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A high fidelity ungrounded torque feedback device: The iTorqu 2.0

Abstract

This paper discusses the design and operation of the iTorqU 2.0, an ungrounded, handheld torque
feedback device for haptic applications. Based upon the gyroscopic effect, the iTorqU 2.0 uses a metal
flywheel inside of a two-axis actuated gimbal to create directional torques that are applied to the user's
hand. The coupling of angular velocity and angular momentum creates a torque that is orthogonal to the
two input angular velocities, giving the user the impression that their hand is being twisted in free air.
Following a review of prior work in the field of ungrounded torque feedback devices, we first present our
preliminary prototype, the iTorqU 1.0. Building on empirical observations and user feedback from a public
demonstration, we revised and augmented this design to create the iTorqU 2.0. This paper covers the
major mechanical, electrical, and controls design considerations that went into creating the iTorqU 2.0,
along with an analysis of its torque output capabilities.
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A High Fidelity Ungrounded Torque Feedback Device: The iTorqU 2.0

Kyle N. Winfree*  Jamie Gewirtz|

Thomas Mather?

Jonathan Fiene$ Katherine J. Kuchenbecker?

Haptics Group, GRASP Laboratory
University of Pennsylvania, USA

ABSTRACT

This paper discusses the design and operation of the iTorqU 2.0,
an ungrounded, handheld torque feedback device for haptic appli-
cations. Based upon the gyroscopic effect, the iTorqU 2.0 uses a
metal flywheel inside of a two-axis actuated gimbal to create di-
rectional torques that are applied to the user’s hand. The coupling
of angular velocity and angular momentum creates a torque that is
orthogonal to the two input angular velocities, giving the user the
impression that their hand is being twisted in free air. Following
a review of prior work in the field of ungrounded torque feedback
devices, we first present our preliminary prototype, the iTorqU 1.0.
Building on empirical observations and user feedback from a public
demonstration, we revised and augmented this design to create the
iTorqU 2.0. This paper covers the major mechanical, electrical, and
controls design considerations that went into creating the iTorqU
2.0, along with an analysis of its torque output capabilities.

1

Haptic devices interact with a human user through the sense of
touch, typically by changing positions, orientations, forces, torques,
and/or vibrations. Such systems enable the user to receive rich
streams of information from virtual or distant environments and
to feel synthesized haptic sensations that resemble or deviate from
those encountered in everyday life. Many different haptic interfaces
have been developed, but the multi-channel nature of the sense of
touch [7] provides ample inspiration for the invention of new de-
vices and the exploration of new applications.

To be perceived as a mechanical influence, a haptic device must
act on the user with forces and/or torques, which always occur in
equal and opposite pairs. Thus, one can classify haptic interfaces
into three categories based on their mechanical grounding config-
uration [2]. The classically grounded device is one that rests on a
table, floor, or other static object that can be used as leverage. Typ-
ically constructed as mechanical linkages with rotational and trans-
lational joints, these devices can thus employ actuators or brakes to
impose forces and/or torques between the user and the grounding
element. Capable of producing salient haptic sensations with rela-
tively low mechanical complexity, grounded devices are well repre-
sented in the commercial market, with systems produced by compa-
nies such as SensAble Technologies, MPB Technologies, and FCS
Control Technologies, among others [5]. Unfortunately, grounded
haptic devices also suffer from finite workspace constraints and a
continual need to reduce inertial and friction effects to accurately
render free-space motion [4].

The second major category of haptic devices is that of body
grounded systems. These interfaces are affixed to part of the user’s
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Figure 1: The iTorqU 2.0 in use.

body rather than to an immobile object. The device uses this body
mount as the leverage point for applying equal and opposite forces
and/or torques to another part of the wearer’s body. By care-
fully considering how the grounding forces are positioned and dis-
tributed, such devices can create the illusion of directed forces [9].
One such device is Immersion Corporation’s CyberGrasp, in which
forces applied to the user’s fingers are grounded to the forearm;
this design takes advantage of the fact that fingertip mechanorecep-
tors are significantly more sensitive than those of the forearm [7].
Such devices are generally more portable than grounded displays,
but they can be challenging to design due to strict objectives for
strength, weight, and ergonomics.

