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Abstract 

 

The objective of this thesis is to contribute to Autonomous Underwater Vehicle (AUV) 

navigation by improving vehicle localisation accuracy when Doppler Velocity Log (DVL) 

bottom-tracking is unavailable. The Inertial Navigation System (INS) based localisation 

solution is prone to extreme uncertainties due to double integration of inherent errors within 

the INS acceleration measurements, unless the solution being externally aided (e.g. velocity 

measurements using the DVL bottom-track). As a solution for this, an improved model-aided 

INS localisation technique is introduced, which is complimented with the development of a 

novel model calibration and new water column velocity estimation method. The techniques 

established in this project are tested and validated using experimental data from a set of field 

manoeuvres using a Gavia class AUV and the performance is compared against other 

commonly used localisation methods.  

A baseline mathematical model was developed in this work using system identification 

to predict the motion response of the AUV based on its control commands. However, such 

models are generally calibrated for low water column velocities and a standard vehicle 

configuration, and are limited in application for variations in environmental conditions. To 

address this limitation, a novel model calibration technique was established to field calibrate 

the parameters within the baseline model to the current operating condition and vehicle 

configuration. Model calibration improved the results of the baseline model up to 73% when 

operating in low energy environments and the AUV position can be computed within an 

uncertainty range of 1.5% of the distance travelled. In comparison, uncertainties of 

conventional non-bottom-tracking localisation techniques could be up to 10% in similar 

environmental conditions. A secondary approach is also presented to determine the 

hydrodynamic coefficients of the mathematical model using Computational Fluid Dynamics 

(CFD) simulations and captive model experiments when the AUV is operating in complex flow 

conditions.  

A non-acoustic method was introduced to estimate the velocity of the water column using 

the motion response of the AUV. This method is capable of accurately estimating water column 

velocities in proximity to the AUV (i.e., the water column velocities at the same depth as the 

vehicle is), which is not typically resolved with existing methods such as acoustic Doppler 

current profilers. When the mathematical model-aided localisation solution is complimented 
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with water column velocity prediction method, the localisation error is limited to less than 6% 

of the distance travelled even in extremely high currents (i.e. >2 m s-1 in tested conditions). In 

such environmental conditions, the uncertainties of other commonly used non-bottom-tracking 

localisation methods, as tested against in this work, such as DVL water-track mode and unaided 

INS could be above 30%.  

One of the key advantages of the proposed localisation technique is that it could be 

applied to any torpedo shaped AUV (for example, platforms such as REMUS, Iver, Bluefin, 

Explorer, etc.) of any configuration by simply conducting a set of established field manoeuvres 

to identify its mathematical model parameters. Further, additional sensors beyond a typical 

AUV navigational payload (i.e. global positioning, accelerometers and gyroscopes) are not 

required to implement this technique in an AUV. The localisation technique developed in this 

thesis is capable of improving the motion control and navigation solution of the AUV in the 

absence of DVL bottom-tracking, which is critical for the expansion of vehicle performance in 

extreme environmental conditions. 
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Chapter 1: Thesis Introduction 

 

 Introduction 

Interest in Autonomous Underwater Vehicles (AUVs) is growing for a wide range of 

scientific, commercial and military applications due their unique capabilities over surface 

vessels, and manned and tethered underwater vehicles (Stutters et al., 2008). Although the 

inception of AUV engineering occurred over a half-century ago, their systems are continuously 

improving to achieve better performance over a wide range of conditions (Griffiths, 2002). One 

of the major challenges is AUV localisation, which is complicated by wavelength attenuation 

of electromagnetic waves in water. This effectively limits radio communications and Global 

Positioning System (GPS) based localisation to surface operations. Furthermore, the high 

nonlinearity of the hydrodynamic forces and moments, and the unpredictability of the operating 

environmental conditions have added to the complexity of AUV manoeuvres and operations.  

1.1.1. AUV localisation 

Vehicle localisation is the foremost important element of the overall AUV autonomy. It 

is especially critical to accurately recognise the current position of the vehicle in three 

dimensional (3D) space for navigation (i.e., point to point guidance of the vehicle) as well as 

for motion control. Inaccurate localisation could result in the vehicle travelling away from the 

pre-planned mission route while assuming it is on the correct track, whereby resulting in an 

incorrectly geo-located dataset and a compromised mission. In the most severe examples of 

this, mission failure could result leading to a potentially damaged or lost AUV. 

One of the traditional underwater localisation techniques is to triangulate the position of 

the vehicle using acoustic triangulation; i.e., using Long Base Line (LBL) systems or Ultra 

Short Base Line (USBL) systems (Vickery, 1998). Although LBL systems are one of the most 

accurate underwater localisation techniques, the range of an LBL beacon is limited; hence, an 

array of such devices is necessary for long range AUV operations. The requirement of surface 

vessel support and the deployment of moored equipment makes it a less preferred or unsuitable 

option for AUV localisation, specifically for deep water offshore operations (i.e., blue water 

operations). While USBL systems have seen increasing use in the last decade, they require a 
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dedicated supporting surface vessel shadowing the AUV for the entire duration of its mission, 

which is a major disadvantage.  

Inertial Navigation System (INS) is one of the most commonly used methods for AUV 

localisation and navigation. The accelerometers and gyroscopic sensors of the Inertial 

Measurement Unit (IMU) within the INS measure the linear accelerations and angular rates of 

the AUV relative to the inertial space (Jalving et al., 2004). Subsequently, the measurements 

are integrated to determine the velocity, attitude and position of the vehicle. IMU 

measurements have uncertainties due to inherent errors of its sensors. Due to integration of 

these uncertainties, an unbounded drift will be accumulated with time in the position and 

velocity solutions unless true position and/or velocity measurements of the AUV are fed back 

into the INS position estimate through the use of a predictor-corrector model such as a Kalman 

filter (Medagoda et al., 2010). The vehicle velocity measurements from a bottom-tracking 

Doppler Velocity Log (DVL) are commonly used to aid the INS localisation solution in order 

to avoid the position drift. 

1.1.2. Problem definition 

The acoustic beams of DVLs are limited in terms of the frequency specific penetration 

through the water column; for example, a 300 kHz DVL has a maximum range of around 200 

m and that of a 1200 kHz is around 15-25 m (Randeni et al., 2017a). Therefore, DVL aiding is 

unavailable when the vehicle-to-seabed-distance is larger than the range of the DVL. Blue 

water operations (i.e. starting in water depths exceeding the bottom-track penetration) often 

require the AUV to descend in the mid-water column without DVL bottom-track (Jalving et 

al., 2003). During such descents, the localisation error will increase rapidly if the INS is 

operating in its free inertial mode; i.e., unaided INS (see Figure 1.1). Once the AUV has dived 

down to the seabed and acquired the DVL bottom-lock, from that point onwards the accuracy 

of the INS localisation solution will be maintained. However, the positioning error that 

occurred during the descent will be introduced as a steady state offset error to the geo-location 

of the dataset for the entire mission (Randeni et al., 2016). 
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Figure 1.1 – An AUV descends to a test site in blue water where the altitude is larger than the 

maximum range of the DVL. 

The traditional solution used by most currently operating AUVs is to track and measure 

the velocity of the vehicle relative to the water column; i.e., DVL water-track aided INS. This 

could provide a reasonably accurate localisation solution when the AUV is operating in 

environments with small underwater currents. However, the DVL water-track mode is unable 

to measure the velocity of the water column relative to the ground; therefore, the motion of the 

water column is often neglected. For this reason, the water-track mode of vehicles is prone to 

the velocity and position drifts due to the unaccounted movements of the water column in high 

energy environments with large underwater currents. 

