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BACKGROUND:Humans have a fantastic abi-
lity to manipulate objects of various shapes,
sizes, and materials and can control the ob-
jects’ position in confined spaces with the
advanced dexterity capabilities of our hands.
Building machines inspired by human hands,
with the functionality to autonomously pick
up and manipulate objects, has always been
an essential component of robotics. The first
robotmanipulators date back to the 1960s and
are some of the first robotic devices ever con-
structed. In these early days, robotic manipula-
tion consisted of carefully prescribedmovement
sequences that a robot would execute with no
ability to adapt to a changing environment. As
time passed, robots gradually gained the abil-
ity to automatically generate movement se-
quences, drawing on artificial intelligence and
automated reasoning. Robots would stack boxes
according to size,weight, and so forth, extending
beyond geometric reasoning. This task also re-
quired robots to handle errors and uncertainty
in sensing at run time, given that the slightest
imprecision in the position and orientation of
stacked boxes might cause the entire tower to
topple. Methods from control theory also be-
came instrumental for enabling robots to com-
ply with the environment’s natural uncertainty
by empowering them to adapt exerted forces
upon contact. The ability to stably vary forces
upon contact expanded robots’ manipulation
repertoire to more-complex tasks, such as in-
serting pegs in holes or hammering. However,
none of these actions truly demonstrated fine
or in-handmanipulation capabilities, and they
were commonly performed using simple two-
fingered grippers. To enablemultipurpose fine
manipulation, roboticists focused their efforts
on designing humanlike hands capable of using
tools. Wielding a tool in-hand became a prob-
lem of its own, and a variety of advanced
algorithms were developed to facilitate stable
holding of objects and provide optimality
guarantees. Because optimality was difficult
to achieve in a stochastic environment, from
the 1990s onward researchers aimed to increase
the robustness of object manipulation at all
levels. These efforts initiated the design of
sensors and hardware for improved control
of hand–object contacts. Studies that followed
were focused on robust perception for coping

with object occlusion and noisymeasurements,
as well as on adaptive control approaches to
infer an object’s physical properties, so as to
handle objects whose properties are unknown
or change as a result of manipulation.

ADVANCES: Roboticists are still working to
develop robots capable of sorting and pack-
aging objects, chopping vegetables, and folding
clothes in unstructured and dynamic environ-
ments. Robots used for modern manufactur-
ing have accomplished some of these tasks in

structured settings that still require fences be-
tween the robots andhumanoperators to ensure
safety. Ideally, robots should be able to work
side by sidewith humans, offering their strength
to carry heavy loadswhile presenting no danger.
Over the past decade, robots have gained new
levels of dexterity. This enhancement is due to
breakthroughs in mechanics with sensors for
perceiving touch along a robot’s body and new
mechanics for soft actuation to offer natural
compliance. Most notably, this development
leverages the immense progress in machine

learning to encapsulate models of uncertainty
and support further advances in adaptive and
robust control. Learning tomanipulate in real-
world settings is costly in terms of both time
and hardware. To further elaborate on data-
drivenmethods but avoid generating examples

with real, physical systems,
many researchers use sim-
ulationenvironments. Still,
grasping and dexterous
manipulation require a
level of reality that exist-
ing simulators are not yet

able to deliver—for example, in the case of
modeling contacts for soft and deformable
objects. Two roads are hence pursued: The
first draws inspiration from the way humans
acquire interaction skills and prompts robots
to learn skills from observing humans per-
forming complex manipulation. This allows
robots to acquiremanipulation capabilities in
only a few trials. However, generalizing the
acquired knowledge to apply to actions that
differ from those previously demonstrated re-
mains difficult. The second road constructs
databases of real object manipulation, with
the goal to better inform the simulators and
generate examples that are as realistic as pos-
sible. Yet achieving realistic simulation of
friction,material deformation, and other phys-
ical properties may not be possible anytime
soon, and real experimental evaluation will be
unavoidable for learning to manipulate highly
deformable objects.

OUTLOOK: Despite many years of software
and hardware development, achieving dexter-
ousmanipulation capabilities in robots remains
an open problem—albeit an interesting one,
given that it necessitates improved understand-
ing of human grasping and manipulation
techniques.We build robots to automate tasks
but also to provide tools for humans to easily
perform repetitive and dangerous tasks while
avoiding harm. Achieving robust and flexible
collaboration between humans and robots is
hence the next major challenge. Fences that
currently separate humans from robots will
gradually disappear, and robots will start manip-
ulating objects jointly with humans. To achieve
this objective, robots must become smooth
and trustable partners that interpret humans’
intentions and respond accordingly. Further-
more, robotsmust acquire a better understand-
ing of how humans interact and must attain
real-time adaptation capabilities. There is also a
need to develop robots that are safe by design,
with an emphasis on soft and lightweight struc-
tures as well as control and planning method-
ologies based on multisensory feedback. ▪
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Holding two objects in one hand requires
dexterity.Whereas a human can grab
multiple objects at the same time (top), a
robot (bottom) cannot yet achieve such
dexterity. In this example, a human has placed
the objects in the robot’s hand.

