
Design of a 2D Joystick for Robot Control
Based on a 6 DOF Haptic Device

Daniel J. Brooks, Michael Lunderville, and Holly A. Yanco
Department of Computer Science

University of Massachusetts Lowell
One University Avenue, Lowell MA

dbrooks@cs.uml.edu, michael lunderville@student.uml.edu, holly@cs.uml.edu

Abstract—We introduce a simple modification which can be
applied to a commercial haptic device to convert it into a
2D haptic joystick. We also introduce a simplified haptic API
designed to allow rapid development of sophisticated haptic
feedback behaviors on our 2D joystick. Finally, we present a case
study in which we demonstrate the implementation of a haptic
effect for controlling an autonomous robot using our set up. The
design files, software, and instructions needed to duplicate our
set up are being made publicly available.

I. INTRODUCTION

Autonomous mobile robots are often equipped with
sophisticated sensors designed to provide the system with a
model of its surrounding environment. This information can
then be used for making task-related decisions and conveying
information back to the operator. To date, autonomous
systems tend to exceed at well defined tasks such as
navigation, planning, and obstacle avoidance, usually in fairly
structured environments. However, for many current mobile
robotic systems, teleoperated control is still largely favored, in
part due to a human operator’s sophisticated ability to reason
about unstructured environments [1]. Introducing varying
levels of autonomy into a teleoperated system allows for a
human operator to make high level decisions while leaving
other tasks to the autonomy [2]. With this technique, problems
can arise when the human operator does not understand why
a part of the system they do not have direct control over
is behaving in a particular manner (see Fig. 1), usually due
to poor situation awareness [3]. Attempts have been made
to correct these issues by displaying additional sensor and
system state information on the operator control unit (e.g. [4]).

A robot with any level of autonomy must perform as the
user expects from the beginning; it is easy for users to lose trust
in a system, which is hard to regain [5]. Research shows there
are a number of factors which influence a user’s allocation of
control to an autonomous robot system including familiarity
[6], mental model [6]–[8], control [6], [8], reliability [6], [8],
and trust [5]. Haptic feedback could be used to help prevent
these issues by giving the user insight to the robot’s state or in-
tentions. Additionally, haptic technology can be used to create
new shared control paradigms that more closely match user’s
mental models of how the robot is controlled (see Fig. 2).

Haptic interfaces have been used to control many robotic
devices such as rotary cranes [9], wheelchairs [10], and
surgical equipment [11]. Many different haptic control and
feedback strategies have been offered up, and feasibility studies

System
autonomy

Human
operator Joystick

Control
sharing

based on
autonomy

level

Velocity vector

Intention
Velocity

vector

Motor
commands

Fig. 1: Traditional Shared Autonomy

System
autonomy

Human
operator

Joystick Motor
control

Motorized input
Velocity
vector

Motor
commands

Intention

Haptic

feedback

Fig. 2: Shared Autonomy With Haptic Feedback

for these methods have been conducted. Unfortunately, these
studies often do not provide sufficient insight for determining
the most appropriate strategy for any given task. Environmental
feedback strategies try to let users “feel” their surroundings by
having nearby objects emit force which is rendered hapticly.
This force could be a representation of the actual force the
remote system is exerting on an object it is in contact with, or
be a “force field” generated around sensed objects (also known
as artificial force reflection [12]) to prevent contact. Alterna-
tively, behavioral feedback strategies strive to use haptic force
to represent the state or intentions of the remote system [13].
Position-position control is a control strategy in which the
position of a master device is mapped directly (sometimes with
scaling) to a remote slave device position. Position-velocity
control is control strategy in which the position of a master
device is mapped to velocity information for controlling the
movement of a remote slave device [14]. All of these methods
have been used for controlling mobile ground robots.

There has been a great deal of work in the field of haptic
devices and interfaces, especially with respect to research
dedicated to keeping haptic interface systems passive, or stable
(e.g. [15]–[18]). Stability is a common problem found in bilat-
eral control systems caused by time-delay occurring in network
transmissions, which destabilizes the feedback loop between
master and slave devices. Other haptic research has focused
on building or implementing custom haptic devices (e.g. [9],
[19], [20]). Custom design can be quite challenging and time
consuming as it requires building hardware, electronics, and
software systems. However, relatively little of this work has
concentrated on how haptic interfaces impact end users’ inter-
actions with the system, also called human-robot interaction
(HRI). This is especially the case for mobile ground robots.