In addition to failure as a result of diving to depth, DVL bottom-track aiding could also 

be compromised when the AUV is travelling at a constant depth out of range of the bottom 

tracking mode. An example of this would be mid-water column surveys conducted at altitudes 

(i.e. depth above the seafloor) larger than the DVL range. DVLs are also prone to outages and 

instrument re-initialisations. In such cases, the INS will return to running in its free inertial 

mode. Finally, DVL bottom-track could be intermittently or completely unavailable when the 

AUV is flying over rough bathymetry due to uneven reflection of acoustic signals transmitted 

by the instrument (Hegrenaes and Berglund, 2009).  
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1.1.3. Model-aided INS localisation 

The velocity of an AUV can be approximated with a dynamic motion response predicting 

mathematical model that represents the mass, hydrostatics and hydrodynamic properties of the 

AUV; i.e., known as a model-aided INS. One of the major advantages of model-aided 

localisation is that it does not require additional sensors beyond a typical AUV navigational 

payload and could be simply established with a modification to vehicle firmware. The velocity 

response predicting capability of such models depends on the accuracy of the parameters 

representing vehicle characteristics that typically vary with the vehicle configuration and 

ballast condition. However, previous model-aided INS systems were developed only for a 

given vehicle setting (Hegrenaes and Hallingstad, 2011, Hegrenaes et al., 2008, Jayasiri et al., 

2016, Jayasiri et al., 2014, Yan et al., 2012). Commercial and scientific AUVs often change 

the configuration of the vehicle due to the addition and removal of payload sensors (Trembanis 

et al., 2012, Walker et al., 2013). Furthermore, the ballast condition of the AUV will vary with 

the salinity level of the operational environment. It is hypothesised in this work that a baseline 

mathematical model with parameters representing a particular vehicle setting may not 

adequately predict the motion of the vehicle with a different configuration.  

Parameters within conventional AUV mathematical models represent the hydrodynamic, 

hydrostatic and mass properties of an AUV operating in calm water environments. That is, the 

model is unable to predict the external forces and moments acting on the vehicle such as those 

due to underwater currents and complex flow conditions (Randeni et al., 2015a). Therefore, the 

vehicle velocities predicted by a model are not absolute, but relative to the water column; i.e., 

equivalent to the velocities obtained from DVL water-tracking mode. In order to obtain the 

vehicle velocity relative to the ground, the motion of the water column needs to be compensated 

with the water column velocity measurements or predictions. 

Yan et al. (2012) developed a model-aided INS using recursive identification for 

emergency navigation of AUVs when DVL malfunctions. However, this technique did not 

compensate for environmental forces such as underwater currents. Hegrenaes and Hallingstad 

(2011) introduced a model-aided INS, including a Kalman Filter based sea current estimation 

technique for a HUGIN 4500 class AUV to be used when DVL aiding is unavailable. The 

velocities of the sea currents are calculated within the navigation system Kalman filter by using 

the model velocities that are relative to the water column and INS measurements relative to the 

inertial space. While this is an excellent example, the estimated sea currents could be less 
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accurate due to erroneous INS velocity measurements; since an outlier filtering technique is 

not utilised in this work. Furthermore, both of these techniques are not readily transferable to 

a different configuration of the AUV unless the parameter identification procedure is repeated. 

Finally, their performances were not evaluated for varying environmental conditions. 

1.1.4. Objectives and research question 

This project aims to improve the localisation accuracy of AUVs operating in low as well 

as high energy environments when direct DVL aiding is unavailable. An improved model-

aided INS localisation technique is introduced by developing the dynamic motion response 

predicting mathematical model that can be field calibrated for different environmental 

conditions and vehicle configurations. The model-aided INS localisation technique is 

complimented with a novel, non-acoustic water column velocity estimation method, in order 

to counteract the position drift due to sea currents. Combining all of these elements, this project 

aims to resolve the following research question:  

“How can INS localisation accuracy of an AUV operating without DVL bottom-track be 

improved for both low and high energy environments?” 

Novel techniques established in this project were tested and validated with field 

experimental data from a Gavia class AUV. 

 Methodology 

The methodology utilised to solve the research question of this project could be broken 

down into four main phases: 

Phase 1: Conducting a study on existing AUV localisation techniques, focusing on previous 

work carried out to improve the INS localisation performance when DVL aiding is 

unavailable. 

Phase 2: Establishing a methodology to determine an improved AUV motion response 

predicting mathematical model. This process involved: 

 The introduction of a Recursive Least Squares (RLS) and Prediction Error 

Method (PEM) based system identification algorithms to obtain a baseline 

model; and 
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 Development of a model calibration method to field calibrate the baseline 

model for the current operating environment and vehicle configuration. 

Phase 3: Developing a non-acoustic method to estimate the water column velocity 

components of a high energy environment using AUV motion response (referred 

to as the ‘WVAM method’), and carrying out the following further evaluation: 

 Investigation of the performance of the WVAM method as a function of the 

turbulence levels of the environment to verify whether the technique is able 

to predict underwater currents in a blue water environment; 

 Examination of the feasibility of the WVAM method to be incorporated with 

a model-aided INS localisation solution for error counteraction; and, 

 Upgrading the WVAM method to determine the water column velocity 

profile relative to the ground along the descend path of an AUV diving from 

the surface to the seabed. 

Phase 4: Combining the model-aided INS localisation solutions with the WVAM method to 

improve the localisation accuracy of an AUV descending in blue water without 

DVL bottom-track. 

 Novel aspects 

This project has provided original contributions to the state-of-art AUV technology in 

four main areas. The first is the methodology to determine an improved model-aided INS 

localisation technique that can be field calibrated for different environmental conditions and 

vehicle configurations. Previous studies have identified mathematical models for AUVs; 

however, they are limited for a given environmental setting and vehicle configuration (Hong 

et al., 2013, Marco et al., 2005, Yan et al., 2014). The novelty of this work is that the baseline 

model identified using complex identification manoeuvres conducted in a calm water 

environment can be calibrated to diverse operational environments and vehicle settings, online 

or offline, using the motion response data from a simple mission. 

The non-acoustic technique introduced to determine the water column velocity 

components of a turbulent water column (i.e., the WVAM method) is the second novelty of 

this project. The key advantage of the WVAM method is that it provides velocity estimates 

within the blanking distance of the ADCP and the associated vehicle boundary layer, which 
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are usually unknown based on traditional methods. Previously, Hayes and Morison (2002) 

introduced a non-acoustic technique to determine the turbulent vertical water velocities, and 

fluxes of heat and salt by applying a Kalman filter to the AUV motion data. However, it cannot 

be readily adopted for commercial AUVs due to the modelling complexity and the requirement 

of the typically unavailable vehicle control law algorithm. Furthermore, this method was 

limited to the vertical water velocity, while the WVAM method estimates the water velocity 

components in the x, y, and z directions. Estimating horizontal water column velocities in 

proximity to the AUV (i.e., the water column velocities at the same depth as the vehicle is) is 

important for vehicle navigation and control system optimisation, and to fill the blanking 

distance gap within a water column velocity profile, which is important for flow field 

characterisation for environmental studies. 

The third original contribution of this project is the technique introduced to determine 

the water column velocity profile relative to the bottom along the decent path when DVL 

bottom-track is unavailable, and utilising it to counteract the localisation error of an AUV 

diving in blue water. This technique included a novel Outlier Rejection (OR) filter that removes 

outliers present within the INS measurements, and a flow profile smoothening algorithm that 

applies a forward and backward correction, and a flow variation smoother to the water column 

velocity profile.  

The final original contribution of this thesis is the numerical model developed using 

ANSYS CFX CFD package to simulate the pure sway motion of an AUV in proximity to a 

larger moving underwater vehicle, which was validated with captive model experiments (this 

work is presented in Appendix C). The pure sway motion can be used to accurately determine 

a number of hydrodynamic coefficients of an AUV mathematical model (Lewis, 1988). 

Furthermore, a simplified method is introduced to obtain the hydrodynamic coefficients of an 

AUV when operating close to a larger underwater body by transforming the single body 

hydrodynamic coefficients of the AUV using the steady-state interaction forces. This 

simplified method can be used to determine the variation of hydrodynamic coefficients with a 

lower CFD computational cost when the AUV is operating within an external pressure field. 

The purpose of this contribution within this thesis is to outline secondary methods that can be 

used to determine model parameters representing the hydrodynamic characteristics of an AUV 

in complex operational conditions. 
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 Outline of thesis 

This thesis follows a “chapterised thesis” structure, where Chapters 2 to 6 and Appendix 

A are comprised of scientific papers. The outline of the thesis structure is given below. 

Chapter 1: Thesis introduction  

Chapter 1 is the preface of this thesis that details the motives for the project, providing 

necessary background knowledge on AUVs and conventional AUV localisation techniques to 

date. Subsequently, the project objectives, methodology and the novel outcomes are defined. 

Chapter 1 also outlines the structure of the thesis, linking together the succeeding chapters that 

are comprised with academic papers.  

