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Abstract—Ship hulls, as well as bridges, port dock pilings,
dams, and various underwater structures need to be inspected
for periodicmaintenance.Additionally, there is a critical needto
provide protection against sabotage activities, and to establish
effective countermeasure against illegal smuggling activities.
Unmanned underwater vehicles are suitable platforms for the
development of automated inspection systems,but require inte-
gration with appropriate sensortechnologies.
This paper describes a vision system for automated ship

inspection, based on computing the necessary information for
positioning, navigation and mapping of the hull from stereo
images. Binocular cues are critical in resolving a number of
complexvisual artifacts that hampermonocular vision in shallow
water conditions. Furthermore, they simplify the estimation of
vehicle pose and motion which is fundamental for successful
automatic operation. The system has been implemented on a
commercial ROV, and tested in pool and dock tests. Results
from various trials are presented to demonstrate the system
capabilities.
Index Terms—Underwater Visual Inspection, stereovision,

ROVs, and AUVs.

I. INTRODUCTION

IN-WATER inspection is an essentialtask for generalmain-
tenance and damage assessmentof underwater structures.

For example, inspection of ship hulls is necessaryas part of
periodic maintenance operations. This has become extremely
critical with the threat that ships entering ports and harbors
for commerce may serve as carriers of nuclear weapons,
explosives, deadly chemicals and other hazardous materials,
with mass destruction in highly populated cities, national
landmarks, and other drastic damagesat the nation scale as
potentially targetactivities [50]. To combat this threat, deploy-
ment of existing technologies and the development of new
ones are sought to implement search and detection systems
that can provide no less than 100% success rate. Unlike
regular hull maintenance that may be carried out by trained
divers, inspection and search for hazardous and (or) deadly
materials have to be done with submersible robotics platforms
to avoid risk of human lives. In general, it is expected that
the deployment of such vehicles, when highly automated, can
provide a more effective and efficient solution.
ThoughAUV proponentsmay view them as“the” appropri-

ate platform for underwater search and mapping, ROVs offer
distinct advantages in human-assisted or human-supervised
hull searchoperations [42]: 1) Real-time video anddata trans-
mission to the operator station enables him/her to revise the
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mission on the fly or take over the operation, where necessary;
2) Division of labor canbe readily achievedby the automation
of many low-level tasks (as in precise navigation and the
construction of a composite map), allowing the operator to
concentrateon high-level critical componentsof the operation
(e.g, target and object recognition, threat assessment,etc.).

In recent years, automated video-based servo, survey and
mapping has become recognized as important capabilities in
ROV deployment for seafloorandbenthic habitat studies. This
has led to worldwide effort on the development and imple-
mentation of visual servo technologies for implementation on
various research ROVs, with and without integration with
other sensory information. In addition to our work at the
University of Miami, we are awareof the work at theseother
institutions1: Heriot-Watt University (UK) [29], [40], [46],
Instituto SuperiorTecnico (ISR, Portugal) [17]–[19], MBARI-
Stanfordgroup [10], [11], [28], [30], IFREMER/INRIA [26],
[47], AustralianNational University (RSL) [45], [48], Univ. of
Sydney(ACFR, Australia) [31], University of Tokyo/Sigapore
[2], [8], Universitat de Girona [15], [16], Universitat de les
Illes Balears [39].

The earlier work addressedthe use of images for optical
station keeping of ROVs (e.g., [27], [29], [34], [35], [37]),
while more recent work has been aimed at the realization of
image mosaicing capability to map the sea floor and various
benthic structures for fisheries, reef studies, archeology and
various othermarine scienceapplications (e.g., [7], [10], [11],
[16], [18], [38], [43], [49]). Someresearchhasbeenaimed at
theuseof mosaicsasvisual mapsfor improved positioning and
local navigation (e.g., [17], [19], [36], [38]). Integration with
other sensors has been explored to improve the positioning
and photo-mosaicingcapabilities; e.g., [3], [31], [41], [47]).

In deepsea,shadingflows inducedby themotion of artificial
sources installed on the vehicle have to be overcome in
processing of images for video servo and image mosaicing.
In shallow waters, near the seasurface sourcesof disturbance
are of primary concern. First, surface waves often cast com-
plex moving shadow patterns on the targets that are being
imaged/inspected. Other difficulties arise from the movement
of floating suspended particles and water bubbles that are
commonly present in most coastal and harbor waters. On top
of these, constant disturbances from wave actions contribute
to continuous complex vehicle motions – involving all six
degreesof freedom –that are often difficult to estimate from
monocular cues; evenwithout the low quality and contrast of

