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Abstract:
This paper presents a review of recent research efforts in the field of the application
of neural and fuzzy networks in the control of unmanned underwater vehicles
(UUV). A classification for UUV control architectures using AI techniques is
presented and consecutively used to categorise the approaches found in the
literature. Several projects are discussed in detail and each control strategy is
categorized as per the presented framework. Based on practical results from those
projects, as reported in the literature, a qualitative assessment regarding the
performance of the control strategies is given. Their advantages and disadvantages
are identified and discussed. Based on the authors' observations, possible future
trends are identified. Copyright © 2003 IFAC
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1. INTRODUCTION

Due to the ever-increasing interest in underwater
exploration, both for scientific and commercial
benefit, considerable research effort in the area of
underwater vehicle control can be noticed. With
a shift in the focus of UUV research and devel­
opment towards autonomous underwater vehicles
(AUV), there has been a significant increase in
the application of neural and fuzzy networks for
control purposes in the last decade (Lorentz and
Yuh, 1996). Due to the highly non-linear and
dynamic characteristics of the underwater world
control of UUVs is a far from trivial problem.
Because of their flexibility and aptitude for dealing
with non-linear problems, neural networks and
fuzzy logic are expected to prove beneficial when
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used on autonomous craft. In this article, research
endeavours focussed on the use of neural and
fuzzy networks for the (semi-) autonomous con­
trol of underwater craft are examined. As there
are several ways to incorporate neural and fuzzy
networks into the control of an autonomous craft,
a framework for categorising control strategies is
defined. Using the presented theory to categorise
the control approaches, recent research efforts in
this field are reviewed. Several projects will be dis­
cussed and their control strategies will be catego­
rized according to the presented framework. From
the several examples characteristics of the three
categories will be distilled and the advantages and
disadvantages discussed.
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Fig. 1. Block level representation of combined
control and learning

1990; Yuh and Lakshmi, 1993; Yuh, 1994). Op­
eration of CCL is as follows. The desired system
output is sent to the controller. The controller
determines the necessary input to the system and
the output of the system is monitored. Based on
the actual output and the desired output of the
system the NN is trained. The training cycle is
performed in between (a series of) control ac­
tions. As training is performed online and contin­
uously, the NN adapts to changing dynamics. Ini­
tial performance of the (untrained) controller can
be improved by providing a simple conventional
controller that is overruled once the NN is prop­
erly trained. Apart from performing initial control
this controller can also act as a teacher(Guo et
al., 1995; Wang and Lee, 2002). Other architec­
tures, mainly neuro-fuzzy controllers, use expert
knowledge programmed into the fuzzy controller
to perform initial control. Again learning is per­
formed using the output of the system as an er­
ror signal(Akkizidis and Roberts, 1998; Kim and
Yuh, 2001).

2.1.1. CCL: Example A In (Guo et al., 1995)
an architecture based on CCL is described. A two
layer NN (2 inputs, 5 hidden nodes, 1 output
node) controller is used to control motion in the
horizontal plain while feedback of the control
parameters is obtained from a compass. Back
propagation is used to update the NN in two
phases. In the first phase, the initialization phase,
the NN is trained off-line with a linear controller as
its automated teacher. After off-line training the
obtained weights are used as initial weights in the
controller. During actual deployment of the craft
the weights are further updated using an objective
function incorporating tracking error and control
rate requirement.

The described controller is used to perform sim­
ulations and pool tests on a craft developed in
the Department of Naval Architecture and Ocean
Engineering of the National Taiwan University.
The authors claim a good accordance between
simulations and pool tests. Interesting to note
is that the authors claim that the direct con­
trol strategy or Combined Control and Learning
(CCL), is to be preferred over the indirect control
strategy or Separate Control and Learning (SCL).
As a reason the authors report that: "Along the
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In the literature a variety of articles can be found
on both practical and theoretical studies applying
NNs that combine the tasks of control and on­
line learning. Reasons for the popularity of this
approach are, inter alia, that it is often possible
simply to replace the old controller by the NN con­
troller, that the complexity of the NN controller
is limited and that learning is performed with the
latest data. It should be noted that, due to the
fact that online learning is performed in between
control actions as explained below, this strategy
is relatively demanding in terms of computational
capacity.

