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Abstract
We propose a method for extending the virtual aperture of the small aperture high-frequency
surface wave radar multielement array inspired by a fly named Ormia ochracea. Despite the
tremendous incompatibility between its ear and the incoming wavelength, Ormia can accurately
local the sound of its host cricket. This ability benefits from the coupled structure of Ormia’s ears
which have been modelled as a mechanical vibration system. In this paper, we first design a
two-degree of freedom biologically inspired coupled system by mimicking Ormia’s coupled ears.
We quantitatively analyze its extension capability to the array aperture and construct the received
signal model of the virtual array. We then analyze its response characteristic and available
frequency band. To achieve the applications of arbitrary desired frequencies, we propose a
frequency conversion algorithm. Moreover, we design two multi-degree of freedom biologically
inspired coupled systems for the multielement array We summarize the criteria for extending the
degree of freedom and optimize these two systems to address their respective shortcomings.
Numerical results give the optimal system parameters for our desired frequency and validate the
frequency conversion algorithm. By comparing the radiation pattern of the inspired arrays (arrays
with the proposed systems) with that of an ordinary array, we demonstrate the virtual aperture
extension capability of our proposed method. We also verify the effectiveness of proposed method
by processing the actual received signals of the array.

1. Introduction

Accurate source localization has been of great
research interest in radar and sonar array signal
processing [1–3]. Many existing localization meth-
ods, such as the convention beamforming [4] and
multiple signal classification [5] methods, rely on
the time differences of arrival between antenna array
elements to estimate the direction of arrival (DOA).
This means that these methods suffer from a fun-
damental limitation: their performance is directly
determined by the size of the array’s aperture. As
a result, large aperture arrays are often necessary
to ensure high-precision localization. However, a
large aperture is costly and may even be infeasible in

high-frequency surface wave radar (HFSWR) applic-
ations due to the wavelength of tens or hundreds of
meters, most notably in shore-based or ship-based
scenarios. Therefore, the research of the small aper-
ture array is valuable.

This paper proposes a virtual extensionmethod of
the small aperture array to enhance its performance.
Themethod takes inspiration from a parasitic fruit fly
namedOrmiaOchracea. For population propagation,
female Ormiamust search a host cricket through the
cricket’s sound. This search process is hyperacute and
extremely efficient, which is unexpected since the tre-
mendous incompatibility between the wavelength of
the call (about 70 mm) and the binaural spacing of
the Ormia (about 1.5 mm) [6]. According to classical
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Figure 1.Mechanical model of the Ormia’s ears.

array signal processing theory, theOrmia should have
a poor localization ability, such as spurious directions
and poor angular resolution. However, in reality, the
performance ofOrmia’s ears is excellent, as it can eas-
ily distinguish sounds within 2◦.

Miles et al [7] revealed that Ormia’s localiza-
tion ability is attributed to the coupled structure
between its ears. They analyzed the anatomy of the
Ormia’s ears and modeled it as a coupled mechan-
ical vibration model (figure 1) consisting of three
spring-dashing pairs ((ki, ci), i = 1,2,3). In themech-
anical model, the inter tympanal bridge is regarded
as two steel beams coupled by a torsional spring
with a stiffness coefficient of k3 and damping coeffi-
cient of c3. The binaural membranes, apodemes and
spherical auditory nerves are considered as spring-
dashing pair (k1, c1) and (k2, c2) with lumped mass
m1 andm2.

On this basis, two research directions for small
aperture array were developed. One direction focuses
on studying the physical coupling circuits and design-
ing electrically small antenna arrays that exhibit bet-
ter localization performance compared to ordin-
ary arrays with the same aperture. Behdad et al
[8] converted the mechanical model into equival-
ent electrical circuits using the equivalency between
mechanical elements (mass, damper, and spring)
and electrical circuit elements (inductor, capa-
citor, resistor). They first designed a biomimetic
antenna array (BMAA) by utilizing this electrical
circuit as a coupling network. Subsequently, several
circuit-improved and dimension-extended BMAAs
were proposed [9–13]. Although these researches
have been proven effective for ultra high frequency
and above bands, they are unsuitable for HFSWR.
For HFSWR arrays composed of antennas over
ten meters long, it is costly to redesign them as
BMAAs. Additionally, the electrical circuits required
for such arrays are excessively large and difficult to
implement.

The other direction involves studying digital
coupled systems and virtually expanding the aper-
ture of ordinary arrays through coupled processing
to enhance localization performance. Akcakaya and

Nehorai [14] first applied a biologically inspired
coupled (BIC) system to process signals received
by antennas. They achieved high radiation per-
formance with small aperture arrays, but the sys-
tem only had two degrees of freedom. As a sup-
plement, they extended the BIC system to be suit-
able for multi-antenna arrays and demonstrated its
advantage for DOA estimation [15–17]. However,
the description of the dimension extension pro-
cess is lacking, as they only introduced a simple
dimension raising of the frequency response func-
tion matrix. They neither provided a time domain
model for a multi-element BIC system nor ana-
lyzed the physical mechanism behind the successful
extension.