The list of author affiliations is available in the full article online.
*Corresponding author. Email: aude.billard@epfl.ch
Cite this article as A. Billard, D. Kragic, Science 364, eaat8414
(2019). DOI: 10.1126/science.aat8414P

H
O
T
O
S
:
L
E
A
R
N
IN

G
A
LG

O
R
IT
H
M
S
A
N
D

S
Y
S
T
E
M
S
L
A
B
O
R
A
T
O
R
Y,

E
P
FL

ON OUR WEBSITE
◥

Read the full article
at http://dx.doi.
org/10.1126/
science.aat8414
..................................................

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 22, 2023



REVIEW
◥

ROBOTICS

Trends and challenges in
robot manipulation
Aude Billard1* and Danica Kragic2

Dexterous manipulation is one of the primary goals in robotics. Robots with this capability
could sort and package objects, chop vegetables, and fold clothes. As robots come to
work side by side with humans, they must also become human-aware. Over the past
decade, research has made strides toward these goals. Progress has come from advances
in visual and haptic perception and in mechanics in the form of soft actuators that offer
a natural compliance. Most notably, immense progress in machine learning has been
leveraged to encapsulate models of uncertainty and to support improvements in adaptive
and robust control. Open questions remain in terms of how to enable robots to deal
with the most unpredictable agent of all, the human.

H
ave you ever found yourself busy forag-
ing in your bag in search of a set of keys? If
so, you may recall that it took only a few
seconds to find them among the disparate
contents of the bag. For certain, you did

not reflect on your abilities andmay have carried
on this display of unique dexterity through a
swift in-hand manipulation, taking out the cor-
rect key and inserting it into the lock even
though the corridor lights had gone out. All day
long, our fingers grasp, move, and transform
objects and interact with objects in various media
such as air, water, and oil. We do not spend time
thinking about what our hands and fingers are
doing or how the continuous integration of var-
ious sensory modalities—such as vision, touch,
proprioception, and hearing—help us outperform
any other biological system in the breadth of the
interaction tasks we can execute. Largely over-
looked, and perhaps most fascinating, is the ease
with which we perform these interactions, re-
sulting in a belief that they are also easy to ac-
complish in artificial systems such as robots.
Manipulating objects is such a ubiquitous ac-

tivity that we forget how difficult it was to ac-
quire this competence as a child. Children are
born with simple grasp reflexes. It takes them
3 years to develop an individuated control of
each finger and another 6 years to display an
adult-equivalent ability for making smooth con-
tact and for planning sequences of manipulation
skills (1). Even for humans, some dexterous activ-
ities may pose a challenge. For example, tying
shoes may be done in various ways, and there
may be several valid models of how to execute
such an activity. In addition, we can visually dem-

onstrate how to do something and what the
expected result may be, but we cannot easily
communicate the magnitude of the applied
forces and torques or the size of the friction co-
efficient necessary to satisfy stability conditions.
Still, we find ways of achieving manipulation
goals through training and exploration even if
the end result is not always optimally performed.
Wemay also adapt as circumstances dictate (e.g.,
tying shoes with an excess of free shoelace or
when the ends are quite short), forcing us to
deviate from our normal methods. Thus, the
context in which interactions are performed af-
fects various parameters of the execution.
Although robotics has made vast progress in

mechanical design, perception, and robust con-
trol targeted to grasping and handling objects,
robotic manipulation is still a poor proxy for hu-
man dexterity. To date, no robots can easily hand-
wash dishes, button a shirt, or peel a potato.

What can robots do today?

Robots are skilled at picking up and manipu-
lating objects in repetitive and familiar settings
such as industrial assembly setups. In such set-
tings, the geometry, material properties, and
weight of the objects are commonly known.
Robots can handle some variation in routine
movements in terms of adapting to small differ-
ences in the object properties, but the whole pro-
cess is typically optimized to a limited set of
expected variations. In early factory settings,
robot arms followed predetermined trajectories
and assumed that objects would always appear
at the same place. Today, robots can adapt their
trajectory to retrieve objects at different loca-
tions, making it possible for objects to be placed
by humans or simply dropped on a conveyer belt
instead of being deposited at exact positions by
other machines. The classical assembly lines in
which robots were bolted into the floor and placed
one after another, typical for the automobile in-
dustry, can now be made more flexible. Objects

moving on conveyers can be detected fairly easily
by cameras and picked up if fully visible. How-
ever, detection of transparent objects or objects
partially hidden (e.g., when stacked on top of one
another) remains difficult.
With the need to frequently change the type

of goods produced, the robotics industry strives
for multipurpose object grasping and handling
solutions. One step toward this objective is to
provide robots with a choice of grippers varying
in size and strength and to enable robots with
tool-changing mechanisms so that they can select
the correct tool. To determine which tool to use
for a given task, a robot must have knowledge of
an object’s properties, such as shape, weight, ma-
terial, and so forth. This information is readily
available in factories where all objects are known.
However, this requirement presents a limitation
for robots in other settings, where the set of objects
to be manipulated may not be known beforehand.