The emergence of the 6 degree of freedom (DOF) SensAble
Phantom [21] and Novint Falcon [22] has allowed many
researchers to conduct haptic related research by purchasing
commercial devices. Researchers have investigated interface
design and the effects of haptic feedback with respect to
mobile robots using such unmodified commercial off the shelf
(COTS) products (e.g., [23]–[26]). These products provide
a very convenient alternative for researchers not wishing to
develop sophisticated custom hardware devices, and also offer
the advantage of support communities and software APIs [27],
[28]. However, using a higher DOF device such as a 6 DOF
stylus for controlling a robot only capable of 2D movement
may not be as suitable as using a more traditional 2 DOF input
device such as a joystick [29], [30].

We have created an easily reproducible and programmable
haptic joystick modeled after a more traditional commercial
2 DOF joystick. This simple modification will allow HRI
researchers to be able to focus on studying the effects of using
different kinds of haptic feedback in robot control interfaces
using the traditional interaction modality for the task.

II. DESIGN CONSIDERATIONS

Our goal was to create an easily reproducible and pro-
grammable haptic joystick. To facilitate the design process of
our system, we considered the following. First, the joystick
itself should be based on and have the same characteristics as
a popular commercial joystick product. Ideally, a user should
not be able to tell the difference between the haptic version
(without special haptic effects) and the original product it is
based on. This design requirement should allow researchers
to establish a solid baseline interface against which they can
test various effects. In addition, the system should be easily
reproducible. Since constructing a haptic device from scratch is
a non-trivial task, we decided a COTS product should be used
as a base. All other components should be easily obtainable,
with custom components being easily manufactured. Finally,
the software should be easy to interface with. As a large portion
of the robotics community moves to embrace Willow Garage’s
Open Source Robot Operating System (ROS) [31], it seemed
an appropriate choice for interfacing with our system.

III. IMPLEMENTATION

Our haptic joystick solution is comprised of 4 parts: a
COTS haptic device, the joystick arm, a suspension mount,
and software interface.

A. Model Joystick

Our design considerations specified the use of a commer-
cial joystick product whose characteristics should be mimicked
by our haptic system. Joysticks can be separated into hand
grips (also known as flight sticks), finger sticks (arcade size),
and thumb controls (such as those found on modern video
game pads). Our calculations have shown that the Phantom
Omni does not provide enough force for use with a hand
grip, which we verified with a prototype joystick based on
a CH Products Flight Stick [32]. Thumb controls are usually
associated with handheld controllers, and incorporating one
into a stationary fixture seemed unnatural. Thus, our final
design has been based on the CH Products M11L061P (Fig.

Fig. 3: CH Products M11L061P finger joystick [34] [35]

Thigh

Shin
Turret

Stylus

Fig. 4: SensAble Phantom Omni [36]

3) finger joystick [33]; a joystick commonly found on CCTV
products but also used in many other applications including
robot control, such as the Inuktun VGTV operator control unit.
We refer to this product as our model joystick. It should be
noted that our final joystick makes no use of this actual prod-
uct; rather, we have created a hapticly enabled imitation of it.

B. Haptic Engine

As previously mentioned, building a custom haptic device
is difficult process that requires knowledge and skills in me-
chanical engineering and electrical design. Building an adapter
for an existing product circumvents this complexity, and is far
easier to replicate. We elected to use the SensAble Phantom
Omni (Fig. 4) as the base from which to build our system. The
Phantom Omni haptic device is a 6 degree of freedom (DOF)
device already widely used in haptics research that comes
with the OpenHaptics Toolkit API [27], which we discuss in
Section III-E. The disadvantages of this device are that its
many degrees of freedom and stylus grip make it unsuitable for
use as a traditional 2 DOF joystick without modification, and
its size is quite bulky compared to most traditional joysticks.
Additionally, the Phantom’s API has been designed for use in
a virtual workspace, which, if not handled appropriately, can
cause unexpected problems in calculations done on points in
the real world, which we further discuss in Section III-E.

C. Joystick Arm

An important aspect of a joystick is its physical
characteristics [37]. The topmost section of the joystick arm
is the part the user will regard as “the grip.” Extending up
through the surface of the user interface, it is capped with an
ABS plastic handle and is stylized to be the same dimensions
as our model joystick.