Chapter 2: Replicating the motion response of an AUV for dynamic environments 

(published in the Nonlinear Dynamics journal) 

Chapter 2 is motivated by the requirement of a mathematical model that can predict the 

motion response of an AUV based on its control commands, regardless of the operational 

environment. RLS and PEM based system identification algorithms are presented to determine 

the linear and nonlinear parameters of an AUV motion response predicting mathematical model. 

A baseline mathematical model that represents the dynamics of a Gavia class AUV in a calm 

water environment is developed. A novel technique is introduced to calibrate the parameters 

within the baseline model to provide the motion response in different environmental conditions 

by conducting a calibration mission in the new environment. These models are used to develop 

an improved model-aided localisation system for AUVs operating without DVL bottom-track 

in low energy environments.  

Chapter 3: WVAM method – a non-acoustic technique to determine the velocity 

components of the water column (published in the Journal of Marine Science and 

Engineering) 

Chapter 3 introduces the WVAM method to determine water column velocity 

components of a high energy environment using AUV motion response. The water column 

velocities are estimated by calculating the difference between the motion responses of the 

vehicle in the actual and calm water environment. The motion of the vehicle in the calm water 

environment is obtained by simulating the vehicle control commands executed during the field 

tests using the baseline mathematical model introduced in Chapter 2. 
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Chapter 4: Feasibility of WVAM method for AUV localisation error counteraction 

(published in the Marine Technology Society Journal) 

Chapter 4 further compliments the WVAM method by analysing its feasibility to be 

incorporated with a model-aided INS localisation system. The study investigates and analyses 

the performance of the WVAM method as a function of the turbulence level of the environment 

by testing the method in an estuary that exhibits strong tidal currents (around 2.5 m s-1). The 

performance of the WVAM method was compared with the vehicle on-board as well as 

stationary ADCPs in different water column conditions. This chapter discusses the necessary 

improvements required to incorporate the WVAM method within a model-aided INS.  

Chapter 5: Counteracting AUV localisation error when operating beyond the range of 

bottom-tracking sonar (submitted for publication in the IEEE Journal of Oceanic 

Engineering) 

Chapter 5 combines the work developed in previous chapters and presents an AUV 

localisation technique based on a mathematical model-aided INS for blue water operations 

conducted in high energy environments with strong non-uniform currents without DVL 

bottom-track. Inputs to the algorithm are vehicle control commands and unaided acceleration 

measurements from the INS. An Outlier Rejection (OR) filter is introduced to remove the 

outliers present within INS acceleration measurements prior to the data fusion with baseline 

model predicted velocities. The velocity profile of the water column relative to the ground 

along the descent path of the AUV is determined to avoid localisation drift resulting from 

underwater currents. The water column velocity profile is obtained with a flow velocity profile 

smoothing algorithm, which is an extension of the WVAM method.  

The proposed technique is tested and validated for diving missions conducted at different 

water column conditions using a Gavia-class AUV. Its performance was evaluated by 

comparing with the localisation solutions from DVL bottom-track aided, DVL water-track 

aided, model-aided, and unaided INS systems. 

Chapter 6: Summary, conclusions and future work 

The closing chapter provides an overall summary of the project, bringing together the 

outcomes of the individual chapters. It also provides conclusions on the key findings and 

outcomes. Recommendations for future work is detailed in this section.  



33 

Chapter 1 

Appendix A: WVAM method in high energy environments (published in the Proceedings 

of the ‘MTS/IEEE Oceans 2015’) 

The purpose of the WVAM method is to predict the underwater currents acting on the 

vehicle in order to counteract the drift in the model-aided INS localisation solution of an AUV 

that operates in blue water. Water column velocity conditions in blue water environments are 

highly variable. Therefore, Appendix B investigates and analyses the performance of the 

WVAM method as a function of the turbulence level of the environment by testing the method 

in an estuary that exhibits strong tidal currents (around 2.5 m s-1). The uncertainty of this 

method at different water column conditions was computed by comparing the velocity 

measurements from the WVAM method with those obtained from the AUV mounted ADCP. 

Appendix B:  Least squares based system identification algorithm to obtain a 

mathematical model of an AUV (published in the proceedings of the Third Vietnam 

Conference on Control and Automation) 

Appendix B presents a secondary system identification technique based on Least Squares 

optimisation algorithm to determine the mathematical model of a Gavia class AUV. The 

purpose of the model is to accurately predict the system response over time starting from initial 

conditions. Appendix B is comprised of an article that provides an in detail explanation of the 

Least Squares optimisation algorithm as well as the formation of dynamic equations of motion. 

Appendix C: Numerical Investigation of the Hydrodynamic Interaction between Two 

Underwater Bodies in Relative Motion – A secondary CFD based approach of 

determining the hydrodynamic coefficients of an AUV (published in the Applied Ocean 

Research journal) 

Appendix C outlines a method that can be used to accurately determine the linear and 

nonlinear hydrodynamic coefficients of an AUV mathematical model. A CFD model was 

developed to simulate the pure sway motion of an AUV, which was in turn validated against 

towing tank experimental results. The main focus of the journal article presented in this 

subchapter is to investigate the hydrodynamic interaction between an AUV manoeuvring in 

close proximity to a larger moving underwater vehicle. The purpose of Appendix C is to outline 

secondary methods that can be used to determine model parameters representing the 

hydrodynamic characteristics of an AUV in complex operational conditions.  
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Chapter 2: Replicating the motion response of an 

AUV for dynamic environments 

 

This chapter is based on the journal article ‘Parameter identification of a nonlinear model: 

replicating the motion response of an autonomous underwater vehicle for dynamic 

environments’ that is published in the journal ‘Nonlinear Dynamics’. The citation for the article 

is: 

Randeni SAT, Forrest AL, Cossu R, Leong ZQ, Ranmuthugala D, Schmidt V. Parameter 

identification of a nonlinear model: replicating the motion response of an autonomous 

underwater vehicle for dynamic environments. Non-linear Dynamics. 2017.   
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Abstract 

This study presents a system identification algorithm to determine the linear and 

nonlinear parameters of an Autonomous Underwater Vehicle (AUV) motion response 

prediction mathematical model. The key objective of the model, which relies solely on 

propeller thrust, gyro measurements and parameters representing the vehicle hydrodynamic, 

hydrostatic and mass properties, is to calculate the linear velocities of the AUV in the x, y and 

z directions. Initially, a baseline mathematical model that represents the dynamics of a Gavia 

class AUV in a calm water environment was developed. Using a novel technique developed in 

this study, the parameters within the baseline model were calibrated to provide the motion 

response in different environmental conditions by conducting a calibration mission in the new 

environment. The accuracy of the velocity measurements from the calibrated model was 

substantially greater than those from the baseline model for the tested scenarios with a 

minimum velocity prediction improvement of 50%. The determined velocities will be used to 

aid the Inertial Navigation System (INS) position estimate using a Kalman Filter data fusion 

algorithm when external aiding is unavailable. When an INS is not externally aided or 

constrained by a mathematical model such as that presented here, the positioning uncertainty 

can be more than 4% of the distance travelled (assuming a forward speed of 1.6 m s-1). The 

calibrated model is able to compute the position of the AUV within an uncertainty range of 

around 1.5% of the distance travelled, significantly improving the localisation accuracy. 
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 Introduction 

Autonomous Underwater Vehicles (AUVs) have evolved as specialised tools for 

challenging commercial, scientific, and military underwater applications such as subsea 

inspections (Mcleod et al., 2012), characterisation of the midwater column (Curtin et al., 1993) 

and security exercises in unstructured environments (Paull et al., 2014). Despite the 

developments of AUVs reaching back to the 1970s, the navigation and control subsystems of 

AUVs are continuously undergoing improvements (Hegrenaes and Berglund, 2009). In 

particular, one of the main challenges is accurate localisation and navigation in blue water (i.e., 

operating in regions out of range of bottom-track aided navigation), and to achieve the dynamic 

control stability of the vehicle that determines the data quality of AUV surveys (Paull et al., 

2014).  

