [34]. In [35], policies were represented with neural 

networks and generated by trajectory optimization.  This could allow us to extend this approach to 

develop a closed loop predictive controller which would be more robust to external disturbances and 

modelling errors. 
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