What can robots not do today?

Although robots are adept at handling rigid
objects, they still struggle with flexible materials—
such as fruits and vegetables or clothing items—
that differ in size, weight, and surface proper-
ties. Manipulations that produce a deformation
(e.g., inserting, cutting, or bending) are particu-
larly difficult, as accurate models of the defor-
mations are needed. Industrial grippers often
use pneumatic vacuum pumps to pick up objects
by sucking. This technique is unbeatable when
it comes to grasping an object but is much less
useful for object manipulation (e.g., reorienting
the object and placing it in a confined space).
One step to address this challenge is to provide
robots with more dexterous hands. Yet creating
hands as dexterous as human hands is difficult,
owing to a lack of sensors and actuators equiv-
alent in size, precision, and efficiency to our
skin and muscles.
Improvements in robots’ dexterity are not lim-

ited to the engineering of more-capable hands.
Advanced software programs are required to
analyze in real time the large flux of visual, tac-
tile, and force information and to relate these
different senses to recognize objects andmodel
their transformations. Additionally, robots need
advanced cognitive capabilities to predict where,
how, and why to manipulate objects. The rest
of this Review describes why overcoming these
challenges is difficult and where the field of
robotics stands today.

Why is designing robotic
hands difficult?

Although research on robot hands has been on-
going for more than five decades (2–4), the most
common hand used inmany applications to date
is still a parallel jaw gripper, usually without any
extra sensing. Picking up objects with a gripper
devoid of sensing is akin to grasping with the
tip of your thumb and index finger when both
are numb! This tool may suffice for simple pick-
and-place actions, but not for more-complex
motions such as shuffling keys. Because the
humanhand performs intricatemovements with
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ease, it is a natural inspiration for robotics. But
designing robotic hands with sensors and ac-
tuators similar to those of the human hand is
difficult for many reasons.
When constructing anthropomorphic robot

hands, it is challenging to fit all of the necessary
actuators, sensors, and mechanical structure in
the limited available space. Another obstacle is
to keep the total weight of the hand low so that
it satisfies the payload requirements of the
arm to which it is attached. Hence, compared
with human hands, most anthropomorphic
hands and prostheses do not have nearly as
many controllable degrees of freedom (5, 6).
The human hand is soft and flexible, with a

dexterous thumb whose distinctive range of mo-
tion remains difficult to replicate mechanically
(7), as the intricate combinations of tendons and
muscles differ markedly from traditional serial
robotic joint design (8). Today, robotic hands are
still largely composed of rigid plastic and metal
components, with electric motors as actuators.
This rigidity is partially the cause of the lack of
dexterity, as it allows no room formistakes when
executing grasps. Rigid fingers closing on an ob-
ject may easily move rather than grasp an object
if its pose is not perfectly estimated, and apply-
ing too much force may crush the object. A grow-
ing trend in robotics is the development of soft
hands that can conform to an object’s shape,
absorb unexpected forces at contact, and com-
pensate for load change during manipulation
(9, 10).
Softness can be achieved through a change in

hardware or software or a combination of both
(Fig. 1). Softness from material used to construct
hands builds on solutions from 3D manufac-
turing and materials science. For instance, one
can manufacture rigid and flexible materials in
a layer-by-layermanner to create foldable fingers
that can deploy and retract as needed (11). Cur-
rently, the low payload and slow speed of these
elastomers restricts manipulation to light objects
only. As an alternative to generate more power,
pneumatic or hydraulic actuation may be used
(12, 13).
Human hands are covered with a multipurpose

skin that provides the appropriate level of friction

and damping. Human skin is a high-frequency
and high-resolution sensor that provides precise
information on normal and tangential forces,
information that is critical for grip adjustment.
Human skin can also measure stretch and tem-
perature. By contrast, robot hands typically mea-
sure exerted forces through miniature force
sensors placed solely at the fingertips (14). Force
sensors yield very accurate 3D measurements,
but they cannot easily reveal the exact location
of contact. Tomove objects once held in the hand
or to hold multiple objects at once (Fig. 1), one
needs to measure precise contact points, not just
at the fingertips but also along the length and
side of the fingers and inside the palm. This can
be achieved through artificial skins that provide
contact measurements all along the limbs. In-
terest in artificial skins can be traced back to the
1980s (15, 16), but major advances were achieved
in the past decade.
At present, we find a variety of affordable