Fig. 5: The end effector moves about the surface of a sphere

Two other specific characteristics of particular but not
obvious importance are 1) the physical boundaries of the
device which restrict movement beyond certain points, and
2) the spring mechanism which serves as a centering force.
In prior experiments, we have observed that users tend to
use the physical boundaries of the joystick while driving,
which seems to be easier then holding the joystick at an
intermediate position. Just below the surface of the user
interface, located midway along the arm, is a pivot joint. The
pivot joint is located in the same position along the joystick
that potentiometers are mounted on our model. Our pivot joint
has a 65◦circular range of motion which closely approximates
the model joystick’s 55◦square range of motion, which is
dampened by a circular rubber boot. Users also tend to push
the joystick from one side, relying on the centering force to
hold the stick in position. We have reproduced this effect using
haptics, as discussed in Section III-E.

The bottom of the arm is an adapter connecting to the end
effector of the Phantom Omni. This allows us to simultane-
ously measure the position of the joystick and generate haptic
forces. The end effector’s movement are restricted to rotating
spherically below the pivot joint (see Fig. 5), constraining
the Phantom’s 6 DOF. We have calculated the length of the
joystick arm to maximize the end effector’s range of motion,
thus also maximizing mechanical advantage over the user and
providing the highest resolution for haptic effects.

The arm itself is constructed of grade 5 titanium and ABS
plastic. Titanium was selected based on its light weight and
strength. The titanium parts consist of one 4.75” long 3/16”
round rod and one 3.25” long, 1/2” diameter tube. The pivot
joint is a 1/2” PTFE lined ball joint rod end. The titanium
and ball joint can be purchased from McMaster-Carr (part
numbers #89055K321, #6960T61, and #6960T11), and the
titanium can be cut to length. ABS plastic fittings connect the
pieces of the arm together (see Fig. 7), and are printed using
a 3D rapid prototyping machine. The arm is held together
using 1mm pins inserted through holes in the fittings and
across notches in the rod.

D. Suspension Mount

A special mount has been designed to hold the Phantom
Omni suspended beneath the user interface. The mount po-

Fig. 6: ABS Plastic Parts. Counter-clockwise from the top
right: Joystick Grip, Pivot Adapter, Omni End Effector Adapter

Fig. 7: Arm Assembly. Plastic parts from Fig. 6 are shown in
black, metal parts are shown in grey.

Fig. 8: Suspension Mount. Left: Side View, Right: 3D View

sitions the device a carefully measured distance below the
pivot joint, ensuring that the end effector’s movements are
restricted by the range of motion of the pivot and not the
physical constraints of the Omni. Additionally, we found that
the haptic device has the smoothest range of motion when
mounted at a slight incline, approximately 13 degrees.

The mount is sufficiently rigid so that energy from the hap-
tic devices is not absorbed by the movement of the mount. The
final design consists of an inclined plastic plane, suspended
by four aluminum “T” shaped columns spaced wide enough
apart to not cause interference with the movement of the end
effector. The structure is stiffened with plastic and aluminum
bracing on all four sides to reduce movement. The entire mount
is constructed from 1/4” laser cut plastic, 3/4” aluminum angle,
and 3/16” diameter blind rivets.

E. Software

The Phantom Omni comes with the powerful OpenHaptics
Toolkit [27], consisting of Phantom Device Drivers, a Haptic
Device API, and Haptic Library API. The Haptic Library API
has been designed to compliment OpenGL, allowing scenes

rendered in OpenGL to be given physical properties which
can be explored though the haptic device. This API is not well
adapted for writing software to control a joystick, as this was
not the original intention for the device. The Haptic Device
API (HDAPI) is a low-level API which can be used to read
raw information from the device and control motors. This is a
powerful API for controlling the device; however, it was also
written for use with a virtual environment and is cumbersome
for controlling our joystick set up.

Traditionally, the mobile ground robot driving task has
been performed using 2 DOF joysticks, controlling the linear
(forward) and angular (turning) velocities along two axes lying
on a plane. Using SensAble’s HDAPI, we have created a new
API which not only exposes HDAPI’s low-level control as a
ROS node (haptic driver), but allows us to read and control
the joystick grip position in 2D (Haptic Joystick).