Inertial Navigation Systems (INS) are one of the key methods to localise and navigate 

AUVs. An INS determines the position, velocity and orientation of the vehicle using data from 

Inertial Measurement Units (IMUs) relative to inertial space. Due to inherent errors, the INS 

localisation solution in its free inertial mode (i.e., unaided INS) rapidly drifts unless it is 

externally aided with vehicle’s speed over the ground measurements from a bottom tracking 

Doppler Velocity Log (DVL) (Jalving et al., 2003, Medagoda et al., 2010). When DVL aiding 

is intermittently or completely unavailable (for example, due to instrument noise or as a result 

of the vehicle-to-seabed-distance being larger than the transmission range of acoustic 

frequency associated with the DVL), the vehicle velocities can be approximated with a 

mathematical model that characterises the hydrostatic and hydrodynamic properties of the 

AUV; i.e., a model-aided INS (Hegrenaes et al., 2008, Jayasiri et al., 2016). Although the 

localisation solution from a model-aided INS is not as accurate as a DVL aided INS, its 

accuracy is better than the unaided INS and the water-track mode of the DVL aided INS 

(Hegrenaes and Hallingstad, 2011).  

The velocity response predicting capability of a mathematical model depends on the 

precision of the parameters representing hydrodynamic, hydrostatic, environmental and 

external forces, and the mass properties of the AUV, which typically vary with the operating 

environment and the vehicle configuration (i.e., the trim and ballast conditions). Therefore, a 

baseline mathematical model with parameters representing a calm water environment may not 

adequately predict the velocities of an AUV that operates in a dynamic environment in the 
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presence of high currents (Randeni et al., 2016). An improvement in the velocity prediction is 

essential to increase the AUV localisation accuracy from a model-aided INS. 

A dynamically stable control system is essential for AUVs to undertake challenging tasks 

in complex flow conditions in high turbulent environments (Randeni et al., 2015a), in close 

proximity to the seabed (Ananthakrishnan, 1998),  or to other moving underwater vehicles 

(Randeni et al., 2015b) and near the free surface (Polis et al., 2013). AUV control systems can 

be pre-optimised using a mathematical model that represents the dynamics of an AUV in its 

anticipated operating water column. With the availability of a mathematical model that updates 

in real time to characterise the operational environment, the control system optimisation can 

be conducted in real time or near real time (Hong et al., 2013). 

Mathematical models can additionally be used to accurately predict the vehicle motion 

response which, in turn, is crucial for several other applications. For example, the velocity 

components of a turbulent water column can be determined through a non-acoustic technique 

using the AUV motion response; as previously described by the authors as the WVAM method 

in Randeni et al. (2015a). The WVAM method uses a mathematical model to calculate the flow 

velocities by comparing the actual motion response of the vehicle with the simulated response 

from a calm water based mathematical model. In addition, AUV simulators are used by vehicle 

developers and operators to test their mission plans and software modifications as well as to 

conduct trainings prior to field trials (Song et al., 2003). Such simulators need a mathematical 

model with precise representation of the vehicle characteristics to accurately simulate the 

dynamic motion response of the AUV.  

The hydrodynamic forces acting on AUVs are highly nonlinear; hence, mathematical 

models should contain higher order hydrodynamic coefficients to represent these nonlinear 

characteristics. Previous works have introduced a number of methods to determine linear and 

nonlinear hydrodynamic coefficients of marine vehicles including the coupling effects between 

different motion modes; for example, captive model experiments (Randeni et al., 2015b, Dash 

et al., 2016), Computational Fluid Dynamics (CFD) simulation methods (Randeni et al., 2015b, 

Liang et al., 2016) and system identification using field data (Hong et al., 2013, Marco et al., 

2005, Yan et al., 2014). Some of these efforts also account for environmental and external 

forces; although for underwater vehicles, these forces are generally based on wave and wind 

histogram data of a particular location (Fossen, 2011). However, previous data do not precisely 

reflect local variations of environmental condition; hence, may not replicate true external forces. 
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This paper presents a system identification algorithm to determine the linear and 

nonlinear parameters of an AUV mathematical model utilising the Recursive Least Squares 

(RLS) and the Prediction Error Method (PEM) optimisation techniques. The developed model 

accounts for the coupling effects influencing the surge, sway and heave velocities of the vehicle 

as well as the environmental and external forces. Utilising the model identification algorithms, 

the parameters of a Gavia class AUV mathematical model were estimated using motion 

response data from a complex identification manoeuvre conducted in a small, relatively calm 

lake (i.e. minimal surface mixing. A comparison is made between RLS and PEM, and the 

dependency of the parameters on the utilised dataset is also investigated. The identified model 

parameters are able to predict the motion response of the AUV in calm water condition and is 

referred to as the ‘baseline’ mathematical model hereafter. A novel technique is presented to 

field calibrate the baseline mathematical model to predict the vehicle motion response in 

diverse operational environments. The model calibration algorithm was extended to determine 

the AUV mathematical model in real time, processing a limited preceding data window for 

future goals such as real time control system optimisation. The following sections of this paper 

provide an overview of the field experimental setup (including the details of the utilised Gavia 

AUV and test site details), theory and justification of AUV dynamic modelling equations 

utilised in this study, and a brief description of the RLS and PEM techniques and the model 

simulation method. Baseline model estimation procedure and model calibration method are 

then explained together with a performance analysis. Finally, the real time model calibration is 

discussed, followed by a summary on possible future developments and conclusions. 

 Field experimental setup 

2.2.1. Instrumentation 

The system parameter identification algorithm was developed for a Gavia-class modular 

AUV (Thorgilsson, 2006) using the vehicle motion response data collected during various field 

trials. Due to the modularity of the vehicle, the component arrangement can be changed, which 

will alter the hydrostatic and hydrodynamic characteristics of the vehicle on any given 

deployment. The vehicle in the tested configuration (see Figure 2.1) consisted of a Nose Cone 

Module, Battery Module, Geoswath Interferometric Sonar Module, 1200 kHz Teledyne RDI 

Acoustic Doppler Current Profiler (ADCP) / DVL Module, Kearfott T24 INS (KI-4902S model) 

Module, Control Module, and a Propulsion Module. The vehicle had a length of 2.7 m, a 

diameter of 0.2 m, and a dry weight in air of approximately 70 kg. The propulsion module was 
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a three bladed ducted propeller system with four individually functioning control surfaces 

arranged in an ‘X’ configuration.  

 

Figure 2.1 – Body-fixed frame of reference and the configuration of the utilised Gavia AUV. The 

origin is located at the centre of buoyancy of the vehicle. The vehicle had a length of 2.7 m, a 

diameter of 0.2 m, and a dry weight in air of approximately 70 kg 

The DVL aided Kearfott T24 INS measured the accelerations in Six-Degree-of-Freedom 

(6-DOF) and orientation, to make estimates of the AUV’s velocities and position. The heading 

and pitch angles of the vehicle were measured by the gyroscopic sensors, while the 

accelerations were determined through the use of accelerometers within the INS unit. The 

vehicle position estimate was corrected with the velocities over ground from the bottom 

tracking DVL (i.e., when the altitude of the AUV is below the range of the DVL acoustic beams) 

in order to avoid drifts in the derived localisation solution. The depth of the vehicle was 

obtained from the Keller Series 33Xe pressure sensor on-board the AUV. All sensor 

measurements were sampled at a frequency of 0.87 Hz and recorded in the vehicle log. The 

uncertainties of these instruments and the other sensors associated with the navigation unit are 

outlined in Table 2.1. 
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Table 2.1 – Specifications of Gavia AUV sensor packages. CEP for Circular Error Probable and 

TRMS for Time Mean Root Squared. 

Sensor package Measurements Measurement accuracy 

DVL bottom-

track/GPS aided 

INS 

Heading angle ±0.010° (RMS) 

Pitch angle ±0.005° (RMS) 

Position estimate 0.1% of the distance travelled (CEP) 

Velocity estimate 

(DVL aided) 

0.001 m s-1 (RMS) 

Velocity estimate 

(GPS aided) 

0.05 m s-1 (RMS) 

DVL water-track 

aided INS 

Position estimate 1852 m per 8 hours (TRMS) 

4.02% of the distance travelled* 

Velocity estimate 0.3 m s-1 (RMS) 

1200 kHz 

Teledyne RDI 

DVL 

Bottom tracking 

AUV velocity  

±0.001 m s-1 (RMS) or 0.2% of the 

velocity 

Maximum bottom 

tracking range 

30 m 

Keller Series 

33Xe pressure 

sensor 

Vehicle depth 0.1% of the depth 

*derived from the 1 nm per 8 hours uncertainty value for comparison, assuming an AUV 

forward speed of 1.6 m s-1 

 

2.2.2. Test site and experimental runs 

The objectives of the field studies were to develop and to validate the parameter 

identification and calibration algorithms for different environments. Field studies were 

conducted in two locations: Lake Trevallyn in Tasmania, Australia (Figure 2.2a) and in Lake 

Ohau, South Island, New Zealand (Figure 2.2b).  