In this paper, we present a detailed design of two
models for the multi-degree of freedom biologically
inspired coupled (MDOF-BIC) system to a small
aperture HFSWR antenna array. The system requires
none coupling network and can realize a virtual
expansion of the array’s aperture through pure sig-
nal processing. We first analyze the inherent proper-
ties and block diagram of the Ormia’s hearing sys-
tem. We then abstract the hearing system as a two-
input two-output (TITO) system and implement a
two-degree of freedom biologically inspired coupled
(TDOF-BIC) system by utilizing the TITO system
to process the received signals of the array. We con-
sider the virtual expansion of the TDOF-BIC sys-
tem to the array’s aperture as the generation of a
virtual array and establish the received signal model
of this virtual array. Subsequently, we define the
frequency-angle response function (FARF) and phase
difference function (PDF) to analyze the response
characteristics and available frequency band of the
TDOF-BIC. Based on this analysis, we propose a fre-
quency conversion algorithm to convert the available
frequency band to arbitrary desired frequencies. To
address multiple antenna applications, we design sev-
eral models of the MDOF-BIC system and provide
their commonmathematical equation. By solving the
responses and inherent properties of various models,
we ultimately determine two successful models and
summarize the criteria for extending the degree of
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freedom. Furthermore, we optimize the two success-
ful models to address their respective shortcomings.
The correctness of the proposed algorithm and mod-
els is validated through numerical and experimental
results.

The rest of the paper is organized as follows. In
section 2, we implement the TDOF-BIC and ana-
lyze its amplification effect on the array’s aperture. In
section 3, we discuss the response characteristics and
available frequency band of the TDOF-BIC and pro-
pose a frequency conversion algorithm. In section 4,
we design severalmodels of theMDOF-BIC and sum-
marize the criteria for degree of freedom extension
based on successful case. In section 5, we verify the
proposed algorithm and models. In section 6, we
provide concluding remarks.

2. TDOF-BIC algorithm

In this section, we analyze the Ormia’s coupled hear-
ing system and abstract it into the digital TDOF-BIC
system.

2.1. Analysis ofOrmia’s coupled hearing system
In effect, the mechanical model (figure 1) proposed
in [7] very closely represents the actual response of
the coupled hearing system. According to Newton’s
second law, the responses of the two ends of the inter-
tympanal bridge may be obtained by solving[

m 0
0 m

][
ÿ1 (t)
ÿ2 (t)

]
+

[
c1 + c3 c3
c3 c2 + c3

][
ẏ1 (t)
ẏ2 (t)

]
+

[
k1 + k3 k3
k3 k2 + k3

][
y1 (t)
y2 (t)

]
=

[
x1 (t)
x2 (t)

]
(1)

where

• y1(t) and y2(t) are the response of the two ends of
the intertympanal bridge

• x1(t) ans x2(t) are the pressures applied at the
eardrums

• (·) denotes differentiation with respect to time t.

Since the ears are identical, we have k1 = k2 = k and
c1 = c2 = c. Suppose the pressure produced by a har-
monic plane acoustic wave at the location of the
pivot point is x(t) = exp(iωt), where ω is the fre-
quency in radians s−1. Then the pressure applied at
two eardrums will be x1(t) = exp[iω(t+ τ/2)] and
x2(t) = exp[iω(t− τ/2)]. By the well-known modal
decomposition method, the responses of the inter-
tympanal bridge may be expressed as (see the details
in [7])[

y1 (t)
y2 (t)

]
=Φ

[
η1 (t)
η2 (t)

]
=

[
1 1
−1 1

][
A1 exp(iωt+φ1)
A2 exp(iωt+φ2)

]
(2)

Figure 2.Modal synthesis process.

where

• Φ is the modal shape matrix
• η1(t) and η2(t) are the first and second ordermodal
responses

• Ai and φi, i = 1,2 are the magnitude and phase of
the ith order modal response

A1 = 1/m · sin(ωτ/2)
[(
ω2
1−ω2

)2
+(2ω1ζ1ω)

2
]−1/2

A2 = 1/m · cos(ωτ/2)
[(
ω2
2−ω2

)2
+(2ω2ζ2ω)

2
]−1/2

(3)

φ1 =−arctan[2ω1ζ1ω/(ω
2
1 −ω2)]+π/2

φ2 =−arctan[2ω2ζ2ω/(ω
2
2 −ω2)]. (4)

In (3) and (4), ωi and ζi, i = 1,2 are the ith natural
frequency and damping ratio of the hearing system,
respectively. They represent the inherent properties of
the system.

ω1 =
√
k/m, ω2 =

√
(k+ 2k3)/m

ζ1 = c/(2ω1m) , ζ2 = (c+ 2c3)/(2ω2m) . (5)

Note that y1(t) and y2(t) expressed in (2) consist
of the sum of the two modal responses, and the dif-
ferences in amplitude and phase between them are
fairly complicated. To obtain the differences, we con-
sider the phase of the first order modal response η1(t)
as the reference and plot these responses in the vec-
tor space (figure 2). In figure 2, ∆φη represents the
phase difference between the two modal responses
η1(t) and η2(t), while ∆φy represents the phase dif-
ference between the responses y1(t) and y2(t). Let
∠ABD= α, ∠DBC= β, then we have∆φy = α+β.
Define Ay1 and Ay2 as the lengths (or say amplitudes)
of the responses y1(t) and y2(t), through trigonomet-
ric operations, we get