For the haptic_driver node, we found it necessary to
calculate the end effector’s position rather than use the coor-
dinates reported by HDAPI, because the reported coordinates
lie along curved axes. To get the end effector’s position in
a Cartesian coordinate system suitable for measuring position
in the real world, we used the angles of each joint that are
output by the device to calculate our own three dimensional
coordinates. This was done simply by using trigonometry
and knowing the lengths of each part of the arm. The angle
measurements output by the device – turret, thigh, and shin
(see Fig. 4) – are based on their starting position. When the
device is first plugged in, the end effector must be in its dock.
We shift these measurements so that all angles are based on a
horizontal plane. By measuring the lengths of the shin Ls and
thigh Lt (where Lt = Ls = 133.35), the values of x, y, and
z coordinates are computed as

x = Lt · cos(thigh ang) · sin(turret ang)
+Ls · cos(shin ang) · sin(turret ang)

y = Lt · sin(thigh ang) + Ls · sin(shin ang)
z = Lt · cos(thigh ang) · cos(turret ang)

+Ls · cos(shin ang) · cos(turret ang)

The haptic_driver ROS node publishes informa-
tion about the device’s status over the /haptic/status
topic in an OmniStatus message. The OmniStatus mes-
sage includes the device end effector’s 3D pose in Carte-
sian coordinates, the current velocity of the end effec-
tor, and information provided by the HDAPI such as the
turet_angle, thigh_angle, shin_angle, etc. Forces
can be sent to the device on topic /haptic/feedback as
type geometry_msgs::Vector3, specifing the x, y, and
z force components. Finally, the haptic_driver has been
designed to robustly idle in the absence of a ROS master,
allowing it to optionally be started independently and left run-
ning while the rest of a ROS system is brought up and down.

The 2D haptic joystick API allows for more abstract
control of the joystick without loss of functionality, allowing
researchers to focus on the nuances of creating haptic joystick
behaviors. This is accomplished though the use of a calibration
routine and 3D to 2D coordinate transformation. The end
effector’s movement is restricted to the surface of an imaginary
sphere centered about the pivot joint (See Fig. 5). Calibration

is required to establish joystick positioning and orientation in
our coordinate system, and it consists of moving the joystick
to centered, forward, backward, left, and right positions, then
moving the joystick about randomly.

This routine allows us to define two line segments between
opposing maximum points and collect a set of points lying
along the spherical range of motion of the end effector. The
points collected are passed through a voxel filter, yielding an
even distribution. To estimate the center and radius of the
sphere, which corresponds to the location of the pivot joint
and length of our joystick arm, we minimize the difference
between the radius and each point’s distance from the sphere’s
center using least squares. Letting R = x2

c +y2
c +z2

c−r2 where
xc, yc, and zc are the coordinates of the sphere’s center and
R is its radius, the equation of the sphere becomes

−2x · xc − 2y · yc − 2z · zc + R = −x2 − y2 − z2

Solving this for n points gives the matrix equation
−2x1 −2y1 −2z1 1
−2x2 −2y2 −2z2 1

...
...

...
...

−2xn −2yn −2zn 1

xc

yc

zc

R

 =

−x2

1 − y2
1 − z2

1

−x2
2 − y2

2 − z2
2

...
−x2

n − y2
n − z2

n

A linear algebra approach to least squares gives us estimated
values of

0B@xc

yc

zc

R

1CA=

266664
0BBB@
−2x1 −2y1 −2z1 1
−2x2 −2y2 −2z2 1

...
...

...
...

−2xn−2yn−2zn 1

1CCCA
T0BBB@
−2x1 −2y1 −2z1 1
−2x2 −2y2 −2z2 1

...
...

...
...

−2xn−2yn−2zn 1

1CCCA
377775
−10BBBB@

−x2
1−y2

1−z2
1

−x2
2−y2

2−z2
2

...
−x2

n−y2
n−z2

n

1CCCCA

Note that this equation is always solvable unless all n
points are coplanar. The orientation is calculated by transform-
ing the forward-backward and left-right line segments into the
base of an upside-down regular square pyramid inscribed in
the calculated sphere. This is done by shifting the maximum
points defining these line segments so the segments intersect
with each other and the radius touching the sphere’s bottom
(defined by the point collected when the joystick is centered).
The segments are shifted again so that each maximum point
is equidistant from the intersection point. This is followed by
another shift forcing the maximum points to create a plane that
is normal to the radius touching the sphere’s bottom (defined
by the joystick’s centered position) and so the segments are
at a right angle to each other. Finally, the points are projected
onto the sphere’s surface using a ray through each point from
the sphere’s center.