In combined control and learning (CCL) (see fig­
ure 1), the controller system is used for con­
trol of the craft and training at consecutive time
moments (Akkizidis and Roberts, 1998; Farrell
et al., 1990; Guo et al., 1995; Kim and Yuh,
2001; Labonte, 2002; Seube, 1991; Venugopal et
al., 1992: Wang et al., 1999a: Wang et al., 1999b;
Wang et al., 2000; Wang and Lee, 2002; Yuh,

2.1 Combined Control and Learning

The use of neural networks (NNs) in control is ver­
satile. As NNs are a good means of approximating
non-linear functions, they can e.g. replace the con­
ventional system identifier in model based control
schemes. They can also control the dynamics of
the craft directly by learning the inverse dynamics
of the model. Another possibility is a NN learning
the forward dynamics of the craft in order to
consecutively train another NN that will act as
a direct controller. As the craft is a highly non­
linear system (Akkizidis and Roberts, 1998; Li et
al., 2002), a NN with at least one hidden layer is
normally applied. It is thus capable of solving the
non-linear classification problem. (Haykin, 1999,
Ch. 4) Because of their ability to implement hu­
man expert knowledge, fuzzy controllers are often
used in combination with NNs. Fuzzy logic is
known to be highly useful in translating human
expertise into a set of rules (L. H. Tsoukalas, 1997,
Ch. 5) and thus may provide a controller with, al­
though limited, intuitive knowledge of the proper
control action. The lack of flexibility in terms of
adaptability in fuzzy logic systems is obviated by
the introduction of NNs in the controller that
give the total controller the necessary adaptability
(Akkizidis and Roberts, 1998). To create some
kind of order in the possible applications of NNs
in the control of underwater vehicles, the authors
propose a classification into three major control
strategies: (i) combined control and learning, CCL
(also known in the literature as direct control),
(ii) separate control and learning, SCL (known as
indirect control) and (iii) augmented control, A C.
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course of 01/.1' study. 'l1I1' found that the network
architecture of forward model fOT plant dynamics
is ver7J p7'Oblem specific. It usually requires large
network with reCUTTent connections. .. Due to the
fact that, in CCL, learning is performed at a
higher repetition frequenc~' than in SCL. a feedfor­
ward network without recurrent connections can
adapt itself to the changing dynamics. However,
in SCL. the same forward model of the (possibly
time-variant) dynamics is used for a relatively
long period of time. As a result the network will
have to represent the dynamic nature of the craft
using e.g. recurrent connections leading to more
sophisticated and more time consuming training
algorithms.

2.1.2. CCL: Example B In (Wang and Lee,
2002) work on a NN control system for the
ODIN (Omni-Directional Intelligent Navigator)
(Yuh, 1994: Wang et al., 1999a; Wang et al., 1999b;
Wang et al., 2000; Kim and Yuh, 2001) is pre­
sented. The controller is based on the application
of fuzzy basis functions (Wang and Mendel, 1992)
as the antecedent of a fuzzy controller. Networks
based on fuzzy basis functions can be seen as a spe­
cial version of radial-basis functions making use
of multivariate Gaussian functions(Haykin, 1999,
Ch. 5). In the fuzzy basis functions however, the
normal Gaussian function is replaced by a Gaus­
sian membership function. As this fuzzy system
can be described in a mathematical way as well
as in a linguistic way, it is possible to determine
or change the fuzzy basis functions either from
linguistic rules or from in- and output data from
the NN. Predecessors of this R-SANFIS (Recur­
rent Self-Adaptive Neuro-Fuzzy Inference System)
are described in (Wang et al., 1999a; Wang et
al., 1999b; Wang et al., 2000: Kim and Yuh. 2001).
Control of the craft is performed with the R­
SANFIS controller in a feedforward loop while a
PD (Proportional Derivative) controller is used
in a feedback loop. Apart from minimizing the
effect of disturbances, the PD controller output
is also used as an error signal for updating the R­
SANFIS parameters. Instead of one controller, six
controllers are used for the forces and moments
in six degrees of freedom to simplify the networks
and thus speed up learning.