The third category of haptic devices includes those that are me-
chanically ungrounded. Often employing linear or angular momen-
tum to create an inertial ground, these devices need not be attached
to a table or one’s body to generate the intended interaction loads;
thus, they can be highly portable. One such example of ungrounded
haptic feedback can be found in mobile phones and modern video
game controllers [6]. Though these devices excel at rendering cycli-
cal vibrations, they are incapable of generating discernible directed
forces or torques. Over the past decade, several research groups
have explored novel methods of producing ungrounded directed
force feedback, such as air jets [3] and asymmetric oscillation [1],
but only a few have investigated ungrounded directed torque out-
put, which has exciting potential applications in interactive gaming,
navigational guidance, and upper-limb rehabilitation. Section 2 de-
scribes prior haptic devices in this area, and the remainder of the
paper presents the development of a new, high fidelity, ungrounded
torque feedback device known as the iTorqU 2.0.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 29, 2009 at 12:45 from |IEEE Xplore. Restrictions apply.
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Figure 2: Various methods by which a haptic device can create ungrounded torque feedback using mass and inertia. (a) Torque by ﬁgravity
at a distance. This effect is used in the TorqueBAR. (b) Axes of actuation and output of the spinning mass momentum wheel. &yiywheer 1S
the angular acceleration of input. This effect is used in the GyroCube. (c) Axes of actuation and output of the steered spinning mass. Ginput
is the angular velocity of input, Jfiywheer is the angular velocity of the flywheel, and Joutpu: is the output angular velocity. This effect is

used in the Gyro Moment Display and the iTorqU 1.0 and 2.0.

2 PRIOR ART IN UNGROUNDED TORQUE FEEDBACK

Exploring a variety of different actuation methods, significant de-
velopments in the field of ungrounded torque output haptic devices
include the TorqueBAR [8], the GyroCube [10], and the Gyro Mo-
ment Display [11], each of which will be described below.

The TorqueBAR [8] is a single-degree-of-freedom system that
generates moments about a set of handles by moving a large mass
along a linear slide, as shown in Figure 2a. The linear slide on this
device is 48-cm long; an accelerometer is used to measure the tilt
angle. In a series of human-subject tests, the authors were able to
show that torque feedback aided subjects in performing a simple
position trajectory-matching task.

As an alternative mode of actuation, the GyroCube [10] is a
handheld device containing three fixed-axis, orthogonal flywheels
that can be positively or negatively accelerated to generate torques
about the major axes, as shown in Figure 2b. Unfortunately, ex-
perimental results found that users had difficulty distinguishing the
direction of the generated torques, most likely due to gyroscopic ef-
fects (i.e., because all three wheels were spinning when the angular
momentum of one was changed, the other two may have acted as
steered momentum wheels, thereby creating unintended gyroscopic
moments that interfered with the intended torque output).

The Gyro Moment Display [11] capitalizes on the gyroscopic
effect by mounting a rotating disk in a two-axis gimbal. By con-
trolling the angular rate of the gimbal axes, the device is capable of
generating torques orthogonal to the rotational axis of the flywheel,
as shown in Figure 2c. One significant benefit of using controlled-
rate gyros (as opposed to momentum wheels) is that when the iner-
tia and speed of the flywheel are both relatively large, small changes
in the gimbal rates result in significant output torques. While the
device is capable of producing arbitrary ungrounded torques, the
authors noted that with a relatively small range of gimbal travel
(£50° for each axis), the Gyro Moment Display required a signif-
icant amount of time to return the gyroscope to a centered config-
uration before display of an additional moment, thereby severely
limiting the device bandwidth. The authors did not sense orienta-
tion of the device relative to ground. Given the unknown pose and
high back drive friction, users would inadvertently feel gyroscopic
moments when the pose of the device was perturbed.