During the Lake Trevallyn missions, the surface wave heights were less than 50 mm and 

the vehicle’s ADCP recorded minor variations of the water column velocities, with averaged 

values of surge, sway and heave directions of 0.002 m s-1, 0.002 m s-1 and 0.001 m s-1 
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respectively. Due to these very small flow velocities, Lake Trevallyn can be classified as a 

calm water environment.  

 

Figure 2.2 – AUV field deployments were conducted (a) in Lake Trevallyn, Tasmania, Australia 

and (b) Lake Ohau, South Island, New Zealand. Parameters of the mathematical model were 

determined from the manoeuvres conducted in Lake Trevallyn. The estimated models were 

verified with the vehicle motion response data from AUV deployments in Lake Ohau - eight 

AUV runs were conducted in a lawn-mover pattern (inset). (c) Bathymetry along the AUV Run 

1, conducted in Lake Ohau, New Zealand 

The Lake Ohau test site, on the other hand, reveals a more dynamic flow conditions due 

to its size and exposure to stronger external forces. The surface wave heights at time of 

conducting operations were around 0.3 m and the magnitudes of near surface water currents 

close to the inflow points of the Hopkins and Dobson Rivers measured from the vehicle ADCP 



42 

Chapter 2 

were around 0.15 m s-1 (Cossu et al., 2015).  The test site at Lake Ohau had highly variable 

bathymetry; i.e., rough in proximity of the delta front as well as relatively flat lake floor in 

deeper parts of the lake (Figure 2.2c). For constant altitude AUV missions, the vehicle 

experienced highly fluctuating pitch angles (i.e., over ±10°) when flying above the region of 

variable bathymetry (i.e., up to 200 m from the starting position), while angles of less than ±2° 

were maintained above the flat terrain. For these reasons, the test site was decided to be a 

suitable stage to test the AUV mathematical models for different vehicle responses.  

Lake Trevallyn field data were used to identify the baseline parameters of the 

mathematical model due to the lake’s calm water condition with no external forcings. Two 

identification manoeuvres, named ID Manoeuvre 1 and ID Manoeuvre 2, were conducted to 

investigate the variation of the parameters on the utilised dataset. In order to successfully 

identify the model parameters, each manoevure consisted of three types of runs that stimulate 

the six motion modes (i.e., surge, sway, heave, roll, pitch and yaw). For example, in ID 

Manoeuvre 1, the AUV performed zig-zag runs in yaw (from 0 s to 260 s as in Figure 2.3) and 

pitch (from 260 s to 660 s as in Figure 2.3) planes by changing the coordinate way points and 

operating depths concurrently. From 660 s to 900 s, the propeller speed was increased in steps 

from 450 RPM to 975 RPM, covering the typical operational RPM range of the Gavia AUV. 

The pitch angle of the AUV unintentionally fluctuated while the horizontal heading angle was 

changed (Figure 2.3). Similarly, the horizontal heading oscillated while the depth changes were 

executed, stimulating coupling effects between the motion modes. Such unintentional 

fluctuations in pitch and yaw were low during the straight line runs. The propeller speed was 

varied to maintain a constant speed during the heading zig-zag runs. At three instances, the 

propeller RPM goes to negative values during the pitch zig-zag manoeuvres. This is due to 

activation of ‘e-brake’ as a result of the obstacle avoidance sonar detecting the sea bottom as 

an obstacle when the AUV is diving with a large pitch angle. However, this is not an issue for 

the system identification process as the time steps with negative propeller RPM values have 

been cut off during the identification procedure. Water depths in Lake Trevallyn vary between 

10 – 15 m and the AUV missions were carried out between 2 – 8 m below the free surface to 

minimise the bias due to surface wave formation (Steel, 2010) and interaction with the lake 

bottom (Ananthakrishnan, 1998). Similarly, ID Manoeuvre 2 consisted of zig-zag runs in both 

pitch and yaw planes, and runs with different propeller speeds. The ID Manoeuvre 2 was 

carried out 6 – 12 m below the free surface.  
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In Lake Ohau, a lawn-mower pattern mission with eight transect lines was conducted. 

Each straight line run was carried out over the diverse bathymetry (i.e., the water depth was 

varying from around 50 – 60 m) maintaining a constant altitude of 8 m above the seabed. The 

first four lines (runs 1-4) of the lawn-mower pattern were used to calibrate the baseline model 

for the Lake Ohau water column condition utilising the model calibration method introduced 

in this work. The performance improvement of the calibrated model compared to the baseline 

model was analysed by testing the model with the last four lines (runs 5-8). Therefore, both 

calibration and performance analysis runs included smooth as well as rough bathymetric 

conditions. 

 Validation of the real time model estimation algorithm was conducted in Trevallyn as 

well as Ohau sites in order to establish its robustness in different field conditions. During all 

field tests, the vehicle altitude was within the range of the DVL acoustic beams, continuously 

aiding the INS solution. Hence, the motion response measurements used for model validations 

were maintained within the DVL aided INS uncertainty limits as given in Table 2.1. 

 

Figure 2.3 – Three types of manoeuvres were conducted in Lake Trevallyn site; i.e., zig-zag 

manoeuvres in yaw plane (section shaded in dark grey) and pitch plane (shaded in light grey), 

and step changes of propeller speed from 450RPM to 975RPM (no shading) 

 Dynamic modelling of the AUV 

2.3.1. Notation 

The mathematical formulae presented in this paper are based on the SNAME (1952) 

notation. Velocity, acceleration and position/Euler angle vectors are in the AUV’s body fixed 

coordinate system (i.e., as shown in Figure 2.1) and relative to the ground unless it is stated 

otherwise. 
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2.3.2. AUV mathematical model 

Manoeuvring equations of motion derived by considering the rigid-body kinetics, 

hydrodynamics, hydrostatics, environmental and other external forces acting on the AUV are 

generally used for vehicle modelling (Fossen, 2011, Newman, 1977, Fossen, 2002). In the work 

presented here, we used a basic mathematical model given in Equation (2.1) as specified for 

underwater vehicles by Fossen (2002); however, the hydrodynamic, environmental and control 

forces were modelled using a new mathematical model. One of the key advantages of this work 

is that the utilised mathematical model can be applied for any torpedo shaped AUV of any 

configuration.  

       RB RB A A externalM ν C ν ν M ν C ν ν D ν ν g η τ τ+ + + + + = +  (2.1) 

where, MRB and MA are the rigid body and added mass system inertia matrices, CRB and 

CA are the rigid body and added mass Coriolis-centripetal matrices, D is the hydrodynamic 

damping matrix,  g η  is the restoring gravitational/buoyancy force matrix, τ is the vector of 

propulsion and control surface forces, and τexternal represents the vector of environmental and 

external forces. The vector ν  denotes the velocity (i.e., [u, v, w, p, q, r]T where u, v, w and p, q, 

r are the linear and angular velocities around the x, y and z axes), and η is the vector of 

position/Euler angles (i.e., η = [x, y, z, ϕ, θ, ψ] where ϕ, θ and ψ are the roll, pitch and yaw 

angles respectively) as illustrated in Figure 2.1. 

2.3.3. System inertia, Coriolis-centripetal and hydrostatic forces 

Using the approach of Fossen (2002), Equations (2.2), (2.3) and (2.4) present the 

mathematical models in x, y and z directions of the AUV respectively. The left-hand sides of 

these equations represent the inertia, Coriolis-centripetal and hydrostatic force components 

along each direction. Inertial and Coriolis-centripetal forces contain both mass and added mass 

components that have a vital contribution in marine vehicle dynamics. 

     sin Xu g g propm X u mz q my r W B X          (2.2) 

    Yv g g rm Y v mz p mx Y r       (2.3) 

      Zw g qm Z w mx Z q W B        (2.4) 

where the term m is the mass of the vehicle and xg, yg and zg represent the position of the 

centre of gravity in x, y and z directions respectively from the centre of buoyancy of the vehicle. 

Further, W is the weight of the vehicle in air, B is the buoyancy force, θ is the pitch angle, and 
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Xprop is the thrust produced by the propeller. The right-hand side of these equations (i.e., ,X

Y and Z ) represent the summation of hydrodynamic damping, and environmental and 

external forces. 