1We have cited only selected publications that describe sample activities
at these research centers. Readers are strongly encouraged to refer to the
individual web sites for detailed information.
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underwater imagery and the complex shadowmotions. Where
the vehicle hasto fight steadycurrents, reduced thruster power
for control action takes away from the vehicle maneuvering
capability. As a consequenceof these various factors, the vi-
sion system hasto processimagesfrom avery complex motion
video. Adding insult to injury, poor control performancewould
typically lead to a longer operation than necessary.This offers
the vision systemthe unfortunate opportunity to spit out more
erroneousmotion estimates that, once integrated over a longer
time, produce even larger position drift errors.
Because of these factors, the use of existing monocular

vision-based technologies –often suitable for deep sea tasks
–can be effectively rules out becauseof the unfriendly condi-
tions in most shallow harbor waters. Interestingly, the use of
binocular cuesoffers unique potentials: As we will elaborate,
it allows us to take advantage of visual cues in such a way
that the above complexities can be mademuch less effective
in destabilizing the system performance. This motivated us to
explore the use of a stereovision system for ship inspection,
an operation carried out by ROVs in the shallow waters of
ports and harbors. The investigation hasled to the development
of a vision system that provides three key capabilities in
the automatic inspection of ship hulls and other underwater
structures: Positioning and navigation, 2-D mapping with a
photo-mosaic, and the 3-D reconstruction of the target struc-
ture. As always, the binocular cues give an instantaneous 3-
D map of the target, thus enabling the detection of foreign
objects attached to the subseastructure. Automatic navigation
is achieved by estimating the 6 degreesof freedom (d.o.f) in
ROVposition directly from visual information. Binocular cues
also give the instantaneousmeasurementsof the ROV distance
andorientation with respectto the structure, which canbeused
for positioning and trajectory control. Finally, information
about the ROV motion, determined from consecutive frames
of the video, is used for image alignment in constructing a
photo-mosaic.
Human-assisted or supervised search and inspection are

significantly facilitated by utilizing a 2-D mosaic and a 3-D
structural map of the imaged object displayed on the operator
monitor, with the additional capabilities of automatic navi-
gation and vision-based station keeping developed previously
[37], [38]. The stereovision system hasbeen implemented on
a Phantom XTL2 and the capabilities have been successfully
demonstrated in pool and dock tests. Results from various
real-time operations are presented to demonstrate the system
performance.

II. TARGET-BASEDNAVIGATION AND VISUAL SERVO

In automatednavigation, the ROV is generally required to
execute a desired trajectory under computer control basedon
the information from various positioning sensors.In a common
scenario in ship inspection, the vehicle may be programmedto
navigatealong theside,while maintaining a frontal view anda
fixed safedistanceDs relative to the hull. As the hull surface
maybend,thevehicle would turn with it. This suggestthat it is

2Trademark of Deep Ocean Engineering, San Leandro, CA

favorable to seek pose and distance measurementsrelative to
the ship, rather than absolute positions and orientations which
may be harder to determine or more costly with expensive
sensors.

In particular, somepositioning sensorscommonly deployed
for absolute measurements, such as INS and acoustic-based
devices, have certain limitations: drift error, acoustic clutter,
risk of sabotage when deploying permanent fixed bottom
transponders in security applications, complexities in the
calibration of temporary transponders suspended from the
ship, etc. An optical imaging system, deployed for target
visualization and mapping, may simultaneously provide the
necessaryinformation for automatic navigation. In particular,
video-based servo and mapping has been two popular appli-
cations of vision techniques in underwater, andmany systems
have been developed for the mapping of benthic habitats.
The fundamental problem is to estimate the frame-to-frame
motions from the corresponding pair of images.

We next discuss some significant challenges that are to be
overcome by a vision system in shallow water operations.
Thesesupport the conclusion that existing techniquesutilizing
visual cues from a single camera (monocular vision) are
practically ineffective for automatedship inspection. We then
explain why the useof a stereovision systemcan significantly
reduce the complexities.

A. Complexities of a Monocular Vision System in Shallow
Water Conditions

Moving (cast) shadows and non-uniform shading patterns
that vary temporally are responsible for somemajor complex-
ities in the processing of video imagery. In some cases,e.g.,
where the target surfaces have weak texture, cameramotion-
induced visual cues can become dominated by the image
shadingartifacts. It therefore becomesdifficult to decouple the
image motion induced by the cameramotion from the shading
flow.

In deepseaoperations, absenceof natural lighting requiring
the useof artificial sourceswith finite power is mainly respon-
sible for the challenge of having to overcome time-varying
shadow artifacts in processing of a motion video. However,
to the extend that the frame-to-frame platform movementsare
smoothandslow, soarethe temporal variations in shadingover
the image. Consequently, methods can bedevises, tuned to the
propertiesof the illumination source,to filter out the lighting
effects [14]. In operations nearthe seasurface,floating bubbles
andsuspendedparticles, nonuniform illumination from natural
lighting, castshadowsfrom surfacewavesandreflections from
the target surfacesare factors that lead to rather complex visual
motion artifacts that can dominate the image variations due to
the motion of the camera/vehicle. In loose terms, deep sea
image shading artifacts can be viewed as deterministic and
predictable, while near surface events are unpredictable and
somewhatstochastic.Furthermore, thehigher turbidity of most
harbors, in comparison to deepseaconditions, result in images
with much less contrast and poorer quality. These various
factors collectively make it rather difficult to match points
or regions in consecutive video frames –a pre-requisite step
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for computing the vehicle motion and (or) registering these
frames (e.g., to construct a photo-mosaic). The problems are
compounded by the fact that the surface wave and current
actions canmove the vehicle with all 6 degreesof freedom. It
is practically impossible to estimate the 6 d.o.f motions with
acceptable accuracy from unreliably matched features. Two
more factors work against us. The effective f.o.v is reduced
in underwater, the target surfaces are usually (locally) flat,
both of which are extremely undesirable for discerning the
motion componentsdue to the well-known translation-motion
ambiguity [1].
Now, video enhancement and restoration methods may