commercial products, several of which can be
customized to a robot’s shape. Touch sensors
measure the normal contact force; a few also
provide data on tangential forces, torque, tem-
perature, vibrations, or surface properties. Never-
theless, most touch sensors are rigid, and their
placement is constrained to fingertips and along

limb segments. Touch detection at the joint
(knuckle, elbow, knee) is, however, crucial to de-
tect entrapment. It is also useful to guide explo-
ration inside objects (17). Such contact can be
detected only by soft sensors that bend and ex-
tend along the flexion and extension points of
the limb (Fig. 2, right) (18). Hence, flexible and
stretchable skins are of utmost interest to robot-
icists (19). Prototypes exist in laboratories, and
we can expect to see their deployment soon,
given the current interest in soft electronics (20).
As an alternative to using skin, it is possible

to deduce haptic (contact and force) information
from vision. One can, for instance, infer forces
from vision through a dynamicmodel of contacts
(21) (Fig. 2, left) or use an optical sensor that
renders deformation of an object’s geometry at
a high spatial resolution (22). The necessity of
estimating the exact position of an object, its
local geometry, and other properties such as
weight and weight distribution depends strongly
on the application. It is the interplay among
hand design, material, and internal and external
sensing that offers the appropriate redundancy.
One additional challenge is the need to mea-
sure contact at a very high frequency for accu-
rate and timely detection of slip (23). Such high
spatial and temporal resolution, together with
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Fig. 1. Soft hands. Robotic hands are traditionally made of hard materials with rigid control of fingers. Recent designs aim to mimic the human hand’s
natural compliance by using soft actuators, soft materials, and advanced controllers. (A) Rigid material and actuators and (B) a rigid cover with
partially soft cable-driven actuation: Both hands become soft through software intervention, modulating pressure at the fingertips via tactile feedback.
[Reproduced from (17, 33)] (C) A soft, foldable gripper that can adapt shape and stiffness. [Reproduced from (11)] (D) Soft actuation and material
for a rehabilitation glove that can be worn by a human. [Reproduced from (12)]

Fig. 2. Sense of touch for robots. (Left) Vision can be used to infer contact forces (red).
[Reproduced from (21)] (Right) Stretchable artificial skin measures contact at knuckles, which may
be useful for exploring internal parts of objects. [Reproduced from (18)]
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the real-time processing of vision data for ob-
ject tracking, leads to a computational overload
with a massive data stream that must be inter-
preted in real time. This processing is usually
carried out by a CPU (central processing unit)
located away from the hand. Alternatively, pro-
cessing may be performed on the hand itself
through the use of a dedicated CPU (24), but
such CPUs have focused solely on processing
vision data. Additional studies are needed to
develop hardware for processing tactile infor-
mation in conjunction with vision.
Dexterous robot hands may hence be realized

by using research in materials science for the
design of soft actuation, enabling contact sensing
along the entire surface of the hand, and by using
advances in electronics for onboard, real-time
processing of multisensory data.

Design beyond anthropomorphism

Although the human hand is fascinating, it does
not have to be the ultimate solution for robotics.
A human hand design may be desirable for aes-
thetic reasons; for instance, when designing hand
prostheses or humanoid robots. But this same
design may be superfluous for many robots. In-
dustrial hands remain a good solution for spe-
cific tasks. Rather than try to replicate the
positioning of human fingers, these hands have
two or three fingers arranged symmetrically
around the palm, a design particularly suited
for industrial screwing.
Robotics keeps oscillating between anthropo-

morphic and traditional industrial designs for
hands. But the gripping systems of simpler ani-
mals may also provide inspiration. For instance,
fish suck in their prey. Adding suction at robots’
fingertips is useful under water, as this technol-
ogy cancels the flow generated by the hand (25).
Why not create hands that both leverage and

go beyond nature? For instance, the human
thumb is amazing, but it creates an asymmetry
that constrains the orientation of the hand for
manipulation. Two thumbs on the same hand,
however, would provide a dexterity beyond
human capability (Fig. 3).

Desiderata for the next generation
of robotic hands

The objects around us have been built and
adapted to our hands, which are still rather
small and very robust in comparison with con-
temporary robot hands. Enabling robots to pick
up small items such as pens, raisins, screws, and
needles is a clear functionality goal. Today, ro-
botic arms and hands are commonly developed
separately, and integrating them is an engineer-
ing job of its own. Industrial arms have sub-
stantial payloads but are commonly designed to
be bolted into the floor and are too large to be
deployed outside industrial settings. The arms
of humanoid robots and robots intended for
fine assembly tasks have low payloads, which
are typically not sufficient to carry a hand and
an object held by the hand. Adding sensing
functionality to arms and hands requires cab-
ling that can quickly become complicated. Fur-

thermore, many hands come with no or limited
means of measuring contact and forces. Thus,
a change in paradigm is needed to move away
from developing robotic arms devoid of hands
and hands devoid of arms. We must further
ensure that hands are developed in a “plug-
and-play” manner and can easily be attached
and detached through existing tool-switching
systems. State-of-the-art force and tactile sen-
sors must become an inherent part of the arm–
hand system.
Robot dexterity is as much a by-product of

advances in hardware as it is of advances in soft-
ware. It requires suitable algorithms to rapidly
and efficiently process the vast amount of in-
formation collected through sensors and actua-
tors. At the same time, it needs algorithms to
adequately control the movement of a hand in
relation to object, scene, and task properties. We
next review advances in perception, control, and
learning for manipulation.