Several simulations were performed. The effect of
learning on the performance is demonstrated in a
simulation, comparing the performance of the R­
SANFIS with and without online updating. The
reported improvement in root mean square error
(RMSE) of the desired and actual trajectory is
about a factor of 2 to 3.5. In another simulation
the R-SANFIS is compared to an adaptive con­
troller as described in (Choi, 1995). Again the R-

147

SANFIS with online learning shows a considerable
improvement in R:t\ISE of a factor of:::::: 8.8.

2.2 Separate Control and Learning

In contrast to Combined Control and Learning.
Separate Control and Learning is a seldom-used
strategy, probably due to the fact that this strat­
egy requires a relatively complex architecture (see
figure 2), which is illustrated by (Fujii and Ura,
1990; Ishii et al.. 1994; Ishii et al., 1995: Ishii and
Ura, 2000; Ura et al., 1990). There are however
several reasons to advocate this approach. Due
to the separate loops for learning and control,
learning does not have to be performed in the
short time spans between contreil actions and is
thus less computationally demanding. An addi­
tional effect is that more extensive, and possi­
bly more appropriate, network architectures can
be used. Recurrent networks for example, offer
a means of representing time variant processes
and are appropriate for filtering of noisy input
data (Polycarpou and loannou, 1993). Also, the
advantages of batch training can be exploited, as
several input-output data points can be collected
and used in one training cycle. When SCL is used,
initially the craft is controlled by a conventional
or fuzzy controller. Although this controller does
only provide marginal control it does make sure
that the craft shows a behaviour that is at least
not harmful. During this period, which is some­
times referred to as the infancy of the craft, the
NNs are trained. First, a NN learns to represent
either the forward or inverse dynamics of the craft.
If the forward dynamics are identified another NN
will have to be trained with this forward model
to obtain the desired control behaviour. In case
the inverse dynamics are identified (a copy of) the
NN can directly be used for control. Once the NN
controller shows proper behaviour it takes over
control fully. Learning is continued outside the
control loop with a copy of this NN. At regular
intervals the weights of the controlling NN are up­
dated in order to account for changing parameters.
One learning cycle can thus take up more than one
control cycle. As a result there is no need for very
fast processors. Alternatively more computation­
ally demanding algorithms or network topologies
(e.g. recurrent networks) can be used.

2.2.1. SeL: Example A A good example of this
strategy is the controller called SONCS for Self­
Organising Neural-net Control System (Fujii and
Ura, 1990; Ishii et al., 1994; Ishii et al., 1995; Ishii
and Ura, 2000: Ura et al., 1990) that uses a so­
called real-world and imaginary-world system. In
the imaginary-world system, being a copy of the
real-world system (which includes the craft dy­
namics), a controller is constantly trained using
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back propagation algorithms (Li et at.. 2002: Ya­
mamoto, 1995: Pollini et al., 1997), there are ex­
amples of architectures that employ other topolo­
gies such as recurrent networks (Kodogiannis et
al.. 1996).
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2.3 Augmented Control

Figure 2 shows the architecture with the real­
world and imaginary-world controllers. Back prop­
agation is used to train the forward model and the
imaginary world controller respectively. Tests are
performed using the Twin-Burger test bed (Fujii
et al., 1993). According to the authors: "The exper­
iment shows that the robot is properly controlled to
follow the target path, in spite of the existence of
the current, and the control system has good per­
formance... It can be concluded that the proposed
control system shows good adaptability against the
changes in the dynamic properties of the controlled
object and its surroundings."
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Simulations with this controller and a model of the
SAUV (Hong, 2000) (Semi-Autonomous Underwa­
ter Vehicle) developed in the Korea Research Insti­
tute of Ships & Ocean Engineering (KRISO) were
undertaken. In the simulations the performance
of the augmented controller was compared to the
performance of a controller consisting of linear
feedback control combined with a sliding mode
controller. The simulation results show that the
augmented controller approximates the nonlinear
uncertainties in about ten seconds. Comparison
with the linear feedback / sliding mode controller
shows that after the initial ten seconds, the aug­
mented controller shows far better tracking than
the conventional controller. No numerical results
are reported.