3 FIRST PROTOTYPE: THE ITORQU 1.0

Taking inspiration from the prior art in ungrounded torque feed-
back, we developed a single-axis proof-of-concept device in the
spring of 2008. As shown in Figure 3, this version included a

262

Figure 3: The iTorqU 1.0

steel flywheel (shown in Figure 4) mounted within a single gim-
bal driven by a hobby servo. The system was able to display un-
grounded torques by driving the gimbal at a given rate. A two-axis
accelerometer was used to resolve the spatial orientation of the de-
vice relative to ground. This pose estimation was used to make
the device pseudo-transparent; when the user slowly rotated the de-
vice about the gimbal axis, the flywheel was steered in the opposite
direction. By maintaining a constant ground orientation of the fly-
wheel, the device did not create the unintended output torques felt
in [11]. This section presents the design and development of this
prototype, with a focus on the lessons learned.

3.1 Design

Mechanical - For rapid prototyping, the housing, internal gim-
bal cage, and handles were all constructed using fused-deposition-
modeling (FDM) from ABS plastic. Given the relatively low

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 29, 2009 at 12:45 from |IEEE Xplore. Restrictions apply.
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Figure 4: An excised view of the flywheel and drive train of the
iTorqU 1.0.

strength of the plastic, the unit was designed with two handles
for the user to grasp, as can be seen in Figure 5. To minimize
complexity and development time, the system included only one
gimbal axis which was oriented normal to the handles. Two fly-
wheels were designed and tested, one from aluminum (m = 95 g,
I = 37500 g - mm?) and one from cold-rolled steel (m = 281 g, I
=111000 g - mm?), both of which have a mass radius of gyration

(km = \/ =) of 19.6 mm.

Actuation - A brushless Hacker A20-30M hobby motor (9000
RP M) was chosen for its ability to be recessed within the flywheel
and its high torque and speed output. A Tower Hobbies TS-59 low-
profile servo motor was used to directly drive the gimbal axis using
local closed-loop position control.

Sensing - A fundamental requirement for any ungrounded haptic
feedback device is the ability to become transparent (i.e., to pro-
duce minimal feedback forces and torques when the user is moving
in free space). In order to produce transparency with a gyroscope,
the orientation of the spinning mass must remain constant relative
to the ground reference frame. To accomplish this task with our
device, we mounted a model 2125 Memsic Dual-Axis Accelerom-
eter to the housing to measure the device’s orientation relative to
ground. By actively controlling the gimbal angle from the esti-
mated device orientation, we were able to operate the device in a
pseudo-transparent mode.

Software - A Parallax Basic Stamp 2 microcontroller was used to
sample the accelerometer and implement the gimbal control sys-
tem. When operating in transparency mode, the system continu-
ally commanded the gimbal servo to the opposite of the resolved
device angle, thereby attempting to maintain the ground-reference
flywheel orientation. A set of switches was also connected to the
device to command the gimbal servo to either 90 or 45 degrees
at either a slow or fast rate to generate ungrounded output moments.
Due to the relatively limited range of motion for the gimbal servo
(£120°), the servo was slowly returned to a center position after
each output at a speed below the noticeable output torque.

3.2 Lessons Learned

The iTorqU 1.0 was demonstrated at the University of Pennsylvania
Haptics Laboratory Open House on May 1, 2008, where approxi-
mately fifty individuals from various backgrounds were able to test
the device. Many users provided positive comments about the de-
sign, most notably that it produced strong output torques; some
users also raised concerns about the weight and strength of the de-
vice. The overwhelmingly positive interest in the device motivated
our construction of the second-generation model described in the
following section. The major lessons learned, both from the design
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Figure 5: An open house attendee testing the iTorqU 1.0

process and from the informal user feedback can be summarized as
follows:

Mechanical - While fused-deposition-modeling was useful for gen-
erating a quick prototype, the low stiffness of ABS was not suitable
for a system generating sizable torques. More importantly, the unit
was relatively heavy (833 g) compared with the discernible torque
output. Specifically focusing on the torque source, we found that
while the steel flywheel produced larger torque output, it also pro-
duced significantly more vibration and resulted in an overall heavier
device. The original gimbal design severely limited the diameter of
the flywheel, requiring an undesirable mass to moment-of-inertia
ratio. We also learned that the quality of the bearings supporting
the flywheel shaft can have a significant impact on the generation
and transmission of unwanted vibrations throughout the system.
Actuation - While capable of high-speed operation, the brushless
flywheel motor produced noticeable high-frequency vibrations. Af-
ter inspection of many other hobby-type brushless motors, it was
determined that this was not a motor-specific problem, but instead
is common to the design of brushless hobby motors. Secondarily,
while the gimbal servo motor was convenient, its internal position-
control loop prevented us from implementing feedback control of
gimbal velocity. The internal gearing of the gimbal servo had high
back drive friction, which made transparency significantly more
difficult to achieve (in theory, a frictionless gimbal would allow
the flywheel to maintain orientation regardless of the device angle,
thereby creating natural transparency). We also discovered that the
bandwidth of the gimbal servo was too low to produce the range
of desired output torques, and the limited range of motion imposed
unwanted constraints on the usable workspace of the device.
Sensing - Again, the lack of position feedback on the gimbal cage
imposed a significant constraint on our ability to accurately drive
the system transparently. We also discovered that the bandwidth of
the filter used to remove flywheel induced noise on the dual-axis
accelerometer prevented the accurate resolution of orientation for
rapid handle movements, restraining users to relatively slow turns.

4 THEITORQU 2.0: SYSTEM DESIGN

Building upon the success and many lessons learned from the
preliminary prototype, we designed and built a dual-axis gimbal-

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 29, 2009 at 12:45 from |IEEE Xplore. Restrictions apply.



controlled gyroscopic haptic display. Herein we will discuss the
major components of the device, including the flywheel, the gim-
bals, the handle, and the control system.

4.1 Flywheel

To maximize the mass radius of gyration, the new flywheel was
comprised of an annular ring with four thin spokes connected to a
central hub, as can be seen in Figure 6a. The moment of inertia of
the annular ring is given by

1

L. = Sm(rd +r3) = S phor(rd — )
where m is the mass, p is the density, h is the height, 7; is the inner
radius, and r2 is the outer radius (for our design: h = 5.25 mm,
r1 = 86 mm, r2 = 99 mm). The flywheel was machined from
416 stainless steel to a total mass of 138 grams and a calculated mo-
ment of inertia of 218000 g - mm?. This design resulted in a mass
radius of gyration of 39.75 mm, which is more than double that of
the iTorqU 1.0 (in other words, for the same flywheel mass, the new
design has four times more rotational inertia). To drive the flywheel,
the brushless hobby motor was replaced with a Faulhaber MicroMo
2607T006SR pancake motor, with a no-load speed of 6600 RPM
at 6 V. With a mass of only 16.1 g, this motor provided a smooth,
high-velocity input to the flywheel with a minimum of added mass.

4.2 Gimbals

One of the most significant changes in this version of the iTorqU
was the addition of a second gimbal axis, as shown in Figure 6a,
to enable the creation of full three-DOF torques and allow trans-
parency in all directions. While adding this second degree of free-
dom, we also wanted to significantly extend the angular workspace
of each gimbal. The gimbal cages were custom machined from
6061-T6 aluminum to achieve low mass while maintaining rela-
tively high stiffness. To minimize joint friction, precision Dynaroll
ABEC 7 oil-lubricated bearings were used for all rotary joints.

While mounting motors directly to the gimbal axes would reduce
mechanical complexity and could theoretically provide an infinite
angular workspace, the weight and size of the motors and gearheads
necessary to create the gimbal torques made such a solution imprac-
tical. In addition, the reduced backdriveability of the gearheads
would make transparency more difficult. As an alternative, custom
drum-and-capstan cable drive systems were designed for each axis.
Powered by Maxon 110045 brushed DC motors (mass of 21 g and a
stall torque of 4.78 m N'm at 12 V') and cabled with Sava Industries
2032 stainless-steel cable, the completed gimbal drivetrains can be
seen in Figure 6¢. With very low friction, smooth backdriveabil-
ity, and a gear ratio of 10.2, the final configuration resulted in a
540° range of motion for each axis. When fully assembled with the
flywheel, the mass of the full two-axis gimballed gyroscope was
486 g.