2.3.4. Hydrodynamic damping and external & environmental forces 

Hydrodynamic damping of underwater vehicles is a result of several factors including: 

(1) the linear skin friction due to laminar boundary layer dynamics, (2) the nonlinear skin 

friction due to turbulent boundary layer dynamics, (3) the viscous damping force due to vortex 

shedding, (4) the form drag due to pressure variation across the body, and (5) the hydrodynamic 

lift forces due to cross flow drag and circulation of water around the hull (Fossen, 2011). 

Therefore, linear as well as higher order damping terms and relevant cross flow coupling terms 

are required to accurately model the flow around the vehicle (Abkowitz, 1964, Fossen, 2011). 

It is also important to model the vehicle dynamics with a minimum number of parameters 

because if the number of unknown parameters present in a model is large, the accuracy of the 

parameter estimation reduces (Ljung, 1999).  

When using a mathematical model, an accurate description of environmental and external 

forces is required for calibration. In marine vehicle modelling, it is common to assume the 

principle of superposition when considering these highly nonlinear forces (Fossen, 2011). This 

principle suggests that the generalised environmental and external forces are added to the right-

hand side of Equation (2.1); i.e., τexternal.  

2.3.4.1. Forces in x direction 

In the current work, the hydrodynamic damping along the x direction is modelled using 

Equation (2.5).  

3

| |X | |uuu u wq vr staticu u
X u X u u X u X wq X vr X X X            (2.5) 

where the notation of the hydrodynamic coefficients follow SNAME (1952). For 

example, Xu is the derivative of the surge force (X) with respect to the surge speed (u); i.e., 

uX X u   . Xψ|ψ| and Xψ are the surge force coefficients due to underwater currents. Xstatic 

stands for variable independent static external forces along x direction.  

This equation is comprised of damping terms up to the third order (i.e., Xu, Xu|u| and Xuuu); 

hence, it includes laminar and turbulent skin friction damping components as well as viscous 

damping. The terms Xwq and Xvr represents the cross-coupled drag components; i.e., change in 
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the forward speed of the AUV resulting from heading and pitch variations. The external forces 

due to underwater currents depend on the heading of the vehicle. For example, if a steady 

underwater current is flowing from North to South, the external current force component acting 

on the vehicle when travelling with a heading angle of 0° would be different to a heading angle 

of 60°. Fossen (2011) models the forces due to underwater currents as a function of angle of 

attack of the AUV with the flow direction, which is also a function of the vehicle heading angle. 

Hence, in this work, external forces along the x direction due to current are modelled as 

functions of up to the second order of the vehicle heading (i.e., Xψ|ψ| and Xψ). Other 

environmental and external forces (i.e., direction independent) acting along the x direction are 

assumed to be superimposed within the damping hydrodynamic parameters. This offers the 

ability to capture the external forces as functions of all the previously stated variables for 

different environmental conditions, maximising the accuracy of model calibration and 

minimising the number of data points required for the convergence. However, this has a 

disadvantage of not being able to obtain values for the pure hydrodynamic derivatives as 

environmental and external forces are incorporated in them. Any uncaptured steady external 

forces are included in the model as a variable independent constant Xstatic.  

2.3.4.2. Forces in y direction 

Similarly, the hydrodynamic damping forces and environmental/external forces acting 

along the y direction are modelled using Equation (2.6).  

| |Y | |v q r p staticv v
Y v v Y v Y q Y r Y p Y Y Y            (2.6) 

Nonlinear hydrodynamic damping along y direction was limited to the second order of 

the sway velocity (i.e., Yv and Yv|v|). The Gavia AUV is asymmetric about the x-y and y-z planes. 

Therefore, as the vehicle presents an angle of yaw to the flow (i.e., as the vehicle changes its 

horizontal heading angle), the AUV will start to roll and pitch, resulting in a change in the 

vehicle operating depth as the control system responds. Due to the asymmetry of the vehicle, 

this will occur in all directions. Therefore, the linear cross-coupled drag components due to 

roll, pitch and yaw motions (i.e., Yp, Yq and Yr) were also included in Equation (2.6). Similar to 

the surge model, the sway force due to steady underwater currents is modelled as functions of 

up to the second order of the vehicle heading (i.e., Yψ|ψ| and Yψ). The direction independent 

environmental/external forces acting along the sway direction are assumed to be superimposed 

within the hydrodynamic damping terms. Uncaptured steady external forces are incorporated 

as a variable independent constant Ystatic. 
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2.3.4.3. Forces in z direction 

Equation (2.7) describes the hydrodynamic damping and environmental/external force 

along the heave direction.  

Z w q r staticw w
Z w w Z w Z q Z r Z      (2.7) 

Similar to the sway force component, the nonlinear hydrodynamic damping in the z 

direction was limited to the second order of the heave velocity (i.e., Zw and Zw|w|). The cross-

coupled damping terms due to pitch and yaw motions (i.e., Zq and Zr) were also included. The 

environmental/external forces acting along the heave direction were also assumed to be 

superimposed within the modelled hydrodynamic damping parameters. Uncaptured steady 

external forces are incorporated as a variable independent constant Zstatic, which also represents 

any variations in the ballast condition from the baseline model. The heading direction 

dependent underwater currents along the vertical direction are neglected. 

2.3.5. Final dynamic equations of motion and control forces 

Equations (2.2) and (2.5) are combined and rearranged to determine the surge 

acceleration as shown in Equation (2.8). 

 
    3

| |

1
[ sin

| | ]

g g uuu u u

u

u wq vr static prop

u my r mz q W B X u X u u
m X

X u X wq X vr X X X X  

       


        

 (2.8) 

where, Xprop is the thrust produced by the propeller that is given by 2
nX RPM . RPM is 

the vehicle’s propeller revolutions per minute and 
nX is the thrust coefficient, which is 95×10-

6 for the Gavia AUV according to the estimation by Thorgilsson (2006). The thrust coefficient 

is only valid for the propeller speed range from 450 RPM to 975 RPM. 

The mass, added mass, buoyancy and the positions of the centre of gravity of the AUV 

varies with the vehicle configuration and the ballast condition. Therefore, these values are 

deployment dependent. Equation (2.8) is parameterised as shown in Equation (2.9) in order to 

superimpose these unknown properties inside the parameters to be identified, eliminating the 

requirement to measure those physical properties of the AUV. However, this has a 

disadvantage of not being able to obtain values for the pure hydrodynamic derivatives as other 

properties are overlayed within them.  
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 2 3

1 2 3 4 5

6 7 8 9 10 11

sin

| |

nu X RPM r q u u u

u wq vr

         

       
 (2.9) 

where, 
1 , 

2 …
11  are the parameters to be estimated using the identification algorithm.  

Similarly, Equations (2.3) and (2.6), and Equations (2.4) and (2.7) are combined, 

rearranged, and parameterised as shown in Equations (2.10) and (2.11) respectively.   

1 2 3 4 5 6 7 8 9 10| |v r p v v v p q r             (2.10) 

1 2 3 4 5 6w q w w w q r             (2.11) 

where, β1, β2 … β10 and γ1, γ2… γ6 are the parameters to be estimated using the 

identification algorithm developed in this work.  

Roll, pitch and heading angles of an AUV could be measured using the gyroscopic 

sensors inside the vehicle INS regardless of the availability of external velocity aiding from 

DVL. For this reason, it was determined that estimating Euler angles of the AUV were not 

required for this work. Hence, roll, pitch and yaw angular velocities and accelerations (i.e., p, 

q, r, p , q  and r ) were directly provided as inputs into the model. This provided the ability to 

limit the mathematical model to 3-DOF (i.e., linear motions along x, y and z directions), 

eliminating the requirement to model the rolling, pitching and yawing motions. This also had 

the added advantage of the actuator control surfaces in Equations (2.9), (2.10) and (2.11) not 

having to be modelled. Instead the actual turning behaviours of the vehicle (i.e., p, q, r, p , q  

and r ) measured during the tests were provided as model inputs. The propulsion module 

utilised for this work had four independently operating control surfaces in a ‘X’ configuration. 

This arrangement concurrently generates moments around both y and z directions, 

incorporating complicated coupling effects between the control surfaces (Sun et al., 2013). As 

a result of the 3-DOF modelling used in this work, resolving the produced moments were not 

necessary.  

