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Abstract: A dynamic modelling approach is presented to compute the lumped parameter
hydrodynamic coefficients of an underwater vehicle conceived as a multi-body underwater
system. The vehicle-base is composed by heterogeneous robots and bodies (both actuated or not
actuated), rigidly connected giving rise to a multi-body system called “cluster” in the paper. In
order to model the nonlinear dynamics of the cluster, a modular approach has been proposed
based on a proper composition of the dynamic models of the individual elements.
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1. INTRODUCTION

Raw materials are of paramount importance to produce
most goods employed in everyday life. In recent years,
there has been a growing interest in moving to the deep sea
for the research of new deposits of raw materials, however
exploration technologies are expensive and environmen-
tally unfriendly.

In order to reduce the cost of mineral exploration at
sea currently performed by Remotely Operated Vehicles
(ROV) and dedicated Surface Support Vessels (SSV) with
crew, there is a need to develop an autonomous, reliable,
and cost effective technology to map vast terrains in
terms of mineral and raw material contents. Furthermore,
there is a need to identify the most rich mineral sites
in an efficient manner and with minimum impact to the
environment.

The ROBUST project Simetti et al. (2017), funded by
the EU commission under the Horizon 2020 programme,
aims to tackle the aforementioned issue by developing
sea bed in-situ material identification through the fusion
of two technologies, namely laser-based element-analysing
capability merged with Autonomous Underwater Vehi-
cle (AUV) technologies for sea bed 3D mapping. The
underwater robotic laser process is the Laser Induced
Breakdown Spectroscopy (LIBS), used for identification
of materials on the sea bed.

The ROBUST underwater robotic system is required to
perform inspection operations with high accuracy and
with good reactivity properties for operational efficiency.
Therefore, a very accurate control at both the Dynamic
Control Layer (DCL) and the upper Kinematic Control
Layer (KCL) is needed. The two control layers, and in
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particular DCL should be consequently based on an ac-
curate model of the overall system, for guaranteeing the
adequate level of control accuracy.

The skeleton of the ROBUST robotic platform, sketched
in figure 1, has been conceived with a modular approach,
by composition of four basic units: three torpedo-shaped
AUVs connected with a rigid frame and an internal struc-
ture containing sensing, processing, and communication
equipment (ROBUST payload) necessary for the execution
of the reference mission.

ROBUST-UVS
“Cluster”

1 internal structure
(not actuated body)

3 ROBUST basic AUV
(actuated bodies)

Fig. 1. ROBUST underwater vehicle system.

It should be noted that the ROBUST basic AUV is similar
to the Folaga AUV Alvarez et al. (2009), Caffaz et al.
(2010) having a known model. Indeed the main objective
of the research described in the paper is to derive a model
for the ROBUST Underwater Vehicle System (ROBUST
UVS), ie. “cluster”, building on the knowledge of the
models of each single basic AUV.

Starting from the modelling of generic underwater vehi-
cles, as in Fossen (2011) and Antonelli (2014), the chal-
lenge for a multi-body cluster is to be able to describe the
nonlinear dynamics of the cluster from the dynamics of
individual elements.

Related results in the literature include papers by Zhang
and Wang (2007), Ke et al. (2013, 2014), Park and Kim
(2015), Abreu et al. (2016) that have studied multi-
body dynamics methods for modelling underwater vehi-
cles. Kamman and Huston (1985, 2001) address the study
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of multi-body dynamics of tether cables for underwater
applications.

A method for dynamic modelling of multi-body systems,
where the generalized forces that contribute to dynamics
are determined by Kane’s approach, is presented in Ke
et al. (2013, 2014). The use of generalized forces in Kane
dynamic equations offers advantages over Newton-Euler
and Lagrange methods for the computation of multi-body
dynamics, because the interaction and constraint forces
among bodies is eliminated. The same method is used in
Abreu et al. (2016) where a dynamic simulation model
for a coupled streamer-vehicle system is proposed for the
cooperative and navigation control problem for fleets of
streamer-vehicle systems.

Nielsen et al. (2016b,a) investigates the dynamic mod-
elling of reconfigurable underwater systems building on
the Udwadia-Kalaba Equation (see Udwadia and Schutte
(2011)): the equations of motion for a system comprised
of N rigidly connected robots are developed using quasi-
velocities to derive the constraints imposed by rigid con-
nections.

The rest of the paper is organized as follows: Section 2
introduces the notation and describes the main tools for
the transformation of the generalized forces and moment.
Section 3 addresses the problem formulation and the
description of the equation of motion for the cluster. In
Section 4 the cluster model is derived building on the
knowledge of the single body models. Numerical results
are reported in Section 5. Finally, concluding remarks are
reported in Section 6.

2. PRELIMINARIES AND NOTATION

In order to derive the model for the ROBUST UVS, the
following are defined (also refer to Figure 2):

Fig. 2. Adopted frames and notation.

e {0}: inertial NED (North-East-Down) earth-fixed ref-
erence frame with origin in o € R3;

e {b}: cluster-fixed reference frame with origin in ¢ €
R3. Point ¢ is chosen as pole for forces and moments;

e {k}: kth body-fixed reference frame (k = 1,...,N)
with origin in a point py € R3 of the kth body. Point
P is chosen as pole for forces and moments.