Ay1 =
[
(A2 sin∆φη)

2
+(A1 +A2 cos∆φη)

2
]1/2

Ay2 =
[
(A2 sin∆φη)

2
+(A1 −A2 cos∆φη)

2
]1/2

∆Ay =
Ay1

Ay2
=

[
sin2∆φη +(∆Aη + cos∆φη)

2

sin2∆φη +(∆Aη − cos∆φη)
2

]1/2

(6a)
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tanα= (A1 −A2 cos∆φη)/(A2 sin∆φη)

tanβ = (A1 +A2 cos∆φη)/(A2 sin∆φη)

tan∆φy = 2∆Aη sin∆φη/
(
1−∆A2

η

)
(6b)

where

• ∆Aη = A1/A2 is the amplitude difference of the
modal responses η1(t) and η2(t)

• ∆Ay is the amplitude difference of the actual
responses y1(t) and y2(t)

• A1 andA2 are the lengths (or say amplitudes) of the
vector η1(t) and η2(t)

If the hearing system is uncoupled, the values of c3
and k3 should be zero, resulting in ω1 = ω2, ζ1 = ζ2,
∆Aη = tan(ωτ/2) and ∆φη = π/2. From this, we
can deduce that∆Ay =∆Ax = 1 and∆φy =∆φx =
ωτ , where ∆Ax and ∆φx represent the difference in
amplitude and phase between x1(t) and x2(t).

For the coupled hearing system, however, ω1 <
ω2, ζ1 < ζ2. This results in A2 < A1 and ∆φη ̸= π/2.
Consequently, based on (6), we can derive that∆Ay >
∆Ax and ∆φy >∆φx, which demonstrates that the
hearing system can amplify the difference in amp-
litude and phase between the signals.

To quantify this amplification, we define the amp-
litude difference gain GA and phase difference gain
Gφ as

GA =∆Ay/∆Ax =∆Ay

Gφ =∆φy/∆φx =∆φy/(ωτ) . (7)

2.2. Implement of the TDOF-BIC
Considering the targeted application, we now convert
the physical hearing system to the digital TDOF-BIC
system.We first perform the Fourier transform on (1)
and utilize the modal decomposition solution in the
frequency domain

Y1 (ω) =
(X1 (ω)+X2 (ω))/(2m)

ω2
2 −ω2 + 2iω2ζ2ω

+
(X1 (ω)−X2 (ω))/(2m)

ω2
1 −ω2 + 2iω1ζ1ω

Y2 (ω) =
(X1 (ω)+X2 (ω))/(2m)

ω2
2 −ω2 + 2iω2ζ2ω

− (X1 (ω)−X2 (ω))/(2m)

ω2
1 −ω2 + 2iω1ζ1ω

(8)

where

• Y1(ω) andY2(ω) are the Fourier transforms of y1(t)
and y2(t)

• X1(ω) and X2(ω) are the Fourier transforms of
x1(t) and x2(t).

LetH1(ω) andH2(ω) be given by (9), then the system
block diagram of the hearing system is illustrated in
figure 3.

Figure 3. Block diagram of the mechanical model.

H1 (ω) =
1/(2m)

ω2
1 −ω2 + 2iω1ζ1ω

H2 (ω) =
1/(2m)

ω2
2 −ω2 + 2iω2ζ2ω

. (9)

The block diagram illustrates that the hearing
system can be abstracted as a digital TITO system.
To implement the TDOF-BIC system, we utilize the
TITO system to process the signals received by the
antenna arrays (refer to figure 4). In figure 4, the
input signals x1(t) and x2(t) are the received signals
(incident from θin) of the two-antenna array with din
antenna spacing. The output signals y1(t) and y2(t)
are the responses of the TITO system, which are equi-
valent to the received signals (incident from θout) of
a virtual array with dout antenna spacing. h1(t) and
h2(t) are the inverse Fourier transform of the H1(ω)
and H2(ω).

2.3. Effect analysis of the TDOF-BIC
Under the far-field radiation and narrow-band
uncorrelated signal assumption, the received signal
vector of the actual two-antenna array is

X(t) = A(θ)S(t)+ e(t) (10)

where

• X(t) = [x1(t),x2(t)]
T is the received signal vector of

the array
• S(t) = [s1(t), . . . , sN(t)]

T is the incoming signal vec-
tor, with N as the number of sources

• A(θ) = [a(θ1), . . . ,a(θN)] is the array manifold
matrix, with θn as the azimuth of the nth source

• a(θn) = [exp(iωτn/2),exp(−iωτn/2)]
T for the

array
• τn = din sinθn/c, with din and c are the antenna spa-
cing and light speed, respectively

• e(t) is the additive white Gaussian noise with zero-
mean and variance σ2.

As mentioned in section 2.2, we consider the output
vector Y(t) = [y1(t),y2(t)]

T as the received signals of
a virtual antenna array and establish its signal model
as

Y(t) = BIC [X(t)] = BIC [A(θ)S(t)]+BIC [e(t)]
(11)

where BIC [·] refers to the coupled processing of the
signals by the TDOF-BIC.