With this calibration, we can then calculate the 2D joystick
position corresponding to any 3D end effector position and
vice versa. Converting 3D to 2D, the point is first projected
onto the plane made by the sphere’s center and the forward-
backward axis. The planar angle is then calculated as the angle
between the ray made by the sphere’s center and bottom and
the ray made by the sphere’s center and the projected point.
The forward-backward output coordinate is measured as the
percentage of this angle to the maximum angle possible, giving
a range of -1 to 1. A similar calculation is done to find the left-
right output coordinate. An algorithm performing the inverse
of this operation is used to convert in the opposite direction.

The joystick can be controlled hapticly by specifying the
(X ,Y) coordinate to which the joystick should travel and the
amount of force to use in getting there. This is done by using a
“gravity well” to pull the joystick toward a certain point. This
effect is based on Hooke’s Law and made by finding the vector
from the current actual position to the target position. A force
is applied in that direction with a magnitude proportional to
the length of that vector and scaled by the input magnitude of
that target. The actual force vector calculation is

F =
min(|v|, dthresh)

dthresh
· ((Fmax−Fspring) ·m + Fspring) ·

v
|v|

where v is the vector from the current position to the current
target, Fmax is the maximum force allowed, Fspring is the
minimum force allowed that creates a spring like effect, m is
the input magnitude, and dthresh is the distance after which
|v| is no longer used to scale the force. m ranges from 0 to 1
where 0 yields just a spring force, and 1 yields the strongest
force allowed. By setting a weak amount of force centered at
the origin, we can create the spring centering effect mentioned
in Section III-C.

The haptic_joystick node provides the 2D control
interface used to program haptic behaviors for the joystick.
The 2D joystick position can be read by subscribing to
the topic /joy_pos which is encoded using the standard
ROS convention of Twist messages. The forward-backward
values are stored in linear.x, and the left-right value
in angular.z; values range from -1.0 (back or left,
respectively) to 1.0 (forward or right). Commanding the
2D joystick can be done by publishing a message to the
topic /joyfeedback. The JoystickInput message
type specifies the joystick’s target linear and angular
positions (-1.0 to 1.0), and the amount of force to use as a
magnitude (0 to 1). take_control (boolean) is used to
toggle the joystick between haptic and non-haptic modes.

IV. CASE STUDY

We are currently in the process of performing user studies
to explore the effects of haptic feedback on situation awareness
[3] using our hardware and software implementation described
in Section III. In the study, participants are asked to navigate a
remotely located semi-autonomous robot down a hallway with
eight obstacles evenly spaced down the center. Each obstacle
has an arrow on it indicating which side the robot should pass.
The robot is capable of autonomously navigating the course
through the use of preset way-poses which allows it to help the
participant with the task of driving. The participant is encour-
aged to rely on this feature not only due to the difficulty of
depth perception when driving by camera, but also due to need-
ing to perform a secondary targeting task which forces them to
move the camera. The joystick has absolute control over the
wheels, and both the participant and the onboard autonomy
must control the robot using the joystick. We have programmed
the steering algorithm to be compliant; that is, the robot will
exert increasing amounts of force on the joystick to get the
participant to change directions, but can also revise its route to
match the participant’s intended course if they remain insistent.
The robot has been programmed to occasionally make a wrong
turn in order to cause this scenario to occur, but performs
correctly close to 90% of the time to encourage trust [5].

Fig. 9: Haptic forces. Top: Target joystick angular position,
Middle: Magnitude of force (m), Bottom: Actual joystick
angular position.

The graphs in Fig. 9 were taken from data collected during
our study and show the angular position of the joystick as well
as the haptic target and force magnitude being exerted over
time. In this scenario, the robot is initially steered towards
the left (incorrect) side of an approaching obstacle, with
the robot’s autonomy intentionally encouraging the behavior.
The participant, identifying the mistake, begins to correct
this by pushing the joystick to the right (tA). The robot’s
autonomy, still believing the robot should be heading left,
responds by increasing the force pushing the joystick left. As
the participant deviates further from the autonomy’s desired
direction, it increases the force pushing left again (tB) in an
attempt to change the participant’s actions. However, as the
participant persists in contradicting the autonomy, the robot
modifies its route to match that of the participant (tC). As the
robot crosses the front of the obstacle, it becomes necessary
to turn left to continue down the hallway. The robot again
exerts a leftward force (tD), to which the participant complies.
As the participant and autonomy both become satisfied with
the rate of turn, the autonomy applies a weak centering force
(tE) to simulate the physical springs of the model joystick.