Perception for manipulation

As for humans, robot perception for manipu-
lation is multimodal (Fig. 4). Vision is instru-
mental for recognizing and localizing objects.
When associated with a database of existing

objects, robot vision can help infer geometric
and physical properties of known and even
unknown objects (26), and this information is
important for shaping the aperture of the hand
and the forces to be applied. Proprioception—
namely, knowledge of where the robot’s limbs
are located—is needed to guide the arm andhand
toward the object, with visual support to contin-
uously track the object. Touch and force mea-
surements become important once contact has
occurred and the object is held or explored by the
hand. The associated control algorithms are used
to guide the grasp and/or to infer the object’s
physical properties, such as rigidity and mass
distribution, thatmay have been poorly estimated
or unknown previously. Sound has also received
attention recently as ameans to infer an invisible
object’s content and to monitor changes in
content during manipulation (27).
As an example, a robot is tasked with fetching

a package of milk from a refrigerator. Before the
robot holds the package in hand, it may not
know howmuchmilk the package contains nor
the package’s actual weight. Given that the
package may be made of cardboard, the robot
needs to know the weight in order to apply a
suitable grasping force and avoid destroying
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Fig. 4. Manipulation is
multimodal. Vision is used
before contact, whereas
haptics and sound are
involved upon contact to
estimate an object’s
physical properties that
cannot be directly observed.
[Photo: Learning Algorithms and
Systems Laboratory, EPFL]

Fig. 3. Designing hands beyond human dexterity. Two thumbs would make it possible to execute
screwing and unscrewing motions with one hand rather than two. This capability may be useful
for robots and humans via prostheses. [Illustrations: Laura Cohen]
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the package. In the case of milk, sound may
also provide information about the viscosity
when the package is shaken, as milk will sound
different from another substance, such as yogurt.
Over the past few years, major efforts have

been undertaken to analyze visual information,
and progress has been considerable. Neverthe-
less, robots still struggle to recognize objects that
are partially occluded (28), particularly when
viewed from amoving camera or when an object
moves in a robot’s hands (29). In comparison to
developing vision algorithms, much less effort
has been devoted to analyzing haptic informa-
tion, given that solutions for covering entire
hands with haptic sensors are still lacking. To-
day, visual and haptic information are still used
primarily in a sequential manner [e.g., with vis-
ual information provided in the preparation
phase and haptic data provided upon contact
(30)], and only a few recent works integrate both
modalities for recognition, grasping, in-hand
adaptation, and shape reconstruction (31–35).
In comparison, humans are proficient at alter-
nating between different senses, from vision to
touch and back, and can do so rapidly even if
these senses change in processing frequency.
By contrast, robots still lack the ability to decide
what sensors to use, when to use them, and
when to switch between sensors.

Grasping: A stepping stone

Before a robot canmanipulate an object in hand,
it must be able to grasp its fingers around the
object. If grasping is conceptualized only as get-
ting fingers around an object with no additional
constraints considered, the challenge of grasping
may appear to be solved. However, grasping an
object is a far more daunting problem. For dec-
ades, researchers have worked to establish the
theory of how to form a stable grasp. This be-
came an intricate mathematical exercise aimed
at determining theminimal number and optimal
positions of the fingertips on the object’s surface
to ensure stability (36).
Although it is valuable, most of this theoretical

work relies on assumptions such as a known 3D
model of the object, a rigid point contact, and no
uncertainty in the process. To incorporate uncer-
tainty originating from imperfect object models
and dynamics in the interaction process, we
must go beyond modeling a single point contact
and pursue substantial advances in the basic
theory.
Thus, many of the more recent approaches

are data driven (37). To avoid computing an op-
timal grasp each time a robot encounters an
object, one can build a database of grasps and
employ methodologies for sampling and rank-
ing candidate grasps in real time. This approach
deals with uncertainty in perception and pro-
vides fast and online generation of grasps for
known, familiar, and even unknown objects. Prior
knowledge of object properties determines the
necessary perceptual processing and associated
object representations for generating and rank-
ing grasp candidates. Although this method
works well for known and familiar objects, un-

known objects necessitate additional heuristics
for the discovery of geometric structures (e.g.,
handles, for which a robot would have a can-
didate grasp). This challenge is closely related to
the classical problems of instance recognition
and categorization in computer vision, but the
notion that grasping is not an isolated process
adds a new dimension.
In addition to being object dependent, grasps