4
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Figure 4. Complete view of the TDOF-BIC system.

Figure 5. Inputs and outputs of the TDOF-BIC.

Since the signal S(t) and noise e(t) are independ-
ent, the coupled processing follows the distributive
law. Therefore, we separate it into the signal and noise
parts for further analysis.

(1) Signal Part: The TDOF-BIC system, being
based on the same block diagram as the hearing sys-
tem, retains the amplitude difference gain GA and
phase difference Gφ for the input signals. This indic-
ates that the coupled processing of the TDOF-BICwill
alter the array manifold (or create a virtual array), so
we have

BIC [A(θ)S(t)] = Ã(θ)S(t) (12)

where

• Ã(θ) = [ã(θ1), . . . , ã(θN)] is the virtual array man-
ifold matrix

• ã(θ) = [GA exp(iωτ̃/2),exp(−iωτ̃/2)]T

• τ̃ = Gφτ .

Consider that τ = din sinθ/c, and the estimated para-
meter in source localization is the angle θ, it is reas-
onable to maintain the angle during the coupled pro-
cessing. Hence, we have θin = θout, dout = Gφ din (in

figure 4), and τ̃ = dout sinθ/c. This demonstrates that
the coupled processing of the TDOF-BIC system vir-
tually expands the aperture of the actual array. It is
noteworthy that the phase difference gainGφ can also
be regarded as the array aperture gain. Since it is influ-
enced by the incident angle of the signal, we redefine
its domain as

Gφ =∆φy/(ωτ) = ∆φy · c/(ωdin sinθ) , θ ̸= 0◦

(13)

(2)Noise Part:As stated in (1), the TDOF-BIC sys-
tem is also a linear system. So for the white noise, it
will be transformed into colored noise through the
coupled processing.

BIC [e(t)] = ẽ(t) (14)

where ẽ(t) is the Colored Gaussian Noise.
Therefore, the final signal model of the virtual

array is

Y(t) = BIC [X(t)] = Ã(θ)S(θ)+ ẽ(t) . (15)

See figure 5 for the inputs and responses of the
TDOF-BIC system. The inputs are incident from 30◦

5
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Figure 6. Phase differences and phase difference gain of the TDOF-BIC.

relative to the direction that is tangent to the plane
of the array. Note that the noise has been disreg-
arded to ensure clear and visual results. We observe
that the system amplifies the difference in amplitude
and phase between the signals, equivalent to extend
the virtual aperture of the array. Figure 6 illustrates
the phase differences∆φx,∆φy and phase difference
gainGφ at various incident angles. There exists a one-
to-one correspondence between the incident angle
and phase difference, confirming that the outputs of
the TDOF-BIC can be utilized for source localiza-
tion. It is observed that the gain increases as the angle
approaches 0◦. The system has no amplification effect
at 0◦ since the absence of phase difference between the
inputs. The two figures are considered for the 5 kHz
signal using the parameters (mass, spring and damp-
ing) experimentally obtained in [7], and the antenna
spacing din takes one-tenth of the wavelength. The
amplitude difference is not provided as it is not the
focus point of this paper.

3. Frequency conversion algorithm design

In this section, we analyze the response characterist-
ics of the TDOF-BIC system and propose a specific
frequency conversion algorithm to convert the sys-
tem’s available frequency band to arbitrary desired
frequencies.

3.1. Response characteristics of the TDOF-BIC
We first derive the transfer functions of the TDOF-
BIC by directly solving (1) in the transform domain
(for more details, refer to [16]).

H1 (ω,θ) =
[
D(iω)eiκ sinθ −N(iω)e−iκ sinθ

]
/P(iω)

H2 (ω,θ) =
[
D(iω)e−iκ sinθ −N(iω)eiκ sinθ

]
/P(iω)

(16)

where

• P(iω) = D2(iω)−N2(iω) is the characteristic
function

• D(iω) =mω2 + i(c+ c3)ω+ k+ k3
• N(iω) = ic3ω+ k3 (coupling term)
• κ= πdin/λ.

Observe that the transfer function between the inputs
and outputs is influenced not only by the frequency
but also by the incident angle. So we rename it as the
FARF.We also introduce the PDF to analyze the phase
difference between the responses at different frequen-
cies and angles

PD (ω,θ) = Arg [H1 (ω,θ)/H2 (ω,θ)] (17)

where Arg[·] represents to find the phase angle in [].

3.2. Analysis of the response characteristics
There are two other noteworthy properties of mech-
anical damping systems: damped frequency ωd and
maximum response frequency ωb [18]

ωd = ωn

√
1− ζ2

ωb = ωn

√
1− 2ζ2 (18)

where ωn and ζ represent the natural frequency and
damping ratio, respectively. Since the TDOF-BIC sys-
tem is abstracted from the mechanical system, it
inherits these properties.

Still select the parameters in [7], figure 7 presents
the response characteristics of the TDOF-BIC sys-
tem by FARF. We only provide the result of H1(ω,θ)
since H1(ω,θ) and H2(ω,θ) exhibit symmetry about
θ = 0◦. We observe that with a fixed incident angle,
the frequency-angle response of the TDOF-BIC ini-
tially increases and then decreases as the frequency

6
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Figure 7. FARF of the TDOF-BIC system. (a) Three-dimensional map. (b) Contour map.

increases. The contour map illustrates that the
amplitude of the response at the first natural fre-
quency is significantly larger than that at the second
natural frequency. Its maximum value is located near
the first maximum response frequency and decreases
as the angle approaches 0◦.