Fig. 3. Principal of operation of the augmented
controller

2.3.1. AC: Example A In (Li et al., 2002) a two
layer NN is used to augment a linear feedback
controller. While a PD controller controls the
linear part of the dynamics, the NN is designed
to control the nonlinear uncertainties of the craft.
This controller is implemented as shown in figure
3.
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Fig. 2. Block level representation of separate con-
trol and learning

an online updated recurrent forward model of the
craft dynamics. This model is regularly updated
using inputs and outputs from the actual craft.
At certain intervals the real-world controller is
updated with the learned imaginary-world con­
troller weights. Learning is thus performed in a
loop totally independent of the control loop. To
control the craft during its infancy a fuzzy con­
troller is used that implements some rudimentary
behaviours and is overruled once the NN controller
is trained.

Augmented control is based on enhancing conven­
tional controllers that do not have the ability to
adapt for changing parameters. A NN is added to
the controller, often placed in parallel, and adds
to the total control action to counteract the influ­
ence of unmodelled or poorly modelled dynamics,
disturbances and other uncertainties. The most
apparent advantage of Augmented Control is that
it is normally possible to use the old architecture
and place the new neural controller in parallel with
the old controller (Campa et al., 2000) or use it
as, e.g., a feed forward controller. Again the NN
can be trained outside the control loop and from
this perspective there is thus no need for very fast
processors. Although most examples of augmented
control use feed forward networks combined with

2.3.2. A C: Example B In (Kodogiannis et al.,
1996) a model predictive control system is aug­
mented by using a neural network as the model.
In this article control of the depth is performed on
a craft with one degree of freedom. Future work
will focus on control of a craft in six degrees of
freedom. The control architecture is depicted in
figure 4. In model predictive control (MPC) with
NNs the latter are used as a forward model, pre­
dicting the future output of the system. The con­
trol action is then chosen such that it minimizes
the difference between the predicted output and
the desired output. Although in the control of the
craft only one future estimate of the system output
is used to determine the proper control action,
the model was designed to predict five consecutive
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Fig. 4. Block schematic of the model predictive
control scheme

future outputs. Two different NNs are tested for
use as the forward model: a modified Elman net­
work (Haykin, 1999, Ch. 15) and a newly proposed
architecture called Autoregressive Recurrent NN
(ARNN). Both networks use recurrent connections
to capture time-variant information of the system.

Table 1. Advantages and disadvantages
of tllf' three approaches

conventional controller is for the underwater world
and whether a high enough degree of robustness
can be obtained. It is expected that CCL and
SCL will be the prevalent strategies for future
AUV control. CCL being an obvious choice for
commercial AUVs, SCL mainly being interesting
for (NN control) research studies.

CCL
+ SimplE' archit.ecture

Learning wit.h newest data/circumstances
No F\VD model necessary
Direct control is less demanding (Cuo et al., 1995)
Old controller can often be replaced
Computationally demanding
SCL

+ Computationally less demanding
l\1ore appropriate NN architectures possible
More appropriate training algorithms possible
Batch training possible
Complex architecture
Controller is trained with model of the past
AC

+ Simple implementation
Old architecture can be used
Computationally less demanding
Conventional controller might
be totally inadequate if dynamics
change drastically

Tme output
ofUUV
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plantDesired output _
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Pool tests, in which the r"IPC scheme controlled a
craft called the 'Aquacube', show that both NNs
result in a good tracking of the desired path. For
the ARNN the mean square error in prediction
of the system output is 0.000516 while the mean
squared tracking error is 0.0523. The Elrnan net­
work performs slightly less with a mean squared
error in system output prediction of 0.000748 and
a mean squared tracking error of 0.0555. The
authors claim that: "The improvements obtained
with recurrent networks are due to the fact that
a minimum control effort was used to achieve the
specific performance. "