 Parameter identification and simulation model 

2.4.1. Recursive Least Squares (RLS) identification 

Recursive least squares based parameter identification was conducted using the 

Recursive Least Squares estimation block set of MATLAB’s System Identification toolbox, 

which is based on the theoretical approach outlined in Ljung (1999). Equations (2.9), (2.10) 

and (11) are modified to the format given in Equation (2.12). 
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( ) ( ) ( )y H Θt t t  (2.12) 

where y(t), H(t) and ( )Θ t  are vectors as defined in Table 2.2 for surge, sway and heave 

models. 

Table 2.2 – y(t), H(t) and Θ(t) vectors of Equations (2.12) and (2.16) for x, y and z directions. 

x direction y direction z direction 

2

( )y t nu X RPM    ( )y t v  ( )y t w  

  3

( )

2

H sin

1

t r q u

u u u wq vr

 

  

 
( )

2

H

1

t r p v v v

p q r

 

  

 
( )H 1t q w w w q r     





( ) 1 2 3 4 5

6 7 8 9 10 11

Θ t      

     
 





( ) 1 2 3 4

5 6 7 8 9 10

Θ t     

     
  ( ) 1 2 3 4 5 6Θ t         

 

In the standard Least Squares Estimation method, the entire data set is processed 

concurrently to determine the parameter vectors; i.e., ( )Θ t in equations (2.12), by solving 

equation (2.13). 

1
T T

( ) ( ) ( ) ( ) ( )Θ H H H yt t t t t



   
 (2.13) 

 While the AUV is under operation, new motion response data are continuously being 

measured and sampled at each time-step. If the standard Least Squares Estimation method is 

employed, it requires the identification algorithm to be re-run for the entire mission (i.e., for 

all the data from the initial time step to the current time step) with the arrival of each new 

measurement (Ljung, 1999). On the other hand, the RLS Estimation method, adds the 

subsequent measurements to the existing solution without requiring the algorithm to be rerun. 

Equation (2.14) shows how the estimated parameters are extended for the subsequent 

measurements (Ljung, 1999).  

( ) ( 1) ( ) ( 1) ( )Θ Θ P H εt t t t t    (2.14) 

where, t is the time-step and,  

( ) ( ) ( ) ( 1)ε y H Θt t t t  , 

( )

( )

P
P

t

t 

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T

( 1) ( 1) ( 1) ( 1)

( ) ( 1) T

( 1) ( 1) ( 1)

P H H P
P P

H P H

t t t t

t t

t t t

   



  

 


 

and where,   is the forgetting factor. 

0

1
1

T
    

where, 
0T  is the length of the preceding data set that will be processed during the 

identification process.  

Thus, past measurement data can be removed with the arrival of new data and; therefore, 

successive measurements can have a higher weight in the estimation process. The maximum 

value of the forgetting factor is one, which corresponds to none of the past data being forgotten 

(i.e., the entire dataset from the beginning to the current time step will have an equal weight). 

The smaller the forgetting factor, the shorter the length of the utilised preceding data set. This 

is important when the variation of parameters has to be identified in real time in dynamic 

operational environments with varying environmental and external forcing.  

The initial values of all the parameters were set to 1 in order to retain the assumption that 

the initial parameters of the AUV model are unknown to the user. 

2.4.2. Prediction Error Method (PEM) identification 

Prediction error estimation function of MATLAB System Identification toolbox was 

utilised for PEM based parameter identification. PEM identification is done by minimizing the 

difference between the predicted outputs ( )
ˆ

ty  (i.e., the outputs of Equations (2.9), (2.10) and 

(2.11) according to parameters ( )tΘ  that is being estimated recursively) and measured outputs 

y(t) as given in Table 2.2.  

 ( ) ( )arg min  t tV
Θ

Θ Θ  (2.15) 

where, 

   ( 1)

2

( ) | 1
1

1
ˆ 

2 t

N

t (t) t t
t

V y y
N 



  Θ
Θ  

where,  ( 1)| 1
ˆ

tt t
y

 Θ
is the predicted linear acceleration output at t, using all the information 

until time t-1.  
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Similar to the RLS estimation, the initial values of all the parameters were set to 1. The 

computation of the minimizing argument is a complicated process with a substantial amount 

of calculations. A thorough discussion regarding this process is given in Ljung (1999). 

2.4.3. Simulation model 

The simulation model described in this section can be used to determine u, v, and w once 

the parameters (i.e., ( )tΘ ) are completely estimated or the estimation is being carried out in real 

time. The acceleration vectors of the current time step in the x, y and z directions are calculated 

according to equations (2.9), (2.10) and (2.11) respectively using the controlling commands 

(i.e., the time stamps of propeller RPM, roll rate, roll acceleration, pitch rate, pitch acceleration, 

yaw rate and yaw acceleration) of the vehicle and the velocity vector from the previous time 

step (Figure 2.4). For real time conditions, the parameter vector will be updated at each time 

step, while for non-real time applications, it will remain constant. The calculated acceleration 

vector is then integrated with respect to the time in order to obtain the velocity vector (i.e., u, 

v and w) in the body-fixed reference frame. This process is repeated with a time-step of 0.0001 

s for the entire mission time. The selected time-step is large enough to maintain a low 

computational time and small enough to converge the velocity solution between two control 

command sampling intervals (i.e., of 0.87 Hz). 

 

Figure 2.4 – Simulation model flowchart. The solution for the acceleration vector of the current 

time-step is determined using the control command vectors and velocity vectors from the 

previous time-step. The velocity vector is then calculated by integrating the acceleration vector 

with respect to time. *The parameter vector remains constant for non-real time identification 
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 Baseline model identification and calibration 

The primary application of mathematical model identification is to determine the 

unknown parameters of the AUV mathematical model in order to estimate the surge, sway and 

heave velocities of the vehicle when DVL velocity measurements are unavailable. 

2.5.1. Baseline model identification 

Baseline mathematical models that represent the dynamics of the Gavia AUV in a calm 

water environment was first determined using the RLS and PEM system identification 

algorithms. Since external and environmental forces caused by currents, turbidity, pressure 

fluctuations, etc. are neglected in the baseline model, the surge and sway force parameters due 

to steady underwater currents (i.e., α9, α10, β8 and β9) and uncaptured steady external forces 

(i.e., α11 and β10) were removed from Equations (2.9) and (2.10). However, minor 

external/environmental forces might be incorporated within the remaining parameters of the 

model. The parameter representing the steady external forces along z direction (i.e., γ6) was not 

removed from Equation (2.11) as it also represents the (B-W) term as shown in Equation (2.4). 

For the RLS method, a forgetting factor of one was utilised in order to process the entire length 

of the data set with an equal weight (i.e., no forgetting) and determine the parameter vectors 

(i.e., ( )tΘ ) by solving equations (2.13) and (2.14). To establish baseline conditions, the 

identification algorithm was run using Lake Trevallyn field manoeuvres (i.e., ID Manoeuvres 

1 and 2).  

Parameter identification was conducted with both RLS and PEM techniques to determine 

the most effective estimation method for the mathematical model defined in this work. In order 

to investigate parameter estimation using a dataset with dissimilar inputs and outputs, each 

identification technique (i.e., RLS and PEM) was repeated for the two identification 

manoeuvres (i.e., for ID Manoeuvres 1 and 2). At the end of each identification process, 

parameter values had converged within 5% of the mean values. These baseline parameters for 

the vehicle (as configured) are presented below in Table 2.3.  
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Table 2.3 – Numerical values of the Gavia AUV’s baseline parameters determined from RLS 

and PEM techniques using ID Manoeuvres 1 and 2. Note that the values of the parameters are 

not pure hydrodynamic, hydrostatic and mass coefficients as the environmental and external 

forces are overlayed within them. 