Figure 8 plots the PDF of the TDOF-BIC at vari-
ous frequencies and angles. In the low-frequency
range, the phase difference and incident angle share
the same symbol, indicating a correct correspond-
ence. While in the high-frequency range, the sym-
bols of them are opposite, indicating that the TDOF-
BIC system is unavailable. The frequency at which
the symbol feature changes is defined as the jump
frequency, denoted by fj. We select several specific
frequency points to slice the three-dimensional map
and present the results in figure 8(b). Due to the

sampling rate limitation, we can only determine
that fj ∈ [f−j , f

+

j ]. Within the [0, f−j ] (available) band,
the phase differences under large incident angles
([−90◦,−30◦] and [30◦,90◦]) flatten while the phase
differences under small incident angles ([−30◦,30◦])
steepen as the frequency rises. This may lead to an
ambiguity correspondence relationship between the
incident angle and virtual aperture, which hinders
subsequent source localization.

To determine the precise jump frequency fj, we
expand (17) and calculate its partial derivation with
respect to the incident angle

ṖD (ω,θ) = ∂PD (ω,θ)/∂θ

= Γ
[(
ω2
1−ω2

)(
ω2
2−ω2

)
+4ω1ζ1ω2ζ2ω

2
]

(19)

7
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Figure 8. PDF of the TDOF-BIC system. (a) Three-dimensional map. (b) Slice map.

where

• Γ = 2(1+E tan2 A) cosθ
(1+B2)(D−E tan2 A)2 cos2 A is always positive

• A= κ sinθ
• B=

[
2((ω2

2 −ω2)(ω2
1 −ω2)+ 2ω1ζ1ω2ζ2) tanA

]
/

(D− E tan2A)
• D= (ω2

1 −ω2)2 +(2ω1ζ1ω)
2

• E= (ω2
2 −ω2)2 +(2ω2ζ2ω)

2.

By making the partial derivation equal to zero, we
obtain two possible solutions for the jump frequency

ω2
j1 =

b−
√
b2−4ω2

1ω
2
2

2

ω2
j2 =

b+
√
b2−4ω2

1ω
2
2

2
(20)

where b= ω2
1+ω2

2−4ω1ζ1ω2ζ2. Figure 8(b) shows
that the slope of PD(2π f

−
j ,θ) is greater than zero

while the slope of PD(2π f
+

j ,θ) is less than zero. So we
determine the final solution of the jump frequency is
fj = ωj1/(2π).

3.3. Frequency conversion algorithm design
We now convert the available band of the TDOF-BIC
to desired frequencies based on the response charac-
teristics. This means to alter the system parameters,
namely the mass, spring and damping constants
in the mechanical system. Although we retain the
names of these parameters in the digital TDOF-BIC
system, they no longer have physical significance.
Naturally, we aim to maximize the response amp-
litude, so we set the desired frequency equal to the

8
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first maximum response frequency. In addition, to
prevent any potential ambiguity between the incid-
ent angle and virtual aperture, the desired frequency
should be as far away from the jump frequency as
possible. Therefore, we formulate the problem as an
optimization problem to determine the maximum
jump frequency given the predetermined desired fre-
quency

maximum ωj (m,k,k3, c, c3)

subject to ωg = ω1

√
1− 2ζ21

b2 − 4ω2
1ω

2
2 ⩾ 0

1− 2ζ21 > 0

m,k,k3, c, c3 > 0

(21)

where ωg represent the desired frequency we give.
To ensure acceptable initial values, we first modify

the available band at the macro level (such as shifting
it from the kHz toMHz range). Thismodification can
be achieved by adjusting the first natural frequency.

In addition, we derive the amplitude response of
H1(ω,θ) as

|H1 (ω,θ) |

=

[
(ucosA+V sinA)2+(UcosA−v sinA)2

m2 (U2 + u2)(V2 + v2)

]1/2

(22)

where

• U= ω2
1 −ω2, V= ω2

2 −ω2

• u= 2ω1ζ1ω, v= 2ω2ζ2ω
• A= κ sinθ.

Notably, if the operating frequency ω is scaled with
the same constant as the natural frequencies ω1 and
ω2, |H1(ω,θ)| is unaffected by change in the mass
term while significantly influenced by changes in the
stiffness terms. Therefore, we propose the initial value
selection scheme as: (1) maintain k and k3; (2) adjust
m to convert the first natural frequency; (3) adjust c to
satisfy the first equality constraint in (21); (4) adjust
c3 to maintain ζ2.

4. MDOF-BIC system

In this section, we establish two viable models of the
MDOF-BIC system and derive their common math-
ematical equation. We also summarize the criteria for
expanding the degrees of freedom.