3. CONCLUSIONS
4. ACKNOWLEDGEMENT

The presented examples of the various ways to
use NN controllers for AUVs show that it is not
trivial to point out the most promising architec­
ture. Apart from the used strategy (CCL, SCL or
AC) the chosen NN architecture, learning algo­
rithms and test bed highly influence the obtained
results. However some general characteristics have
been found for the defined classes. Table 1 gives
an overview of advantages and disadvantages en­
countered. As can be seen from table 1, SCL
would generally be a more elaborate, but also (in
terms of hardware) a more demanding approach.
As it allows for elaborate NN architectures, SCL
offers a good test bed for research focussing on
the application of exotic structures and research
endeavours to model the craft using NNs. CCL
on the other hand, does need fast processors, but
the NN itself is restricted to relatively simple net­
works. As a result this strategy would be more
interesting for commercial applications in which
one is not per se interested in good forward models
of the craft. The same holds for AC. As it uses an
existing controller it is probably the cheapest and
quickest way to build a NN controller. One should
however question how appropriate the original

This work was supported by the Irish Research
Council for Science, Engineering and Technology:
funded by the National Development Plan.

REFERENCES

Akkizidis, I.S. and G.N. Roberts (1998). Fuzzy
modelling and fuzzy-neuro motion control of
an autonomous underwater robot. 5th Inter­
national Workshop on Advanced Motion Con­
trol pp. 641-46.

Campa, G., M. Sharma, A.J. Calise and M. Inno­
centi (2000). Neural network augmentation of
linear controllers with application to under­
water vehicles. Proc. of the 2000 American
Control Conference 1, 75-79.

Choi, S.K. (1995). An adaptive-learning control
system for underwater robotic vehicles. Ph.D.
thesis, Department of Mechanical Engineer­
ing. Univ. of Hawaii.

Farrell, J., B. Goldenthal and K. Govindarajan
(1990). Connectionist learning control sys­
tems: submarine depth control. Proc. of the
29th IEEE Conference on Decision and Con­
trol 4, 2362-7.

149



Fujii, T. and T. Ura (1990). Development of
motion control system for auv using neural
nets. Proceedings of the (1990) Symposium on
A utonomous Underwater Vehicle Technology
pp. 81-6.

Fujii. T., T. Ura, Y. Kuroda. H. Chiba, Y. Nose
and K Aramaki (1993). Development of a
versatile test-bed "twin-burger" toward real­
ization of intelligent behaviors of autonomous
underwater vehicles. Proc. of IEEE OCEANS
'93 pp. 186-91.

Guo, J., F.C. Chiu and Chieh-Chih Wang (1995).
Adaptive control of an autonomous under­
water vehicle testbed using neural networks.
Proc. OCEANS '95 2, 1033-9.

Haykin, S. (1999). Ne'ural Networks, A comprehen­
sive foundation. 2 ed.. Prentice Hall. Upper
Saddle River, New Jersey 07458.

Hong, S.W. et al. (2000). Development of tech­
nologies for navigation and manipulator sys­
tem of a semi-autonomous underwater vehi­
cle.

Ishii, K and T. Ura (2000). An adaptive neural­
net controller system for an underwater vehi­
cle. Control Engineering Practice 8, 177-84.

Ishii, K, T. Fujii and T. Ura (1995). An on­
line adaptation method in a neural network
based control system for auvs. IEEE Journal
of Oceanic Engineering 2(3),221-8.

Ishii, K, T. Ura and T. Fujii (1994). A feedforward
neural network for identification and adaptive
control of autonomous underwater vehicles.
1994 IEEE International Conference on Neu­
ral Networks 5, 3216-21.

Kim, T.W. and J. Yuh (2001). A novel neuro-fuzzy
controller for autonomous underwater vehi­
cles. Proc. of the 2001 International confer­
ence on Robotics f3 Automation pp. 2350-5.