be devised to process the entire data from an operation in
order to discriminate between the signal component and the
disturbanceartifacts. However, this is impractical for real-time
operations.
Estimation of the various degreesof freedom (d.o.f.) in the

motion of the vehicle is important for both position control
and target mapping. As stated, we seek the instantaneous pose
(position and orientation) of the ROV relative to the target,
rather than its absolute 3-D position, as the most relevant
information.
Most small-size ROVs, including our PhantomXTL, have

four– two aft, one lateral and one vertical– thrusters for
XY Z translations and heading change. The video camera is
commonly installed in front, and can be pointed anywhere
from the forward to downward directions. The ideal modefor
visual servo, when the vehicle navigatesalong the seafloor, is
the down-look configuration; seefig. 1a. The main reason is
that the 4 d.o.f. in the vehicle motion, controllable through
the proper signals to the 4 thrusters, are exactly the same
4 d.o.f. that can be estimated most reliably from the video
frames (of the seafloor). Oncecan claim that the controllable
systemstatesareall observable.How about the uncontrollable
states, namely the pitch and roll motions? While these can
theoretically be determine also from video, the estimation is
seldom robust andaccurate,particularly where the target scene
(seafloor) is relatively flat and is imaged over a relatively
small field of view3 [1]; that is, topographical variations are
small compared to the distance to the seafloor. Accordingly,
the most ideal scenario to maintain positioning accuracy by
visual servo is to navigatewith no, or very little, pitch androll
motion. To observe(estimate) theseother motion components,
inexpensive angle sensorsare often sufficient. In this case,the
video canbe rectified to correct for (stabilized w.r.t) pitch and
roll motions, before processing to estimate the other 4 d.o.f.,
providing all the necessary information for positioning and
mosaicing [3].
For ship inspection, the ROV would need to move along

the sides,while maintaining aconstantdistanceandorientation
relative to the hull. In onescenario,anextra camerais installed
in a side-look arrangement (see fig. 1b), while the vehicle
moves forward/backward along the hull. Alternatively, the
existing cameramay bepointed in forward-look configuration,
while the vehicle moves sideways (left and right) to map
the ship. In either of these situations, the change in ROV

3Recall that the effective f.o.v. is reduced in underwater imaging.

heading corresponds to the pan motion of the camera, which
cannot be estimated with good accuracy from video when
couplewith side-to-side translation. Unfortunately, theheading
change cannot be reliably measured from typical compasses
due to the magnetic masking. In most cases, the reliable
estimation of the dominant motion componentsby the vision
system is reduced to 2-3 degreesof freedom.

B. Stereovision Solution
A stereovision system can overcomemost of the complex-

ities of mapping and positioning with a monocular vision
system, as we explain next. In the remainder, we assume
that the relative positions of the stereo cameras has been
determined by external calibration [51], and any inaccuracy
in the parallel alignment is corrected by stereo rectification
[13], [22]. Clearly, we still haveto overcomethe nearsurface
disturbances, in addition to having to process images with a
lower quality due to the turbidity factor. However, the com-
plexities from cast shadowsare of little concern, and in fact
are exploited to our advantagein improving the positioning
accuracy. Consider as an example a surface with very weak
texture, which may be a poor candidate for temporal and
spatial matching. Suppose the surface is projected with a
relatively strong non-uniform shading pattern. This provides
us with surface markings for stereo matching, just as in 3-
D reconstruction from structured light patterns in industrial
application; e.g., [4], [44], [52].

To explain more formally, consider a nonuniform moving
pattern W(X ; Y; t) on the target surface, at some time t.
It projects onto a local region wl (t) in the left image with
intensity I l (xlw (t); ylw (t)), wherefxl w(t);y lw (t)g denotesthe
coordinates of pixels within the region wl (t). At the next
sampling time t + dt, the samepattern projects onto region
wl (t + dt) comprisingpixels fxrw (t + dt);yrw (t + dt)g:

x lw (t+dt) = x lw (t)+dxw (t) and ylw (t+dt) = y lw (t)+dyw (t);

wherefdxw (t);dyw (t)g is themotionof pixel f xlw(t);y lw (t)g.
Suppose the pattern varies significantly in intensity due to
some strong temporal effect. If the ROV motion is also
complex with 6 d.o.f., the region shape would also change
somewhat4. Then, it is the case that I (xlw(t);y lw (t)) and
I (xlw (t + dt); ylw (t + dt)) have large enoughdifferences, and
wl (t) andwl (t + dt) would differ in shapesomewhatdue to
projection deformations. It thus becomesdifficult to match the
two regions, based on either geometric or radiometric cues.
The same region W(X ; Y;t) appears in the right image at
some disparity, inversely proportional to the distance to the
corresponding points on the target surface. Without loss of
generality, assumethat the surface is relatively flat at some
desired distanceDs from the ROV. There should beminimal
distortion betweenthetwo views fwl (t);wr (t)g of the region,
since the surface is viewed (close to) frontally. Therefore,
the corresponding region wr (t) in the right image consists
of points fxrw(t);yrw (t)g, where

x rw (t) ¼ xlw (t) ¡ f b=Ds and yrw (t) = ylw (t);

4This factor is somewhatimmaterial with respectto the radiometric effects.
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(a) (b) (c)
Fig. 1. Down-look camera configuration for seafloor mapping (a), and two potential arrangementsfor hull inspection (b-c) with arrows
below giving the correspondingmotion direction.