4.1. Design of the MDOF-BICmodels
For the sake of convenience, we first simplify the
TDOF-BIC system to a simple model (figure 9(a)).
In the figure, the white circles represent the receiv-
ing antennas and the black circle represents the coup-
ling item between the two antennas. By imitating
the TDOF-BIC model, we establish a series of con-
structmodels for theMDOF-BIC, including the chain
model, ringmodel, starmodel, fully connectedmodel
and combined model. See figures 9(b)–(f) as these
models, and they already contain all possible models
of the MDOF-BIC system.

Inspired by (1), we summarize the common
mathematicalmodel for theMDOF-BIC systemswith
N antennas in (23). Here, pi represents the number of
the coupling terms connected to the ith antenna, and
qij (i ̸= j) represents whether the ith and jth antennas
are connected by the coupling term (1 for yes, 0 for
no).


m 0

m
. . .

0 m



ÿ1 (t)
ÿ2 (t)
...

ÿN (t)

+

c+p1c3 q12c3 q1Nc3
q21c3 c+p2c3 q2Nc3

. . .

qN1c3 qN2c3 c+pNc3



ẏ1 (t)
ẏ2 (t)
...

ẏN (t)

+

k+p1k3 q12k3 q1Nk3
q21k3 k+p2k3 q2Nk3

. . .

qN1k3 qN2k3 k+pNk3



y1 (t)
y2 (t)
...

yN (t)

=

x1 (t)
x2 (t)
...

xN (t)

 .

(23)

Taking N = 4 as an example, we solve the
responses of various MDOF-BIC models by the
modal decomposition method. The results show
that only the star model and fully connected model
achieve the ideal phase difference amplification (or
say virtual aperture extension) of the multielement
array.

In figure 10, by comparing the time responses
of several models, we illustrate the assessment cri-
terion for ‘ideal phase difference amplification’. The
parameters used in the figure are consistent with

those in section 2.3, and the signal is still incident
from 30◦ with 5 kHz frequency. We imply that the
phase relationship of the inputs is φx1 > φx2 > φx3 >
φx4 , where the symbol ‘>’ denotes the phase advance.
For the accuracy of the subsequent source location
algorithm, the responses should still maintain this
phase relationship. That is to say, the ‘ideal phase
difference amplification’ not only needs to amplify
the phase difference of adjacent antennas but also
ensure that the phase relationship φy1 > φy2 > φy3 >
φy4 is satisfied. As can be seen from the dashed box in

9
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Figure 9. Simple models of the (a) TDOF-BIC and (b)∼(f) MDOF-BIC system. (b) Chain, (c) Ring, (d) Star, (e) Fully Connected
and (f) Combined models of the MDOF-BIC.

Figure 10. Time responses of various models of the MDOF-BIC. (a) Star. (b) Fully connected. (c) Ring. (d) Combined.

figure 10, only the star model and the fully connected
model meet the criteria. The chain model is omitted
since the ring model and combined model are suffi-
ciently representative.

Figure 11 shows the phase difference and phase
difference (array aperture) gain between adjacent
antennas of the star model, with the parameters being
the same as figure 10. Combined with figure 10(a),
we observe that the star model has large response
amplitudes and aperture gains. Compared with the

input amplitude (one), the response amplitude of the
first and last antennas are almost invariant, and of
the other antennas are only reduced by about half.
At small incident angles, it has a tremendous average
aperture gain of about 20 times. While at large angles
the situation is quite different, the aperture gains are
only 1.5 times, especially for the first and last spacing
interval (Gy12 and Gy34). Note that the break point in
the vicinity of 0◦ in figure 11(b) is due to Gφ in (13)
is undefined at 0◦.

10
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Figure 11. (a) Phase difference and (b) phase difference gain between adjacent antennas of the star model.

Figure 12. (a) Phase difference and (b) phase difference gain between adjacent antennas of the fully connected model.

Figure 12 depicts the phase difference and phase
difference (array aperture) gain between adjacent
antennas of the fully connected model. The paramet-
ers are the same as those in figure 10. Combined
with figure 10(b), the fully connected model has
poor response amplitudes, about one-twentieth of the
input amplitude. The average aperture gains of it are
also modest, about 2 times. The good thing is that the
difference between the response amplitudes of each
antenna is not significant, and the aperture gains vary
gently at the different spacing intervals and incident
angles.

4.2. Criteria for the expansion of degrees of
freedom
Based on the two success models, we analyze the
expansion criterion from TDOF to MDOF. By writ-
ing (23) in matrix form and removing the damping
term, we get the undamped equation of the MDOF-
BIC as

MNÿ+KNy= 0. (24)

We then determine the inherent properties of
MDOF-BICs by setting the determinant ofKN−MNω

2

to zero.We find that only the starmodel and fully con-
nected model have inherent properties similar to the
TDOF-BIC. They have two unequal natural frequen-
cies and damping ratios, and their modal shapes have
the same form.

The proof process is as follows. First, only for the
success models, we have the values of qij and pij as

{
qij = 1 i, j = 1, . . . ,N; i ̸= j

pi = pj = p i, j = 1, . . . ,N.

Then the determinant of KN−MNω
2 as

∣∣∣∣∣∣∣∣∣
km k3 k3
k3 km k3

. . .

k3 k3 km

∣∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣
kn+Nk3 (N−1)k3 k3

0 kn 0
. . .