To accurately measure the gimbal axis angles, diametric magnets
were attached to the end of each capstan, and AS5040 10-bit pro-
grammable hall-effect rotary encoders were located in the middle
of the rotating magnetic fields, as can be seen in Figure 6¢. With an
angular resolution of 0.3°, and assuming no slip in the cable drive
system, this arrangement provided angular displacement data for
each gimbal axis down to 0.032°.

4.3 Handle

To create a naturally affordant user interface, a wooden tennis
racket handle, with an additional mass of 248 g, was affixed to
the base of the device, as seen in Figure 1. This single-handed
configuration was chosen so that the torques outputted from the
device would be more noticeable to the user. To resolve the
ground-referenced angular configuration of the system, a MicroS-
train 3DM-GX2-USB-SK1 inertial-measurement unit (IMU) was
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Wire Cable

Flywheel
Motor

Flywheel

Gimbal Motors

~ Capstan

(a) The axes and components of the iTorqU 2.0. Shown here, it is ready
to mount to the AMTI force-torque plate.

(b) A CAD model of the top (left) and bottom (right) gimbals used in the
iTorqU 2.0.

I\\..

b
b

(c) The drum-and-capstan cable drives for both gimbal axes. The diamet-
ric magnet is embedded in the aluminum capstan.

Figure 6

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 29, 2009 at 12:45 from |IEEE Xplore. Restrictions apply.



attached to the base of the handle. With a mass of only 49 g, this
compact IMU combines three degrees of acceleration sensing with
three rate gyros and a magnetometer to provide absolute orientation
measurements with a resolution of less than 0.1° at a data rate of
up to 250 Hz.

4.4 Controller

Running on a Windows XP computer, Chai 3D was used to imple-
ment a control loop for the generation of three-dimensional output
torques from the device. The handle-mounted IMU communicated
directly over the USB port, while a PIC microprocessor was pro-
grammed to convert the SPI communications from the hall-effect
encoders to USB signals. To control the gimbal motors, a Senso-
ray 626 PCI interface board was used for analog output to a pair of
OPAS544T high-current operation amplifiers; this arrangement en-
abled high-bandwidth closed-loop current control for each axis.

5 MODELING OUTPUT TORQUES

The moments generated by the iTorqU can be modeled by summing
the moments generated by a rotating body spun around another axis
(the flywheel), plus the moments caused by rotational acceleration
of the gimbals (inertia), plus the moments from gravity (a force at
a distance). These three items include all three effects used by the
various authors mentioned in section 2.

This model can then be used to predict the output moments for
given state variables (¢, 0, 1,[), 9) and input variables (12}, é) as is
shown later in Figure 7d.

The moments caused by the flywheel, in the frame of the fly-
wheel, are:

077 2 . -
Mflywheel =1I- Wsystem T Wframe X (I . wsyste'm) (2)
Then rotating these moments to a ground frame:
- PR
IMriywheet = ‘Re " M fiywheel 3)

where YRy includes a rotation from the 6 frame to a handle frame
and then a rotation from the handle frame to the ground frame.
The moments from the acceleration of the gimbals then is:

—

My 5.5 = ‘R (Lop - 6) )
gMbottom 1,[) = th : (Ibottom : ’(p)
Finally, the moments due to gravity are:
thop gravity — (gRG : Gﬁop cm) X ﬁgruvity (5)