V. CONCLUSIONS AND FUTURE WORK

We have presented a haptic joystick which has been
designed for easy replication and a simplified API for joystick
control. We have used this setup in the implementation of a
user study, which we described in Section IV. Information
about duplicating the system is available on our website1.

1http://www.robotics.cs.uml.edu/haptics

We will continue using our set up to investigate how
various styles of haptic interfaces impact user interactions
with mobile ground robots. One topic of particular interest
which could be studied through the use of haptic interfaces
is perceived agency. Prior to an initial interaction with an
intelligent system, users may have preconceptions about how
the system should behave, which can lead to frustration in
future ones. Some users may believe the robot is a tool that
should perform tasks on command. Others might see it as an
intelligent agent or “being” they can work collaboratively with
to achieve a common goal [38]. Still others may see it as it as
an agent, but one whose primary function is to act as a tool
(e.g., a service animal). Haptic interfaces could be interpreted
as affording mental state, a trait that Luck and d’Inverno note
as the minimal requirement for a system to be considered
an agent [39]. By better understanding what users believe or
think haptic feedback is and what it means, we will be able to
design more intuitive haptic effects and possibly even change
the way a user thinks about the system they are using.

VI. ACKNOWLEDGMENTS

This work was funded by an Army Research Office MURI
(W911NF-07-1-0216). PHANToM Omni Haptic Device
provided courtesy of SensAble Technologies Inc. Thank you
to Kate Tsui for her assistance in this work.

REFERENCES

[1] T. B. Sheridan, Telerobotics, automation, and human supervisory
control. MIT Press, 1992.

[2] T. B. Sheridan, “Human and Computer Control of Undersea
Teleoperators,” Jul. 1978.

[3] M. Endsley, “Automation and situation awareness,” Automation and
human performance: Theory and applications, 1996.

[4] H. Yanco, B. Keyes, J. Drury, C. Nielsen, D. Few, and D. Bruemmer,
“Evolving interface design for robot search tasks,” Journal of Field
Robotics, vol. 24, 2007.

[5] M. Desai, “Modeling trust to improve human-robot interaction,” Ph.D.
dissertation, University of Massachusetts Lowell, December 2012.

[6] A. Steinfeld, “Slightly subversive methods for promoting use of
autonomy in robots,” in RSS Workshop On Human-Robot Interaction:
Perspectives And Contributions To Robotics From The Human Sciences,
2011.

[7] T. Carlson and Y. Demiris, “Using visual attention to evaluate
collaborative control architectures for human robot interaction,” in New
Frontiers in Human Robot Interaction, a symposium at AISB, 2009.

[8] D. Norman, “How might people interact with agents,” Communications
of the ACM, vol. 37, no. 7, 1994.

[9] A. Takemoto, K. Yano, T. Miyoshi, and K. Terashima, “Operation
assist control system of rotary crane using proposed haptic joystick
as man-machine interface,” in IEEE International Workshop on Robot
and Human Interactive Communication (RO-MAN), 2004.

[10] R. C. Luo, C.-Y. Hu, T. M. Chen, and M.-H. Lin, “Force reflective
feedback control for intelligent wheelchairs,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 1999.

[11] A. M. Okamura, “Methods for haptic feedback in teleoperated robot-
assisted surgery,” Industrial Robot: An International Journal, vol. 31,
no. 6, 2004.

[12] S.-G. Hong, J.-J. Lee, and S. Kim, “Generating artificial force for
feedback control of teleoperated mobile robots,” in IROS, 1999.

[13] D. Barnes and M. Counsell, “Haptic communication for mobile robot
operations,” Industrial Robot: An International Journal, vol. 30, no. 6,
2003.

[14] I. Farkhatdinov, J. Ryu, and J. Poduraev, “Control Strategies and Feed-
back Information in Mobile Robot Teleoperation,” 17th World Congress
of the International Federation of Automatic Control, vol. 1, 2008.

[15] R. J. Anderson and M. W. Spong, “Bilateral control of teleoperators with
time delay,” in IEEE Transactions on Automatic Control, May 1989.