are also robot dependent. Moreover, as the num-
ber of degrees of freedom of the hand increases,
so does the complexity of the control. This is
particularly an issue for anthropomorphic hands.
One avenue of research to simplify the control
draws inspiration from biology and promotes
the use of postural synergies (38). Synergies form
a basis of the subspace of effective human move-
ments in relation to those that are possible by the
kinematics of the body. These have been used as
a tool for robot hand analysis, control, and de-
sign choice (39–42). Several studies have also
demonstrated how underactuated hands can
be leveraged to grasp and manipulate objects in
unstructured environments and how this work
may lead to adaptive hands that are relatively
cheap, lightweight, and easy to control compared
with fully actuated hands (43–48). More recent
work has optimized hand design to improve
manipulation capabilities (49, 50), providing
open-source software for such design. Other
recent work has suggested that the ability of
compliant hands to deform in and with the
environment may reduce the cognitive load of
manipulation (51). Furthermore, this idea can
be studied systematically using morphological
computation (52), in which compliant interac-
tions allow adaptation of behavior to a particular
context, without the need for explicit control.

From grasping to manipulation

Grasping is not an end on its own; it is also rel-
ated to the task a human or robot is executing.
For example, one grasps a cup differently de-
pending on whether the goal is to drink from it,

fill it with fluid, put it in a dishwasher, or serve
it to another person (53) (Fig. 5). Similarly, al-
though a knife, fork, or spoon may be held with
the same grasp when used to mix soup, this
grasp differs from those employed when these
utensils are used for eating or cutting. To de-
termine the optimal way to grasp an object,
one must understand the purpose of the grasp.
Hence, while roboticists aimed to solve the prob-
lem of how to grasp an object, they first had to
identify the reason for executing the grasp. To-
day, researchers consider grasping as part of an
overall plan for object manipulation.
To determine the correct grasp to use with

the correct tool, one must first have the correct
tool at their disposal. When in need of a hammer
but no hammer is in reach, a human will instead
select the first object sturdy enough to act as a
hammer. Future efforts to develop robots that
can reason in this manner when the most ap-
propriate tool is not available will be critical to
facilitate deployment of robots in natural envi-
ronments. Additionally, robots with this capabil-
ity will be able to use tools originally designed
for human dexterity to perform household tasks
without making undesired modifications to our
households. How to program such “common
sense” tool use is hence an important avenue
for research, and some initial work has been
conducted in this direction (54–57).

Manipulations that remain difficult

The previous sections detail the many problems
that remain to be solved before robots can per-
form grasps with a human level of intelligence.
This said, robots are already fairly efficient at
grasping and releasing certain types of objects.
They are also capable of performing a variety of
simple manipulation actions such as throwing
(58), sliding (59), poking (60), pivoting (61), and
pushing (62). Difficulties arise when these ac-
tions must be performed in cluttered environ-
ments or require contact-rich interactions (e.g.,
when an object of interest is placed close to or
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Fig. 5. Grasp functionality. (Top) A
human grasps an item differently
depending on whether the aim is to
hold it, open the cap, or hand it to
someone else. (Bottom) Robots can
also be programmed to hold the
same glass differently depending on
whether they are tasked with
handing it to a human or pouring out
its contents. [Photos: Learning
Algorithms and Systems
Laboratory, EPFL]
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is covered by other objects or is located in a
confined space such as a shelving unit). It is ne-
cessary to plan a feasible path and generate a set
of intermediate actions to ensure no damage to
the hand or other objects. Today, it is also recog-
nized that perception and control are tightly
coupled, and the field of interactive perception
(63) regardsmanipulation as ameans to perceive
and perception as a means to achieve better
manipulation.
Manipulation actions that generate changes

on the object (cutting, crushing) remain partic-
ularly difficult, as they require a model of the
deformation and advanced perception to moni-
tor the alterations (64). To facilitate adaptation
to the changes induced, these actions also neces-
sitate that the forces be applied by the hand (e.g.,
a reduction of friction when unscrewing a bottle
cap, an increase in viscosity when digging into a
melon) (Fig. 6) (65). Thus, modeling an object’s
friction and viscosity properties is still an im-
portant open problem.
In-hand manipulations in which an object is

moved while being held are also particularly
complicated. Examples include twirling a pen
across fingers or preparing a key to be inserted
into a keyhole. These actions comprise an exten-
sive combination of (re)grasping movements
and sliding and rotating maneuvers, as well as
interactions between twoarmsandhands, in some
cases. When discussing such advanced interac-
tions with objects in robotics, we commonly talk
about intrinsic and extrinsic dexterity. The former
denotes the ability of the hand to manipulate
objects using its available degrees of freedom.
Hands with high intrinsic dexterity often mimic
the structure of the human hand (66). Alterna-
tively, the hand can be simpler, and the end-
effector is designed specifically for a particular
task (67, 68). Extrinsic dexterity is the ability to
compensate for the lack of degrees of freedom by
using external support, such as friction, gravity,
and contact surfaces (69). This functionality also
enables dexterous manipulation with simple pa-
rallel grippers.
One of the largely underdeveloped areas in