Fig. 2. Two consecutivestereopairs of a relatively feature-lesspool wall. Encircled regions can be readily matchedin the first pair. Though
they can also bematched in the second view, some have a slightly different visual appearancebecauseof temporal shading variations. (see
section 2.B for details).

where f is the effective focal length of the cameras (made
to be the same, if different, through the a priori calibration
process), and b is the stereo baseline. Furthermore, the two
views should havemore or less similar intensities:

I l (xlw(t);y lw (t)) ¼ I r (xrw (t) + f b=Ds;yrw (t)):

The spatial matching problem, only a 1-D search with rel-
atively smooth disparity variations, is significantly simpler
that the temporal matching for the monocular case.With the
stereovision system,we still have to perform temporal match-
ing between consecutive ROV positions, to estimate the ROV
motion. However, as explained in detail below, this motion
problem is also simplified, since we apply the feature/region
matching to rectified (frontal) views with relatively constant
displacements over the image.

Fig. 2 depicts two consecutive stereo pairs of a very low-
textured surface in shallow water (a swimming pool wall),
taken during a system testing operation. Certain matching
texture patterns have been encircled in the first stereo pair.
The same regions can also be identified and matched in the
secondstereopair, though somehave(slightly) different visual
appearancesfrom one time to the next; thus, are (somewhat)
harder to match temporally.

Another advantageof stereovision comesfrom the ability to
estimate with much higher precision the 6 d.o.f. positioning
information (relative to the ship) by utilizing the binocular
cues, as described in the next section. More accurate sensory
information enablesbetter control in maintaining amorestable
platform. Consequently, we would have to process a less
complex motion video due to a smoother vehicle motion.
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III. STEREOVISION-BASEDPOSITIONING

The ROV positioning, by determining the pose and (or)
the frame-to-frame movements, is significantly simplified by
decomposing it into two simpler problems to be solved
consecutively: 1) Three d.o.f by stereo matching applied to
the left and right stereo pairs I l (t) and I r (t) at time t; 2)
Three other d.o.f by frame-to-frame registration. Let the 3-D
vector(- x (t);-y (t);- z(t)) definetheanglesthatdescribethe
orientation of the ROV at sample time t relative to the target
surface. Similarly, X (t) and Y (t) denote the estimatedhori-
zontal and vertical positions with respectto the starting point,
and Z(t) is the instantaneousdistance along the optical axis
from the targetsurface.The3-D vectors(!x (t);!y (t);! z(t))
and(Tx (t);Ty (t);Tz(t)) denotethe estimatedframe-to-frame
rotational and translational motions at time t.
Assume that we want to maintain a frontal view (heading

-y (t) = 0) anda fixed safeperpendiculardistanceZ(t) = Ds
from theship. Ideally, two otherorientation angles,pitch - x (t)
and roll -z(t), are to remain at zero. Ensuring these latter
conditions requires a platform with pitch and roll control,
while most small-size ROVs have a truster configuration that
allows the control of only positions in 3-D and heading.
(Pitch and roll stability is achieved primarily through the
design of the platform, but cannot be controlled through
thruster action.) In our system, we use these measurements
not to control/correct the ROV orientation, but to do pitch
and roll stabilization of the video that is processedfor motion
estimation, image registration andfinally mosaic construction.
We determine at each instant three positioning components

from binocular stereocues–namely from the disparity of I l (t)
and I r (t). These comprise the relative heading - y (t), pitch
angle - x (t), and the distance Z(t) with respect to the local
hull surface, being viewed. Using the measured angles and
distance, we rectify the stereo images: We construct rectified
left ~I l (t) or right ~I r video5 that gives frontal views of the
hull at the desired constant distanceDs; seefig. 3 (top). We
finally determine the translations in X andY and roll motion
!z from rectified views.
For simplicity, assumethe target is a plane with equation

Z = qo + q1X + q2Y is the coordinate system of the left
camera6. This can bewritten nn¢XX,wherenn= 1

qo (¡q1;¡ q2;1)
is the surface normal vector and PP= (X ; Y; Z) is a point
on the plane. As stated, we can readily determine the qi ’s
(elements of nn)from the stereo disparities d = xl ¡ xl at
points ppl= (xl ;yl ;f ). The underlying constraint

d = f b=Z = f b(nn¢pp)

is linear with three unknowns. Disparities at a minimum of
three points, which do not lie on a single image line, yield a
unique solution7. We establish from q1 and q2 the orientation
and from qo the distance of the target surface with respect to
the camera.

5Only left or right video is sufficient
6This concept can be generalized to other locally smooth shapessince we

can determine the target shape from stereo cues. Non-smooth surfaces can
also be treated provided we establish a suitable definition for a frontal look.

7In practice, we usemore points in a least-squareformulation, or RANSAC-
basedimplementation [12].