Moreover, the following notation will be adopted for vec-
tors in the coordinate systems {0}, {b}, {k}:

brcvpk = position vector from ¢ to pp expressed in
frame {0};

Ov,, /o = linear velocity of the point pj with respect
to o expressed in {0};

bwb/o = angular velocity of {b} with respect to {0}
expressed in {b};

V., = generalized velocity of ¢ with respect to o
expressed in {b};
o f = force with line of action through p expressed
in {k};

®m = moment about the point ¢ expressed in {b};
91, = Euler angles between {b} and {0};

bl)c/o = %buc/o time derivative of buc/o;
Cy = cluster center of gravity.

The symbol S(-) € R3**3 denotes the skew symmetric
matrix associated to the cross product a x b = S(a)b
for any a,b € R3%3,

From Figure 2 it follows that

Oro,pk = Oro,c + ORbbrc,pkv (1)
where °R;, € SO(3) is the rotation matrix between frame
{b} and {0}. Time differentiation of (1) gives the velocity

of py (origin of kth frame {k}) with respect to o (origin
of frame {0}) expressed in {0}, that is:
d
Ovpk/o = aoroym = OVC/O + 0L"’b/o X OrC,pk' (2)

Yet, from time differentiation of (2) it follows that:

d d
Oapk/o = %Ovc/o + (dtowb/c)) x Orep, +
+Owb/0 X (Owb/O X Orc,pk)~ (3)

In the following, we compute how to transform generalized
forces and moments between different reference frames.

2.1 Generalized wvelocity vectors in different reference
frames

The generalized velocity kl/pk /o of py; of the k th body with
respect to o expressed in {k}, is denoted as:
k
o = {k‘gk//o} : (4)
In order to derive the transformation between kl/pk /o and
by, /o we first need to project the vectors in the same
reference {b}. Defining the following matrix °Ry € SO(6):

b
b5 R O3x3 66
Ry = € RO¥6, 5

being Ry, the rotation matrix from {k} to {b}, the gener-
alized velocity of p will be:

b
b _ | Vor/o| _ bR, K 6
Vpi/o |:bwk/0:| k Vpy/o- (6)
Note that, since all points of a rigid body have the same

angular velocity, the assumption of a rigid cluster implies
that bwk/o = bwb/o.

Now, the transformation between v
expressed as follows:

bVPk/O = T(brC’Pk)bVC/m (7)

pi /o and bljc/o can be
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where T'(*r..,, ) is given by:

b — I3><3 _S(brc,p.)
T(rep,) = {Osxs AR (8)
Summarizing
kVPk/O = kaT(brc,pk)bVC/o- 9)

Similarly it can be shown that time differentiating (6) leads
to the following:

"D 10 = FRyT("Te ) 0 o (10)

2.2 Generalized forces in different reference frames

Letting ’;ka be the generalized forces vector acting on the
kth body about p, expressed in {k}:

(11)

The generalized forces can be expressed in the cluster-
fixed reference frame {b} using the matrix °Ry,, previously
defined:

ngk = bRk leka. (12)
The transformation of the generalized forces between the
two points py and c¢ in the frame {b} can be derived as
follows:
etk =T ("rep,) . (13)
Hence, the generalized forces about the point ¢ expressed
in {b}, that is %7, can be written as function of the
generalized forces about the point pj expressed in {k},
Zkrk through the following transformation:

ZTk = TT(brc,pk) Ry, ’;krk. (14)

3. CLUSTER EQUATIONS OF MOTION

The goal of this section is to describe the kinematics and
dynamics of the multi-body system.

3.1 Cluster Kinematic equations

The 6 DOF kinematic equations of the cluster can be
expressed as follows:

Oi‘o,c = ORbbvc/o (15)

bRo = —S(bwb/o)bRo (16)

where Or,. = [z,9,2]" denotes the North-East-Down
position of the cluster in frame {0}, bvc/o = [u,v,w]" and
by /0 = [p, q,r]T are the cluster-fixed linear and angular
velocity vectors, respectively. Equation (15) describes the
translational motion and (16) describes the rotational
motion (i.e. kinematics of the rotation matrix).

It is worth highligthing that the standard kinematic equa-
tions for the rotational motion used, for example, in Fossen
(2011), make use of the Euler angles as a parametrization
of SO(3). It is known that any minimal rotation matrix
parametrization is bound to be singular.

The formulation proposed in (16) have the advantage to
be derived without needing any specific parametrization

of SO(3), hence avoiding all the issues related to minimal
representation singularities. Of course, if needed, the Euler
angles g){)b) could always be derived from the rotation
matrix °Ry as reported in Siciliano and Khatib (2008).

3.2 Cluster Dynamic equations

As shown in Fossen (2011, 2012), the standard lumped
parameter model used in most robotics applications is
given by:

Mrbb"/c/o + Crb(byc/o)byc/o = gTrlr (17)

Equation (17) represents the Newton-Euler dynamic equa-
tion of motion expressed in an arbitrary cluster-fixed co-
ordinate frame where ‘v, = [bv;r/o bw;_/o]—r is the linear
and angular velocity vector projected in the cluster frame,
I;‘r,,b is a generalized vector of external forces and moments,
M,y is the rigid-body inertia matrix, and C, is the rigid-
body Coriolis and centripetal matrix.