robotics is dual-arm or bimanual (70) manip-
ulation, as well as the use of the second hand
and/or arm to support both intrinsic and ex-
trinsic dexterity (71). Some recent work in this
area (72) proposes integration of object repre-
sentation, definition of simple movement pri-

mitives, and planning to model the problem in
an efficient manner. This area will gradually
produce more and more contributions in the
future, given that most of today’s humanoid ro-
bots have bimanual capabilities. Furthermore,
manipulation does not stop at simply controlling
the hand; it requires control of the arm, torso,
and ultimately the entire body (73). The chal-
lenges listed above only increase in scale when
one wishes to enable a full humanoid robot to
manipulate objects while maintaining its balance
(74) (Fig. 7). Finally, control of more-complex
manipulation skills that require reasoning, such
as using an object to retrieve another object, are
still in infancy.

Learning for manipulation

Human dexterity is a skill acquired during child-
hood and further refined throughout life, in
activities such as playing a musical instrument
or practicing a craft. Similarly, robot dexterity
cannot be achieved in the confines of our labor-
atories. To be able tomanipulate the vast array of
objects that exist throughout the world, robots
must be able to learn continuously, adapt their
perception, and control unfamiliar objects.
Learning also addresses some challenges linked

to the lack of accurate models of objects and
contact dynamics and the increasing complexity
of control for robots with large degrees of free-
dom. Hence, many of the present approaches to
dexterous manipulation rely on learning meth-
odologies in place of control-theoretic approaches.
For instance, learning can be used to embed rep-
resentations of stable or suitable grasps (75–78),
which can then be applied to verify stability and
generate regrasping motions at run time or to
catch a fast-moving object (79). Learning is par-
ticularly suitable for embedding the dynamic
nature of grasping and manipulation, as well
as for modeling manipulation of complex non-
rigid objects. Learning has been used to model
contacts (80) and is also beneficial for reducing
control dimensions by determining latent space,
as required in bimanual dynamics (65).
Nevertheless, solving all problems by solely

relying on learning is not a viable solution and
has certain limitations. First, learning requires
data for training, and a common approach is to
generate data from trial-and-error experiments.
However, this process is tedious and may dam-
age the robot. A growing trend in providing

training data is to test the algorithms in sim-
ulation first and then refine the learning on a
real platform; e.g., for learning dexterous in-hand
manipulation (81–83). Training in simulation de-
pends on having an accurate simulator of the
tasks. Alternatively, robotsmay learn from image
data and videos available on the internet (84) or
from demonstration by a live expert, usually a
human. Yet it may not always be possible to find
an expert, especially when the tasks are danger-
ous or require extreme precision.Hence, although
learning is important, it cannot be the answer to
every problem in robotics.
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Fig. 6. Remaining challenges for robot manipulation. Dexterous movement of objects within the hand (left), manipulation of deformable objects (e.g.,
fruits and vegetables) (65) (middle), and manipulation of objects in collaboration with humans (right) present ongoing difficulties. [Photos: Learning
Algorithms and Systems Laboratory, EPFL]

Fig. 7. Whole-body manipulation. Manipulation
of a heavy object by a humanoid robot requires
coordination of arms and body to maintain
balance. [Reproduced from (74)]
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Manipulating objects in interaction
and collaboration with humans: Reality
and challenges
Human–robot collaboration in manufacturing
setups has been deemed crucial for the industry
(85, 86). Although historically, humans were pro-
hibited from entering the robot’s environment
(ISO 10218; ANSI/RIA R15.06-1999), it is now
accepted that robots can work in close proximity
to and in collaboration with humans. However,
potentially dangerous scenarios may still occur
and need to be addressed. Currently, human–
robot collaboration is allowed through the use
of manipulators that remain fairly light and are
endowed with internal force sensors for detect-
ing unexpected contact or collisionwith humans.
For applications that requiremaneuvering heavy
weight, robots capable of managing the weight
may be coupled with an external vision system
for monitoring human presence. Yet challenges
remain for accurately detecting human pres-
ence. At present, the best solution is to com-
bine sensing of proximity and force with external
vision-based monitoring. Nonetheless, the 100%
fence-based safety paradigm is gone, and indus-
trial standards now target riskminimization and
mitigation (ISO/TS 15066).
In addition to facing a world in which objects