To construct the frontal view, we need to calculate for
every pixel pp= (x;y; f ) in the original image its position
pp0= (x0;y0;f ) in the rectified image; see fig. 3 (middle).
There arean infinite number of transformations to accomplish
this, as one degree of freedom – rotation !z about the
viewing direction – canbechosenarbitrarily. Sincewe will be
determining this motion in the next step, we choosethe unique
solution comprising no rotation about optical axis. In other
words, the rotation is performedabout the axis rr= (r1;r2;0)
by angle µ:

r1 = ¡ q2q
q21 + q22

; r2 = q1q
q21 + q22

; µ = tan¡ 1(q21 + q22) :

This maps the points PP= (X ; Y;Z) to PP0= (X 0;Y 0;Z0)
on the frontal plane Z0 = qo cosµ. For proper scaling, the
rectified image points pp0= (x0;y0) are constructed from x0 =
¡f X 0=Ds andy0 = ¡ f Y 0=Ds.

Having constructed the rectified view ~I l (t) at each ROV
position, consecutiveframes ~I l (t) and~I l (t + dt) areprocessed
to calculate the displacementsTx and Ty and roll motion !z
about the cameraoptical axis. When the rotation is negligible,
asimple 2-D correlation applied over theentire imageprovides
somelevel of robustnesswith respect to small errors from the
first step. Otherwise, we can deploy the 2-D motion model

pp0(t+ dt) = RR(!z)pp0(t) + TTxy:

This corresponds to an isotropic image transformation with
image shift TTxy = f Tx ;Ty g and rotation !z. In fact, we
can utilize a more general solution based on a similarity
transformation by allowing a scale changes between the two
views (e.g., if the frontal view rectification processdoes not
perfectly yield imagesat the samedistance from the target due
to estimation error in the first step):

pp0(t+ dt) = sRR(!z)pp0(t) + TTxy:

The unknown motion components in either casecan be com-
puted from a number of linear methods, based on feature or
regionsmatching, optical flow, or a direct method [37], [38].

A particular robust close-form solution utilizes a simplified
2-D form of the absoluteorientation in photogrammetry [24].
By defining

cc0(t)= (1=N )
X

i=1:N

pp0i (t);

wecandetermine the translation from TT = cc0(t+dt)¡
sRRcc0(t),
if the scale and rotation are known. The scale is readily
determine from

s =

s P
i =1:N (pp0i (t + dt))T pp0i (t + dt)P

i =1:N (pp0i (t))T pp0i (t)
;

and the planar rotation (angle !z) can be computed from the
equation

¹pp0(t+ dt) = RR(!z)¹pp0(t);

where
¹pp0(t) = pp0(t)¡ cc0(t):
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Fig. 3. Vehicle orientation and distance relative to the target, computed from disparity cues, can be used to generatea rectified video that
simulates frontal views at fixed distance from the target. Eachpixel in the rectified image is projected onto the rotated view basedon position
on the target surface(at desired position Ds ), asdepicted in the middle plot. The bottom image showsthe pool wall surfaceviewed obliquely
in the original image, and in the synthesizedfrontal view after rectification.

The solution, directly incorporating the orthogonality con-
straint RRRRT = II, is given in terms of the left andright singular
vectors of the 2£2 matrix

P
i=1:N ¹ppi0(t+ dt) ¹ppi0(t)T .

Integrating the displacements completes the measurements

of the ROV position, also enabling the construction of the
mosaic from the video, say the left rectified sequence~I l (t).
Simultaneously, thruster control signals are generatedbasedon
the discrepancies from the desired heading and pitch angles,
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and the distance to the hull at each time t.

IV. A DISCUSSION ON DRIFT ERRORESTIMATION

As for most sensor-basednavigation systems,drift error can
play a significant factor in the performanceof our vision-based
navigation and mapping system. To arrive at a quantitative
measureof drift rate, we need to account for a large number
of variables, parameters, sources of noise, etc. These can
vary drastically with environmental conditions, among other
factors, and often cannot be readily estimated with accuracy
particularly in a real-time operation. Therefore, estimating
a realistic performance measure or drift rate is nontrivial.
However, we will discusssomeof the important factors, how
they impact system performance, as well as how the drift
characteristics of our system may be assessedif realistic
estimatesof the parameters from various factors are available.
We use the estimation uncertainty – namely, variance ¾£

or covariance matrix C£ – to assess the propagation of
error through various computational stages. In most cases,
we have¾£i = (C£ (i;i))1=2. As somecomputationsinvolve
nonlinear equations, we use the first-order approximation of
these measures.
At the lowest level, the estimation of quantitative measures

from visual cues depend on the image resolution, and in
particular the precision in locating the image tokens (e.g.,
points) used in a particular computation. Assume that the
uncertainty in localization an imagepoint is representedin the
form of a 2£ 2 covariancematrix Cp (for x andy components).
Without loss of generality, we may assumeCp = ¾2