[16] I. Elhajj, N. Xi, and Y.-H. Liu, “Real-time control of Internet based
teleoperation with force reflection,” in IEEE International Conference
on Robotics and Automation (ICRA), 2000.

[17] B. Hannaford and J.-H. Ryu, “Time-domain passivity control of haptic
interfaces,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 1, Feb. 2002.

[18] G. Niemeyer and J.-J. E. Slotine, “Stable Adaptive Teleoperation,”
IEEE Journal of Oceanic Engineering, vol. 16, no. 1, Jan. 1991.

[19] S. K. Cho, H. Z. Jin, J. M. Lee, and B. Yao, “Teleoperation of
a Mobile Robot Using a Force-Reflection Joystick With Sensing
Mechanism of Rotating Magnetic Field,” in IEEE/ASME Transactions
on Mechatronics, 2010.

[20] S. Han and J. Lee, “Tele-operation of a Mobile Robot Using a Force
Reflection Joystick with a Single Hall Sensor,” RO-MAN, 2007.

[21] SensAble Technologies Inc., “PHANToM Omni,” 2011, http://www.
sensable.com/haptic-phantom-omni.htm, accessed Nov. 30, 2011.

[22] Novint Technologies Inc., “Novint Falcon,” 2013, www.novint.com/
index.php/novintfalcon, accessed Jan. 14, 2013.

[23] F. Schill, R. Mahony, P. Corke, and L. Cole, “Virtual force feedback
teleoperation of the InsectBot using optical flow,” in Australasian Con-
ference on Robotics and Automation, J. Kim and R. Mahony, Eds., 2008.

[24] I. Farkhatdinov and J. Ryu, “Improving Mobile Robot Bilateral Tele-
operation by Introducing Variable Force Feedback Gain,” IROS, 2010.

[25] N. Diolaiti and C. Melchiorri, “Haptic tele-operation of a mobile robot,”
in Robot control 2003: 7th IFAC Symposium (SYROCO’03), Sep. 2003.

[26] N. C. Mitsou, S. V. Velanas, and C. S. Tzafestas, “Visuo-Haptic
Interface for Teleoperation of Mobile Robot Exploration Tasks,” in
RO-MAN, Sep. 2006.

[27] SensAble Technologies Inc, “OpenHaptics Toolkit,” 2011,
http://www.sensable.com/products-openhaptics-toolkit.htm, accessed
Nov. 30, 2011.

[28] Kyle Machulis, “libnifalcon,” 2010, qdot.github.com/libnifalcon,
accessed Jan. 14, 2013.

[29] D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose, Y. Kitamura,
K. Kiyokawa, and Stuerzlinger, “3D User Interfaces: New Directions
and Perspectives,” Computer Graphics and Applications, IEEE, vol. 28,
no. 6, 2008.

[30] J. F. Lapointe, P. Savard, and N. G. Vinson, “A comparative study of
four input devices for desktop virtual walkthroughs,” Computers in
Human Behavior, vol. 27, no. 6, Nov. 2011.

[31] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” ICRA Workshop on Open Source Software, 2009,
http://www.ros.org.

[32] D. J. Brooks and H. A. Yanco, “Design of a Haptic Joystick for
Shared Robot Control,” in ACM/IEEE International Conference on
Human-Robot Interaction (HRI), Mar. 2012.

[33] CH Products, “M Series Miniature Resistive Joysticks,”
www.chproducts.com/files/chproducts/brochures/M CH low-res.pdf,
accessed Jan. 14, 2013.

[34] Digikey, http://media.digikey.com/photos/APEM%20Comp%20Photos/
M11L061P.jpg, accessed Jan. 14, 2011.

[35] Digikey, http://media.digikey.com/PDF/Data%20Sheets/APEM%
20Components%20PDFs/M11L061P.pdf, accessed Jan. 14, 2011.

[36] SensAble Technologies Inc., http://www.sensable.com/documents/
images/LargePHANTOMOmniImage.jpg, accessed Jan 14, 2011.

[37] B. D. Kechavarzi and S. Sabanovic, “Evaluation of control factors
affecting the operator’s immersion and performance in robotic
teleoperation,” RO-MAN, 2012.

[38] T. Fong, C. Thorpe, and C. Baur, “Collaboration, dialogue, human-robot
interaction,” Robotics Research, 2003.

[39] M. Luck and M. d’Inverno, “A formal framework for agency and
autonomy,” in International Conference on Multi-Agent Systems, 1995.