move and change, robots are now expected to
manipulate these objects in collaboration with
humans. Interactive and collaborative manipu-
lation adds a new dimension to robot manipu-
lation but presents a wealth of challenges (87).
For example, when a robot is tasked with hand-
ing an object to a person or carrying a large
object jointly with someone, the robot must
grasp and move the object carefully and with
foresight, so that the robot can infer where the
human will move and the human does not get
injured. As simple as it may seem, the act of a
robot handing an object to a human entails
several complex questions, which have in turn
inspired studies on how to enable a robot to
properly perform this task (88–92). These ques-
tions range from how to present an object for
optimal human grasping to others related to
social factors, such as the role of gaze, social
cues, and awareness of user state. There is no
agreement on what factors are most important
in determining how handovers are carried out
between two humans, let alone between a robot
and a human. Although most research has foc-
used on a robot handing objects to humans,
there have also been studies on robots taking
objects from humans (93–95). Additionally, sev-
eral efforts have been aimed at enabling a robot
to manipulate objects jointly with humans, and
the act of carrying objects jointly with humans
has been demonstrated using both humanoid ro-
bots (96–99) andmobilemanipulators (100–103).
Notable recent efforts have explored human–
robot joint manipulation of deformable mate-
rials (104), helping humans to dress (105), and
assistive support (106).
Hence, for robots to work seamlessly with

humans, researchers are striving to equip robots
with the tools for better perception of humans

and more adaptive control modes. In addition,
roboticists seek guarantees in terms of machine
performance and the use of common evaluation
scenarios and benchmarks.

Outlook

Since the 1960s, substantial progress has been
achieved in several areas of robotic manipu-
lation. We have established the basic theory
of evaluating stability of a grasp, control algo-
rithms that can adapt to unpredicted situations,
and changing dynamics when the appropriate
sensor feedback is available to perform state es-
timation. Lately, the field has also seen advances
in data-driven approaches in which even dexter-
ous in-hand manipulation can be accomplished,
but only for very specific problems and in highly
tailored environments. Achievement of robust,
flexible, and adaptive grasping andmanipulation
of completely unknown objects in media such as
water and oil (not solely in air) is expected to
result in amajormanufacturing revolution,which
will affect most of the work that relies on fine
manipulation and high dexterity. However, sys-
tematic development is ongoing toward several
technologies vital for meeting and exceeding hu-
man dexterity and fine manipulation capabilities.
First, there is still a need for basic theoretical

development. We must seek to understand and
model soft point contact and provide stability
rules for both point contacts and surface con-
tacts. We also need to develop a better method
for modeling objects whose states change mark-
edly after manipulation (e.g., a cucumber after
being sliced, an onion after being chopped). A
thorough description of manipulation and task
goals will be required for planning and gener-
ating appropriate intermediate grasping and
manipulation actions. This emphasis on theory
and planning is also relevant for data-driven
approaches, as we need better tools for sim-
ulating soft bodies and generating relevant
scenarios and examples that include force and
torque information.
In addition to the aforementioned modeling

and software aspects, we also seek to achieve
substantial progress in hardware development
and design. One area of particular relevance is
that of robot sensing. It will be important to
develop skinlike sensors that are well integ-
rated with hand design but do not require ex-
cessive cabling or add substantial weight. This
sensing functionality should facilitate force
and torque measurements, determining shear
forces to detect and counteract slippage. To
achieve dexterous in-handmanipulation, we also
need actuated hands that can be controlled with
high frequencies. Such hands must function in
different media (air, water, and oil) without
being damaged or needing to be covered by
special gloves. Overall, we need hands that are
light, cheap, robust, and easily integrated with
any type of robotic arm.
Finally, an important industrial challenge will

be to bring robots in closer proximity to humans
and enable safe physical interaction and collab-
oration. Fences that used to separate humans

from robots will disappear gradually. Robots
will thus need to be engaged in collaborative
tasks to jointly manipulate objects with humans
while adapting to unexpected human behavior.
Equipping robots with advanced physical inter-
action capabilities to achieve safe and smooth
synchronization of motion between machine and
human is still a major hurdle. This objective will
require advances in detailed tracking of human
fine body movement, as well as a better under-
standing of how humans collaborate and achieve
joint goals through planning and direct physical
interaction. Furthermore, there is a demand
for robots that are safe by design, putting focus
toward soft and lightweight structures as well
as control and planning methodologies based
onmultisensory feedback.Humanways of acting
will continue to serve as inspiration for future
robot systems, and robots will serve as a tool for
better understanding humans.
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Hand it to you
Our ability to grab, hold, and manipulate objects involves our dexterous hands, our sense of touch, and feedback
from our eyes and muscles that allows us to maintain a controlled grip. Billard and Kragic review the progress made
in robotics to emulate these functions. Systems have developed from simple, pinching grippers operating in a fully
defined environment, to robots that can identify, select, and manipulate objects from a random collection. Further
developments are emerging from advances in computer vision, computer processing capabilities, and tactile materials
that give feedback to the robot.
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