0 0 kn

∣∣∣∣∣∣∣∣∣
(25)
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where

• km = k+ pk3 −mω2

• kn = k+(p− 1)k3 −mω2

• p= 1 for the star model and p= N− 1 for the fully
connected model.

So we get the natural frequencies, damping ratios and
modal shapes of the success models as

ω2
1,2,...,N−1 =

k+(p− 1)k3
m

, ω2
N =

k+(N+ p− 1)k3
m

(26)

ζ21,2,...,N−1 =
c+(p− 1) c3

2ω1m
, ζ2N =

c+(N+ p− 1) c3
2ωNm

(27)

Φ=
1

√
2m

×



1 1√
3

1√
6

· · · 1√
(N−1)N/2

1√
N/2

−1 1√
3

1√
6

· · · 1√
(N−1)N/2

1√
N/2

0 −2√
3

1√
6

· · · 1√
(N−1)N/2

1√
N/2

0 0 −3√
6

. . .
...

...

...
...

...
... 1√

(N−1)N/2

1√
N/2

0 0 0 · · · −(N−1)√
(N−1)N/2

1√
N/2


N×N

.

(28)

The success models of MDOF-BIC degenerate
into TDOF-BIC if n equals 2. This also proves that the
star model and the fully connected model are the cor-
rect expansionmethods. Meanwhile, the other failure
models (chain, ring and combined model) prove that
the effect of the model is non-ideal when the num-
ber of the unequal natural frequencies is unequal to
2. In summary, we conclude the criterion for multi-
dimensional expansion is that the systemhas only two
unequal natural frequencies.

4.3. System block diagram and simulation system
of the MDOF-BIC
To construct the simulation system of the success
MDOF-BIC systems, we need to first export its system
block diagram. Similar to the method used to obtain
the block diagram of the TDOF-BIC in section 2.2,
we perform the Fourier transform of formula (23)
and use the modal decomposition method in the fre-
quency domain

Y1 (ω) =
N∑

i=1

Φ1i

∑N
j=1ΦjiXj (ω)

ω2
i −ω2 + 2iωi ζiω

Y2 (ω) =
N∑

i=1

Φ2i

∑N
j=1ΦjiXj (ω)

ω2
i −ω2 + 2iωi ζiω

...

YN (ω) =
N∑

i=1

ΦNi

∑N
j=1ΦjiXj (ω)

ω2
i −ω2 + 2iωi ζiω

(29)

where Φji is the element in jth row and ith column of
thematrixΦ. Further, we summarize thematrix form
of (29) as

Y(ω) =ΦH(ω)⊙ΦTX(ω) (30)

where

• H(ω) = [H1(ω) H2(ω) · · · HN(ω)]
T

• Hi(ω) = (ω2
i −ω2 + 2iωi ζiω)

−1

• ⊙ represents the Hadamard product.

Based on (30), we plot the block diagram of the
MDOF-BIC in figure 13(take N = 4 as an example).
Then, we use Simulink to model and simulate this
block diagram and show them in figures 14(model)
and 15 (result). We take the fully connected model as
an example, and the simulation results are basically
the same as figure 10(b), which verifies the correct-
ness of the system block diagram.

4.4. Optimization of the success models
We now optimize the two success models. The star
model has a poor magnification effect on the first
and last spacing intervals. We achieve the optimiza-
tion of it by extrapolating the input signals. For an
arbitrary time t, we regard theN inputs as theN-point
sampling in space

xn (t)=xt (n)=exp [−i(ωt+φ1−(n− 1)∆τ)]+e(t)
(31)

where φ1 represents the phase of the first antenna, n
represents the spatial sampling serial number.

There is a clear exponential relationship between
the inputs and the spatial sampling serial number, so
we choose the exponential curvemethod as the extra-
polation model.

xt (n) = x0e
Kn (32)

where the coefficients x0 and K are obtained from the
known data.

For an N-dimensional MDOF-BIC, we use for-
ward and backward predictions to extrapolate one
data point to each end. Then we have N+2 inputs,
and the original first and last spacing interval
becomes the second and penultimate intervals. By
processing through an N + 2-dimensional MDOF-
BIC, we obtain N + 2 responses. Select the middle N
responses as the final result, then we overcome the
shortcomings of the star model.

The deficiency of the fully connected model is the
low response amplitudes. Inspired by (22), we find
thatMDOF-BIC still has the property: the amplitudes
of the responses are unaffected by the change of the
mass term, but immensely affected by the change of
the stiffness term. We adjust the response amplitude
to the required level by using the same scaling con-
stant to change the system parameters. Note that this
method does not affect the inherent properties of the
system.
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Figure 13. System block diagram of the MDOF-BIC.

Figure 14. Simulink simulation model of the MDOF-BIC.

Figure 15. Simulink simulation result of the MDOF-BIC.
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Table 1. Values of the system parameters.

Standard value Initial value Optimal value

m/kg 2.88×10−10 2.88×10−16 1.54×10−16

c/Ns·m−1 1.15×10−5 1.30×10−8 1.41×10−8

c3/Ns·m−1 2.88×10−5 2.88×10−8 3.09×10−8

k/N·m−1 0.576 0.576 0.799
k3/N·m−1 5.18 5.18 5.84

Figure 16. Contour map of FARF of the TDOF-BIC.