Kodogiannis, P.J., G. Lisboa and J. Lucas (1996).
Neural network modelling and control for
underwater vehicles. Artificial Intelligence in
Engineering 1 pp. 203-12.

L. H. Tsoukalas, RE. Uhrig (1997). Fuzzy and
Neural Approaches in Engineering. John Wi­
ley & Sons. New York.

Labonte, G. (2002). Fast adaptive control of a
non-linear system by an adaline: motion in
a fluid. Proc. of the 2002 International Joint
Conference on Neural Networks 2, 1837-41.

Li, Ji-Hong, Pan-Mook Lee and Sang-Jeong Lee
(2002). Neural net based nonlinear adaptive
control for autonomous underwater vehicles.
Proc. of the 2002 IEEE International Confer­
ence on Robotics and Automation 2, 1075-80.

Lorentz, J. and J. Yuh (1996). A survey and exper­
imental study of neural network auv control.
Proc. of the 1996 Symposium on Autonomous
Underwater Vehicle Technology pp. 109-16.

Pollini, 1.,1\1. Innocenti and F. Nasuti (1997). Ro­
bust feedback linearization with neural net-

150

work for underwater vehicle control. Proc. of
Oceans '97. MTS/IEEE 11, 12-16.

Polycarpou, M. 1\1. and P.A. Ioannou (1993).
Stable nonlinear system identification using
neural network models. Neural Networks 'in
Robotics pp. 165-77.

Seube, N. (1991). Neural network learning rules
for control: application to auv tracking con­
trol. Proc. of the 1991 IEEE Conference
on Neural Networks for Ocean Engineering
pp. 185-96.

Ura, T., T. Fujii, Y. Nose and Y. Kuroda (1990).
Self-organizing control system for underwater
vehicles. Proc. of OCEANS '90 pp. 76-81.

Venugopal, KP., R Sudhakar and A.S. Pandya
(1992). On-line learning control of au­
tonomous underwater vehicles using feed­
forward neural networks. IEEE Journal of
Oceanic Engineering 17, 308-319.

Wang, J.S. and C.S.G. Lee (2002). Self-adaptive
recurrent neuro-fuzzy control for an au­
tonomous underwater vehicles. Proc. of
the 2002 IEEE International conference on
Robotics f3 Automation pp. 1095-1100.

Wang, J.S., C.S.G. Lee and J. Yuh (1999a). An
on-line self-organizing neuro-fuzzy control for
autonomous underwater vehicles. Proc. of the
1999 International Conference on Robotics £<1

Automation pp. 2416-21.
Wang, J.S., C.S.G. Lee and J. Yuh (1999b). Self·

adaptive neuro-fuzzy control with fuzzy ba­
sis function network for autonomous under­
water vehicles. Proc. of the 1999 IEEE/RSJ
Internationational Conference on Intelligent
Robots and Systems pp. 130-5.

Wang, J.S., C.S.G. Lee and J. Yuh (2000). Self­
adaptive neuro-fuzzy systems with fast pa­
rameter learning for autonomous underwa­
ter vehicles. Proc. of the 2000 IEEE Interna­
tional conference on Robotics f1 Automation
pp. 3861-6.

Wang, 1. and J.M. Mendel (1992). Fuzzy basis
functions, universal approximation, and or­
thogonalleast-squares learning. IEEE Trans­
actions on Neural Networks 3, no. 5,807-14.

Yamamoto, 1. (1995). Application of neural net­
work to marine vehicle. Proc. of the 1995
IEEE International Conference on Neural
Networks 1, 220-4.

Yuh, J. (1990). A neural net controller for un­
derwater robotic vehicles. IEEE Journal of
Oceanic Engineering 15(3), 161-6.

Yuh, J. (1994). Learning control for underwater
robotic vehicles. IEEE Control Systems Mag­
azine 14(2), 39-46.

Yuh, J. and R Lakshmi (1993). An intelligent
control system for remotely operated vehi­
cles. IEEE Journal of Oceanic Engineering
18(1),55-62.