The generalized vector of external forces and moments
b1, is given by:

b b b b b b b
eTrb = ¢Tdp + cTdrag T cTrf + TE+ T+ .TL,

where

’;po is the vector of dynamic pressure forces and

moments on a rigid body;

(18)

° ZTdrag is the vector of viscous drag effects forces and
moments on a rigid body;

e Ur.; is the vector of restoring (gravitational and
buoyancy) forces and moments on a rigid body;

o '1p =T wave + UTwina is the vector of enviromental
forces and moments on a rigid body (it will be

considered negligible in the following);

b

oT is the vector of propulsion forces and moments;

b

® .

T, is the vector of lifting forces and moments.
4. CLUSTER MODEL BUILDING ON THE SINGLE
BODY ONE

In this section we will derive a model for the cluster
building on the knowledge of the single body one. As
already highlighted in the previous section, the inertia,
lifting, damping, restoring and propulsion (if any) forces
of all bodies can be expressed in a common reference frame
{b} making use of the cluster velocity v/, only. This allows
to specify the generalized vector of external forces for
the cluster in equation (17) as the sum of the individual
contributions of the N rigidly connected heterogeneous
robots/bodies, i.e.

Mrbb’.jc/o + Crb(byc/o)buc/o =
N
= CTap, + 2T aragy + 0Trp +oTh+0710,). (19)
k=1

The sum on the right hand side of equation (19) includes
all the generalized forces and moments (projected in {b})
acting on the individual bodies composing the cluster. The
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contribution given by the propulsion forces and moments

N .
br = Y ko1 YTy can be rewritten as:

27’ = Bcluster U, (20)

with
Bcluster - [BT e B?V]v (21)
Z =T" (brC,Pk) bRk By, (22)
and U the juxtaposition of the thruster input vectors:
U = [u;...uy]". As a result, the effects of the control
input of each actuated robot are directly mapped on the
cluster motion.

Building on the transformations described in the previous
subsections 2.1 and 2.2, the terms on the right hand side
of equation (19) can be expressed as a function of the
cluster generalized velocity and acceleration in place of the
individual body ones. The detailed computation of how
each and every term is transformed is here omitted for
the sake of brevity. The overall result of such approach is
nevertheless reported in equation (23),

[Mrb+MA cluster]bl)c/o+
[Crb(byc/o) +Cx cluster(byc/o)]bVC/o+
+(Dl cluster + Dq cluster(ch/o))ch/O +

+Trf cluster + TL cluster = Beuster U. (23)

The terms MA cluster CA cluster Dl cluster Dq cluster
Trf clustery TL cluster and BclusteT7 are reported in table 1.

The advantage of this approach with respect to the alter-
native Udwadia-Kalaba formulation Udwadia and Schutte
(2011) is the derivation of a dynamic-hydrodynamic model
for the whole multi-body system without considering ex-
plicitly the constraints imposed by the rigid connections.
The proposed approach allows expressing directly the mo-
tion of the cluster using the six degrees of freedom (dof)
equation (23), rather than using a vector of quasi-velocities
€ RV as in Nielsen et al. (2016b,a). Indeed, the overall
system has just 6 dof in the 3D space. Moreover, the use of
the cluster allocation matrix Bejqyster in equation (21) has
the benefit of mapping directly the control input of each
actuated robot on the cluster. This is an important feature
as it allows to facilitate the design of dynamic controllers
for the overall system.

5. SIMULATIONS

A numerical simulator (in Matlab) has been developed
implementing the described modelling approach for the
ROBUST UVS. Tables 2 and 3 report a comparison
between the added masses and linear drag coefficients of
the AUVs, the central ROBUST payload module structure
composing the cluster, and the cluster itself.

Moreover the derived model is numerically integrated
to simulate the motion of the cluster along a specific
trajectory as depicted in figure 3. As an example of how the
hydrodynamic forces and moments are being composed,
the surge, sway, and yaw drag forces acting on one of the
AUVs, the payload module structure, and the cluster are
compared in figure 4.

z[m]

38:2

-0.5

y[m]

Fig. 3. Cluster trajectory.
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Fig. 4. Surge, sway drag forces, and yaw moment during the
execution of the trajectory in Fig. 3.

6. CONCLUSION

A modelling approach has been implemented to com-
pute the lumped parameter hydrodynamic coefficients of
a multi-body underwater vehicle system. The approach
has been applied to the ROBUST robotic platform. The
proposed approach appears to be particularly well suited
for motion control and navigation filter design as it al-
lows to derive a standard 6 dof dynamic model exploiting
the knowledge of the components of the cluster. Alterna-
tive multi-body modelling approaches may result in high
dimensional models that cannot be easily employed for
control and navigation design.

A simple numerical simulation of the complete ROBUST
system using the developed modelling approach is re-
ported.
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