By, _ (9 Y= nl
Mbottom gravity — ( Rd) * " Tbottom cm) X Fgravity

where 7% cm is the vector pointing to the center of mass of that
gimbal.
This sum, the torque a user would feel while using the
iTorqU 2.0, is then:
IN — 9N IV - IN .
Mtotal = Mflywheel + Mtop 0,4 + Mbottom ’ll)+ (6)

ang RV
Mtop gravity + Mbottom gravity

6 OPERATION AND TESTING

To validate the performance characteristics of the iTorqU 2.0, a se-
ries of calibration tests was performed with the device attached to
an AMTI HE6X6-10-5 6-DOF grounded force/torque plate. A cus-
tom adapter was used to mount the iTorqU to the center of the plate
with the base gimbal axis aligned with the plate’s Z axis. Data was
recorded at a rate of 200 H z, with resolutions of 0.07 mN for the
principal forces and 0.03 m NN - m for the principal torques. To an-
alyze the effect of independently gimbaling each axis, one of the
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Figure 7: For this trial, the yaw gimbal (v)) was rotated through
its range of motion (applied motor voltage of 6.2V) while the pitch
gimbal was constrained. As can be seen in comparing (d) and (e),
the measured moments are very close to the predicted moments.
Possible reasons for error may include accuracy of modeled me-
chanical and electrical components.

two gimbals was physically constrained while the other was actu-
ated through its range of motion at a variety of speeds.

Figure 7 shows samples of the recorded angles 7a, angular ve-
locities 7b, angular accelerations 7c, and torque data 7e as the base
(yaw) gimbal was spun through its full range of motion while the
upper (pitch) gimbal was constrained to keep the flywheel axis hor-
izontal. Figure 7d shows the expected moments from the motions
of the gimbals and flywheel as predicted with our model (6).

Figure 8a presents the magnitude and phase of the resultant mo-
ment in the X-Y plane for four different yaw gimbal excitation volt-
ages. Likewise, Figure 8b presents the magnitude and phase of the
moments created in the X-Z plane as the pitch gimbal is actuated
while the yaw gimbal was constrained to keep the flywheel axis in
the Y-Z plane. With a maximum torque for each independent gim-
bal axis of nearly 1.2 Nm and workspaces that extend well beyond
360 degrees, this data is very encouraging for the development of a
range of future applications.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 29, 2009 at 12:45 from |IEEE Xplore. Restrictions apply.
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(a) Yaw gimbal (1)) was rotated with the pitch gimbal fixed. Moment
in X-Y plane.
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(b) Pitch gimbal (6) was rotated with the yaw gimbal fixed. Moment
in X-Z plane.

Figure 8: The magnitude (N - m) and angle (°) of the moment
vector.

7 CONCLUSIONS AND FUTURE WORK

Through the development of testing of two successive versions of
the iTorqU haptic device, we have proven the feasibility of using a
gimbal-controlled gyroscope to generate ungrounded torque feed-
back. By optimizing the flywheel design, the mass radius of gyra-
tion of the second device was increased while concurrently reduc-
ing the overall mass such that it is comfortable to hold for extended
durations. This second version was then able to create more sub-
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stantial torques while reducing user fatigue. The large workspace,
low friction, and easy backdriveability of the two independent gim-
bal joints provide a high degree of natural transparency as the fly-
wheel is free to maintain its orientation as the handle is moved be-
low it. By actively controlling the angular velocity of the two gim-
bals, significant ungrounded torques can easily be produced at the
handle, as demonstrated by the results presented in Section 6.

With the hardware platform fully operational and preliminary
tests showing favorable results, future work on this project will in-
clude the implementation of a full closed-loop control system to
generate desired torques about arbitrary axes. A second control-
development project will be focused on the tuning and evaluation
of an active-transparency mode to combine the data from the IMU
and the hall-effect sensors to accurately estimate the handle and fly-
wheel orientation and actively cancel out any remaining gyroscopic
effects. Thought will then be given to modes for generation of de-
sired torques using the model mentioned in section 5. Finally, a
human-subject study will be conducted to quantify the effectiveness
of the iTorqU 2.0 ungrounded torque output device in psychophys-
ical tests and representative applications.

A demonstration of both the iTorqU 1.0 and iTorqU 2.0 will
be provided at 2009 World Haptics Conference in Salt Lake City,
Utah.
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