pII 2£ 2,
where variance ¾p depends on a number of factors: texture
characteristics and distanceof the target scene,water turbidity
conditions directly affecting image quality, accuracy of the
feature detection algorithm, etc. This variance measure is
the underlying critical factor in assessingthe system perfor-
mance. To establish how we may resolve image features with
particular visual characteristics or detect their positions in
underwater imagery, we can take advantage of ocean optics
models and previous work on quantifying the image quality
andcontrastin termsof thewater turbidity; e.g., [6], [25], [32],
[33]. For example, assumethat we determine ¾p based on a
distinctness measure–say the corner measureof Harris interest
point operator –attributed to eachpixel [21]. We may further
approximatethe impact of the turbidity by a low-passfiltering
operation, which directly affects the distinction measure.The
filter parameter(s) –e.g., the variance of a Gaussianmask –can
be parameterized in terms of the turbidity condition, target
range, etc. As a result, we can arrive at the impact of the
optical propagation path for a given turbidity condition on
the image quality, contrast, distinctness measure,and thus the
accuracy in localizing an image feature. Wenext examine how
the uncertainty ¾p relates to ameasurefor drift error.
The first processing step involves establishing the orienta-

tion and distance of the ROV from the target, say a ship.
Assuming the hull surface to be locally planar, disparities for
a minimum of three points–giving us their positions on the
surface – enablesus to estimate the sought after information8.

8Alternatively, we can correlate certain local regions in the two views.

Given that the disparity dd= ppl¡ ppr is based on matching
of pairs fppl;pprg in the left and right views, the variance
¾P of the 3-D point can be expressed in terms of ¾p:
¾P = f1(ppl ;ppr;¾p), where f 1 depends on the particular
3-D reconstruction method [22]. The computation involves
covariance propagation according to CP = (JPp )Cp(JPp )T ,
whereJPp is the Jacobianof the transformation from the image
measurementsto the 3-D scenepoint [20]. Consequently, we
compute the uncertainty in the estimated vehicle orientation
and distance to the target. For example, three points PPi =
[Xi ;Yi ;Zi ] (i = 1 : 3) give the equation of the local
surface patch Z = qo + q1X + q2Y from linear equations.
Accuracy can be improved with the use of more points in a
least-squareformulation, preferably in combination with some
outlier rejection method, e.g. RANSAC [12]. Parametersq1
and q2 establish the orientation and qo gives the distance.
Furthermore, the estimation variance ¾qj (j = 1 : 3) can be
calculatedfrom amodelof the form ¾qj = f 2(Xi ; Yi ;Zi ;¾Pi).
Again, f 2 dependson the estimation method, and is tied to
Cq = (JqP )CP (J

q
P )T , whereJqp is the Jacobianof the solution

qj ’s in terms of the 3-D scenepoints Pi . We reiterate that these
processingstepsgive the instant orientation anddistanceof the
vehicle relative to the target, and do not require integration
over time.

In the next step, the frontal views are constructed by
image warping that can be expressed by the projective ho-
mography Hp, mapping points with homogeneouscoordinates
p̂p = [¸x;¸y; ¸ ]T from original view onto points p̂p0 =
[¸ 0x0;¸ 0y0;¸ 0]T in the frontal view: p̂p0= Hp̂ pp.The 3 £ 3
homography Hp = RR+ TTznninvolves the rotation matrix
RR(rotation by angle µ about axis rr), translation TTz (dis-
placement Ds ¡ q0 cosµ along the viewing Z direction to
maintain the distance Ds to the wall), and surface normal
nn= (¡q1;¡ q2;1)=qo; seediscussion in the last section.

The variances¾qi’s directly establish the variances¾hj ’s of
the homographyparametershi ’s: ¾hj = f 3(qi ;¾qi). Again, we
utilize the homography model and the Jacobian with respect
to qi’s: Ch = (Jqh )Cq(J

q
h )T (note that Hp can be expressed

in terms of qi (i = 1 : 3). Consequently, we compute the
uncertainty in the position of eachpixel in the warped image
(synthesized frontal view) from ¾p0j = f 4(hi ;ppj;¾hi ;¾pj )
[5], where f 4 is established by the projective homography
and the covariance propagation: Cp0 = (Jpp0)Cp(J

p
p0)T +

(Jhp0)Ch(Jhp0)T . The interpolation processin the construction
of the frontal view contributesadditional uncertainty. However,
this is often negligible comparedto themuchlarger uncertainty
given above.

The next step involves accounting for the estimation un-
certainty of the planar motions from one ROV position to
the next, either basedon the 2-D correlation scheme, or the
isotropic/similarity transformation model. In the first case,
the estimation uncertainty is trivially determined from the
weighted sum of the pixel uncertainties used in the computa-
tion. In the two other cases,we can utilize the theoretical un-
certainty measuresderivedfor the absoluteorientation problem
[9], simplified to two dimensions for the isotropic/similarity
transformation between eacheachpair of consecutive images.
Generally, the result can be expressed in the form ¾tj =
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f5(pp0i (t + dt);pp0i (t);¾p0i ), where f 5 is tied to the closed-
form solution for the similarity transformation parameters,
and¾tj ’s give the variances of the transformation parameters
(translations tx and ty , rotation !z, and possibly scales).
Having derived the variances of the motion components,

we are ready to assessthe damage from the integration over
time (drift error) of the side-way motions that are estimated
from pairs of consecutivesynthesizedfrontal views. Skipping
the scale factor s, this can be readily done either for the 3-D
ROV position PPRbasedon the equation [9],

PPR(t + dt) = RR(t)PPR(t)+ TT(t);

or the 2-D mosaic points according to the 2-D similarity
transformation

pp0(t+ dt) = RR(!z)pp0(t) + TTxy:

Given the similarity between the two equations, we give the
simpler expression for the covariance of the mosaic points:

Cpp0(t+dt) = Jt Cvv(t)J Tt ;

where the covariance Cvv(t) of the motion and position vector
vv(t)= [!z(t);Tx (t);Ty (t); x0(t);y0(t)] is givenby

Cvv(t) =
·
C !z ;Tx ;Ty

Cpp0(t)

¸
;

and the Jacobian J of the transformation can be written

J t =
@pp0(t+ dt)
@vv(t)

= [x0(t)II 2£ 2 y0(t)II 2£2 II RR(t)]2£8
·
JRR 004£4
004£1 II4£4

¸

8 £ 5
; JRR =

µ
@RR(!z)
! z

¶

4 £ 1
:

The processis initialized with Cpp0(0) = 02£2.

Ending the dry mathematical derivation of the drift error
on a more positive note, it is appropriate to comment on
ways that it may be reduced or eliminated. Where feasible,
this can be achieved by the integration with an absolute
positioning system.As anexample,anexisting product utilizes
the LBL acoustic technology with a map of the ship to
determine regions of the hull that have been inspected by the
ROV/diver [53]. Integration with the stereovision technology
enablespainting the map with amosaic, incorporating the 3-
D target detection capabilities, and potentially improving the
localization accuracyby fusing high-resolution visual servoing
with drift-free acoustic-basedestimates.

V. EXPERIMENTS

The ship inspection system integrates three automated real-
time capabilities solely from stereo imagery: Estimation of
positioning and navigational information, construction of 2-
D photo-mosaics and computation of 3-D disparity maps
that encode the 3-D target shape. Fig. 4 (top) depicts the
system display screensummarizing thesevarious capabilities:
The left image of the stereo pair shown in top left section,
and the corresponding reconstructed disparity as a color map
right below. The live mosaic is given to the right, with
various motion components above. In addition, instantaneous

positioning and motion information –distanceand orientation
to the target and the xy motion are displayed directly on the
live image.

Experiments with the ROV has been carried out both in
the pool and at a dock in open waters; see fig. 4 (bottom).
Two sample experiments are presented to demonstrate various
system functionalities, and its performance. In particular, the
results from the pool tests are comparedwith those based on
the use of monocular cues in order to demonstrate some of
the main advantagesin the use of a stereovision system.

In these tests, the baseline was fixed at 5 inches, which is
suitable the 3-5 ft operational range. The camerashave been
calibrated, both for internal and external parameters[23]. The
system runs on a 2.4MHz Dual Xeon processor, and carries
out both the stereo and motion computations at 15 Hz.

A. Pool Test
Pool testshavebeencarried out to highlight someimportant

capabilities of the system. Specifically, they allow us to
determine if acceptable performance can be achieved when
the target surface is relatively textureless, and onemay expect
the most significant adverseimpact from shading and shadow
artifacts due to surface waves (see also fig. 2). At the same
time, we can verify if thesecast shadows(in addition to the
actual surface texture) can truly be exploited as projected
markings for region matching in stereo images, rather than
posing a serious challenge. In the experiment described here,
the ROV is positioned at a distance of about 5 ft from the
pool wall; fig. 4 (left). It is manually pulled parallel to the
wall, while performing a sinusoidal-type motion, both in the
Z and headingdirections. The pitch angle is varied similarly,
but with lower variations (since the vehicle is floating near
the surface). The vertical motion is limited, due to shallow
(4 ft) depth of the pool. Fig. 5 gives a sample image of the
wall, the estimated pose (in degrees)relative to the pool, and
the position along the path. The estimated side-way distance
traveled is roughly 7 meters, and aside from the minimal roll
motion, all other significant motion componentsare estimated
with good accuracy.This is also verified from the constructed
mosaic which agrees with the manual measurement of the
distance covered, and the locations of light fixtures and a
fan. During various system developing and testing phases,
numerous (more than 2 dozens) runs were done where the
ROV was instructed to travel the length of the 25-yard pool
while maintaining a fixed distance andheading. In thesecases,
the ROV started and ended at different, but nearby, spots
at the two ends with varying stand-off distances of 50-120
cm. Though the exact covered distance was not measured
manually, observed estimates typically varied in the range
of 23.5 to 24.25 yards, which were within the experimental
accuracy (0.5 yard averageerror would correspond to 2% of
the traveled distance).