5. Numerical and experimental results

5.1. Numerical results
By the numerical simulation, we verify the frequency
conversion algorithm and compare the aperture of
the inspired arrays and ordinary array. By the inspired
arrays we refer to arrays withMDOF-BIC systems.We
also demonstrate the optimization of the two success
models. The simulation is conducted under a com-
mon HFSWR scenario with the following parameters

• Frequency of operation, f = 5 MHz.
• Uniform linear array with 4 dipole antenna.
• Antenna spacing, d= 0.1λ.

We first adjust the system parameters to meet the
desired frequency following the algorithm proposed
in (21) and give the results in table 1. Use the optimal
parameters, figures 16 and 17 depict the contour
map of FARF and slice map of PDF, respectively.
We observe that the available band has been conver-
ted from kHz to MHz band, and the first maximum
response frequency fb1 aligns with our desired fre-
quency (see figure 16). In figure 17, we observe that
the phase difference at fb1 is steeper and fb1 is farther
away from fj (compared with figure 8(b)).

Figure 18 compares the radiation patterns of the
inspired arrays and ordinary array to clarify the illus-
trate the virtual aperture extension ability of the
MDOF-BIC. It is evident that the inspired arrays
outperform the ordinary array regarding the side-
lobe suppression andmain lobe width. This improve-
ment in the radiation performance confirms that the
MDOF-BIC has amplified the phase differences (time
differences) between the received signals of the anten-
nas, thereby achieving the virtual aperture extension
of the array. Note that the inspired array with the star
model exhibits better performance than the inspired
array with the fully connectedmodel.We can determ-
ine the model depend on the actual scenario.

Figure 19 presents the radiation pattern of the
inspired arrays with the starmodel and optimized star
model. We observe that the array with the optimized
starmodel has a narrowermain lobewidth, validating
the effectiveness of our optimization scheme.

To enhance the response amplitude of the fully
connectedmodel, we reduce the optimal system para-
meters by a factor of 10. Figure 20 illustrates the
time-domain response of the fully connected model
MDOF-BIC. The signal is incident from 30◦. We
demonstrate the successful optimization of the fully
connected model, as the response amplitude has
increased tenfold.
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Figure 17. Slice map of PDF of the TDOF-BIC.

Figure 18. Radiation pattern of the ordinary and inspired arrays.−S and−F represent with the star model and fully connected
model, respectively.

5.2. Experimental results
To demonstrate the practicability of theMDOF-BICs,
we use them to process the actual signals received
by the HFSWR array. The experimental site is a
HFSWR station shown in figure 21. We utilize a log-
period antenna to transmit a single frequency signal
of 5MHz and four magnetic antennas with antenna
spacing d= 0.1λ to receive the signal. The distance
between the transmitting station and the receiving
station is about 400 meters (about 6.7λ), which sat-
isfies the far field radiation condition. The signal is
emitted from 71.5◦ relative to the normal of the array
plane.

The transmitted power of the signal is 500W, and
the received signal of the array is shown in figure 22.
Due to the influence of the noise and external signals,
the received signal has some amplitude jitter and burr.
Figure 23 shows the responses of the star and the fully
connected model MDOF-BIC. It can be seen from
the results that the two successful models also have
good performance under the actual application. Both
of them can realize the amplification of the phase
difference, or say the virtual expansion of the aper-
ture. In addition, the responses in figure 23 have no
amplitude burr, which means that the BIC processing
has improved the signal-to-noise ratios of the signals.
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Figure 19. Radiation pattern of the inspired arrays.−S and−OS represent with the star model and optimized star model,
respectively.

Figure 20. Time-domain responses of the fully connected model MDOF-BIC under (a) optimal and (b) reduced optimal
parameters.

Figure 21. A HFSWR station experiment site.
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Figure 22. Received signals of the HFSWR array.

Figure 23. Responses of the (a) star model and (b) fully connected model MDOF-BIC.

This additional advantage of the MDOF-BIC system
comes from the filtering effect of the system.

6. Conclusion

We designed a virtual aperture extension method
for the small aperture HFSWR multielement array
inspired by the coupled auditory system of Ormia
Ochracea. First, by mimicking the Ormia’s ears, we
implemented a TDOF-BIC system and analyzed its
extension ability to the array aperture. We regarded
this aperture expansion as the generation of a vir-
tual array and established the received signal model
of the virtual array. Then, we analyzed the frequency
response characteristics and determined the available
frequency band of the TDOF-BIC. Based on this ana-
lysis, we proposed a frequency conversion algorithm
to convert the available frequency band to the desired
frequencies. To suit the multielement array, we exten-
ded TDOF to MDOF and proposed several models

of the MDOF-BIC. By solving their responses and
natural properties, we finally determined two suc-
cessful models and summarized the criteria for the
successful extension. We also optimized the two suc-
cessful models to address their respective shortcom-
ings. We demonstrated the proposed frequency con-
version algorithm and provided the optimal para-
meters for 5 MHz HFSWR. Through comparing
the radiation patterns between the inspired arrays
and the ordinary array, we verified that the MDOF-
BIC can extend the virtual aperture of the array.
The processing of the actual received signal of the
array also demonstrated the validity of our proposed
method.
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