Fig. 6 depict various mosaics generated by processing
only the left sequence of the stereo video data, based on
various image transformation models. All of these mosaics
havebeenrendered in the coordinate frame of the first image,
as with one constructed with stereo cues. The immediate



IEEE JOURNAL OF OCEANIC ENGINEERING 9

Fig. 4. Top: Inspection system’s computer display with the live (left) view, superimposedwith various instantaneouspositioning and motion
information, disparity as a color map, 2-D photo-mosaic, and 6 components of position information as time plots (see text for details).
Bottom: Live shots of ROV during demosin the pool (left) and the dock test (middle and right).

observation is that not only the drift error grows relatively
fast, the performance deteriorates with the increasing d.o.f in
the transformation model. In particular, while the projective
model is the most suitable transformation as the ROVmotion
involves all 6 d.o.f., its gives the worse performance (highest
distortion) amongvarious methods.This is directly tied to the
fact that, with the low-texture characteristics of the scene,one
cannot reliably extract and match as many features that are
typically required to estimate the transformation parameters
with good accuracy (see below). Furthermore, the camera tilt
with respectto the pool wall in the first frame results in later
frames to be projected “beyond infinity” in the mosaic frame.
Also, one notes from images 53 and 54 (bottom-right image
pair) that the ROVappearsto beslightly tilted downwards.We
can differentiate whether this is an instantaneous orientation
of theROV or that the camerasaremountedwith somesmall-
angle tilt. Noting that the mosaic based on the similarity
transform depictsacurvedstrip with centerof curvature below,
we canestablish the small-angle downward tilt of the cameras.
These various so-called “misalignments” between the camera
coordinate system and the wall surface are rather difficult to
determine from monocular cues. In contrast, they have been

readily estimated and thus accounted for in construction the
mosaic by processing of the stereo data.

The bottom row showstwo sampleconsecutive images,with
the detected features in each pair. Inlier matches have been
shown by greencrosses,while the red crossesdepict the outlier
matches. These are worse and typical best case scenarios
in processing the entire data set. In particular, four correct
matches is the minimum necessaryto compute the projective
homography. Furthermore, the fact that these features cover a
rather small camera f.o.v. is a major factor in the non-robust
estimation of the transformation parametersin the modelswith
a larger number of degrees of freedom. We reiterate once
again another important advantage of binocular cues that is
particularly relevant when dealing with such pool-wall type
low-textured targets. In processing the monocular data, many
weak surface markings are not matched becauseof the local
variations in visual appearancein consecutive frames, e.g., due
to the more dominant time-varying shading and cast shadows
from the surface waves. To the extend that these affect the
left and right views similarly, the features can be matched in
stereodata.While the temporal matchingdifficulty exists, only
a small number (2 in theory) of correct matchesare necessary
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as the estimation is restricted to image plane motions (up to
3, out of 6, degreesof freedom) in the rectified video.

B. Dock Test
Several dock tests havealso beenperformed at theSeaTech-

nology Centerof Florida Atlantic University, DaniaBeach,FL;
seefig. 4 (bottom).In these tests, the ROV was instructed to
travel parallel to a ship hull at the dock, while maintaining
a fixed distance (about 3 feet) and heading (perpendicular
direction to the hull). The system operated automatically
(under computer control) basedsolely on the position infor-
mation from stereo imagery, while exposed to random wave
disturbances from boats travelling through the entranceof the
nearby waterway. Fig. 5 depict the results from a typical test.
It comprising the first frame of the video at one end of the
hull, and estimates of pose and position of the ROV during
the test. In the next plot, the reconstruction consistency is
demonstrated by comparing the corresponding mosaic with
those from two other runs. In particular, geometric accuracy
can be assessedthrough comparison between any one mosaic
and eachof selectedframes of the video, given in the last two
rows.
Finally, fig. 8 shows selected left views from a trial to

test the target detection capability. The disparity (inverse
target distance) below each image is depicted as a color
map (blue is far, and red is close range). Roughly, only the
region marked by the red rectangle (on the first image) is
within the f.o.v. of both cameras, and thus can be processed
for 3-D reconstruction. To provide a true assessmentof the
tested processing capabilities, we have given here results
from a real-time operation, without any post processing to
enhanceperformance. In particular, no filtering step had been
incorporated to remove isolated noisy estimatesor to improve
estimatesat the edges,to maintain 15Hz processing at the time
of this demonstration. The disparity computation, carried out
over 12£8 windows to reducesensitivity to floating particles,
clearly results in extendedblurring at the object boundaries,as
noted. However, one can clearly discern the spherical object,
the step, and ship surface boundaries.

VI. SUMMARY

Inspections of ship hulls, bridges, port docks, damsandsim-
ilar structuresaresuitable applications of ROVs. Effectiveness
of the operation is directly tied to capabilities that can be
carried out automatically, including navigation and mapping,
with or without humaninteraction andsupervision. This paper
addressesthevisual inspection, navigation andmapping solely
basedon optical imaging. While the challenges of this task
by utilizing a monocular system may be hard to overcome,
we havedemonstrated the significant benefits of stereo vision
for the realization of a robust system. In particular, we have
highlighted the inherent complexities faced by a monocular
system, and how they are resolved with binocular vision.
A real-time system hasbeen developed which, running on

a 2.4 MHz dual Xeon processor, carries out stereo andmotion
computations at 15 Hz. The system has been tested in a
number of experiments in a pool and open sea. The pool

experiments have demonstrated the successful performance of
the system in the absence of surface texture, which often
poses serious problems for feature matching in stereo and
motion. Moreover, being able to control some aspectsof the
experiment, including somerough knowledge of ground truth,
hasbeencritical during developmentalstagesandin improving
the performance. The dock tests, providing assessment of
the system performance under more realistic uncontrolled
conditions, clearly demonstratethe potential in the deployment
of this technology.
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Fig. 8. Dock test of real-time inspection system; Selectedleft view of a stereopair, and computed stereodisparity asa color map (blue far
and red close range).
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