Parameter RLS  (ID 

Manoeuvre 1) 

RLS (ID 

Manoeuvre 2) 

PEM (ID 

Manoeuvre 1) 

PEM (ID 

Manoeuvre 2) 

 1
g

u

my

m X
 


 0.5294 0.3502 0.5279 0.4448 

 2
g

u

mz

m X






 0.0909 0.0550 0.0959 0.3102 

   
 3

sin

u

W B

m X








 -2.5098 -2.8987 -2.4622 -2.1622 

 4
uuu

u

X

m X
 


 -8.5937 -7.4594 -8.6492 -7.4957 

 5

u u

u

X

m X
 


 -22.3129 -18.2884 -22.4870 18.2994 

 6
u

u

X

m X
 


 -32.7171 -29.7355 -32.8517 -29.5699 

 7
wq

u

X

m X
 


 -7.1061 -16.1337 -7.0680 -13.1852 

 8
vr

u

X

m X
 


 -13.5405 -12.7996 -13.5564 -12.8060 

 
| |

9
u

X

m X

 
 


 - - - - 

 
10

u

X

m X


 


 - - - - 

 11
static

u

X

m X
 


 - - - - 

 
 1

r g

v

Y mx

m Y






 

0.0133 0.0135 0.0133 0.0133 

 2
g

v

mz

m Y
 


 0.0029 0.0031 0.0029 0.0029 

 3

v v

v

Y

m Y
 


 0.0444 0.0173 0.0480 0.0094 

 4
v

v

Y

m Y
 


 -0.0364 -0.0722 -0.0367 -0.0552 

 5
p

v

Y

m Y
 


 

0.0005 0.0004 0.0005 0.0004 

 6
q

v

Y

m Y
 


 

-0.0001 0.0003 0.0000 0.0001 

 7
r

v

Y

m Y
 


 0.0008 0.0016 0.0007 0.0013 

 
| |

8
v

Y

m Y

 
 



 - - - - 

 9
v

Y

m Y


 



 - - - - 
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 10
static

v

Y

m Y
 



 - - - - 

 
 1

q g

w

Z mx

m Z






 -0.0059 -0.0062 -0.0058 -0.0061 

 2

w w

w

Z

m Z
 


 -0.0138 -0.0186 -0.0094 -0.0038 

 3
w

w

Z

m Z
 



 -0.0347 -0.9837 -0.0372 -0.7185 

 4
q

w

Z

m Z
 


 -0.0011 0.0044 -0.0010 -0.0083 

 5
r

w

Z

m Z
 



 0.0001 -0.0032 0.0001 -0.0028 

 
 6

static

w

W B Z

m Z


 




 

0.0016 0.0020 0.0015 0.0020 

 

2.5.2. Model calibration 

The baseline mathematical model may be unable to predict the vehicle motion response 

in operational environments different from the baseline environment. For example, if the 

vehicle is operating in a highly turbulent waters, the baseline model will be unable to predict 

the AUV’s actual velocities over ground. Similarly, variations in the vehicle setting due to 

different ballast and trim conditions, addition of new payloads, and change in module 

configuration will change the hydrostatic and hydrodynamic forces acting on the AUV and 

hence, the mathematical model representing it. Therefore, any deviation from the baseline 

vehicle condition requires alteration of the mathematical model to obtain an accurate motion 

response. A model calibrating algorithm was introduced to overcome this by adjusting the 

baseline model for the new vehicle operational environments and configurations by carrying 

out a calibration mission.  

For model calibration, the RLS algorithm was run for Equation (2.16) instead of for 

Equation (2.12). That is, in Equation (2.16), ( )ty and ( )tΘ of Equation (2.13) will be replaced by 

the terms ( )( )t y F  and ( ),alterationtΘ respectively. 

 ( ) ( ) ( ),alterationy F H Θt t t   (2.16) 

where, ( )y t and ( )H t are as defined in Table 2.2 for surge, sway and heave models, while 

F reflects the right-hand-side in equations (2.9), (2.10) and (2.11) respectively. The baseline 

model was used to obtain the solutions for F. The terms in ( ),alterationΘ t represents the corrections 

required for the initial parameters in the baseline model.  
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In this investigation, the baseline model identified with the RLS method using ID 

Manoeuvre 1 was calibrated to predict the vehicle motion response in the environmental 

conditions in Lake Ohau. The same Gavia AUV with the identical module configuration as in 

the Lake Trevallyn tests was used for Lake Ohau mission. Therefore, the mass and hydrostatic 

vehicle properties were unaffected, and the corresponding parameters were not calibrated. Thus 

1 , 2 , 3 , 1 , 2  and 1  parameters and corresponding motion variable elements were 

removed from ( ),alterationtΘ  and ( )tH  vector respectively. Surge and sway force parameters due to 

steady underwater currents (i.e., α9, α10, β8 and β9) and external forces (i.e., α11 and β10), which 

were neglected in the baseline model, were included for the model calibration as the objective 

is to capture the effect of environmental forces. At the end of the calibration run, the calibrated 

parameters were obtained by adding the required corrections to the original baseline parameters 

according to Equation (2.17). 

  ( ),calibrated ( ) ( ),alterationΘ Θ Θt t t   (2.17) 

where, 
( ),calibratedΘ t

is the final set of calibrated parameters. 

2.5.3. Performance analysis & discussion 

Performances of the determined baseline models were examined by applying the 

identified parameter vectors (i.e., ( )tΘ ) into the simulation model and simulating a set of pitch 

and yaw plane zig-zag manoeuvres conducted in Lake Trevallyn (i.e., under the same 

environmental and vehicle conditions). The AUV runs used for model estimations were not 

used for this validation process to have an unbiased validation. 

Simulated vehicle velocities from baseline models were compared against actual 

measurements from the DVL aided INS. Baseline models included those identified using RLS 

and PEM techniques, with each technique processed twice using field data from ID 

Manoeuvres 1 and 2. Figure 2.5a, 2.5b and 2.5c compare the experimental and model predicted 

velocities in surge, sway and heave directions respectively (i.e., u, v and w). The uncertainties 

in surge velocity predictions from all models increase with time due to accumulation of 

acceleration prediction error during the integration to determine the velocity. Conversely, the 

error propagations in sway and heave velocities are negligibly smaller due to error 

counteraction during the velocity fluctuations. Table 2.4 presents the Root Mean Squared 

(RMS) errors (Devore, 2011b) of baseline models in comparison to actual measurements from 

the DVL bottom-track aided INS. Good correlations were observed from all models with RMS 
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errors less than 0.13 m s-1, 0.03 m s-1 and 0.03 m s-1 for u, v and w. In comparison, as given in 

Table 2.1, the RMS uncertainty of surge, sway and heave velocity estimations from a DVL 

water-track aided INS is 0.3 m s-1, GPS aided INS is 0.05 m s-1 and DVL bottom-track aided 

INS is 0.001 m s-1 (Alameda Jr, 2002, Kearfott Corporation, 2016). 

 

Figure 2.5 – Comparison between the baseline models and experimental velocities of the AUV in 

(a) x, (b) y and (c) z directions for the Lake Trevallyn field tests 

The difference between velocity prediction uncertainties of the models identified using 

RLS and PEM are negligibly small (see Table 2.4). That is, both identification algorithms are 

equally capable of estimating the parameters of the model defined by Equations (2.9), (2.10) 

and (2.11). The initial parameter values were set to 1 in both techniques in order to preserve 

the assumption that the initial guesses of the parameters are unknown. Dependency of the 

parameters estimation accuracy on the initial values was evaluated by repeating the RLS and 

PEM estimation algorithms with initial values being set to previously identified parameters. 

Negligibly small variations of the parameter values were observed (i.e., less than 0.5%). 

Therefore, the estimated parameters are independent of the initial values. This is likely to be as 
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a result of the utilised identification manoeuvres that stimulate the vehicle dynamics in all 

motion modes. 

Table 2.4 – Accuracies of the vehicle velocity predictions from the four baseline models (i.e., 

models identified with RLS and PEM techniques, with each technique processed twice utilising 

ID Manoeuvres 1 and 2) compared to velocity measurements from the DVL aided INS. 

Identification 

technique 
Manoeuvre 

RMS error compared to actual measurements (m s-1) 

Surge velocity Sway velocity Heave velocity 

RLS 
ID Manoeuvre 1 0.13 0.03 0.02 

ID Manoeuvre 2 0.13 0.02 0.02 

PEM 
ID Manoeuvre 1 0.13 0.03 0.02 

ID Manoeuvre 2 0.12 0.02 0.03 

 

The parameter estimation was repeated for both ID Manoeuvres 1 and 2 to investigate 

the variation of the estimated parameters with the utilised dataset. As seen from Figure 2.5, 

models obtained by processing both datasets perform well with a maximum RMS difference 

of 0.01 m s-1 (see Table 2.4). The RLS and PEM algorithms were able to process an 862-second 

long dataset with computation times of 12 s and 10 s utilising an Intel Core i7-4470 3.40 GHz 

central processing unit. That is, the measurement data can be processed in rates of 74 Hz and 

62 Hz respectively. Real time measurement sampling rate of the AUV is around 25 Hz. 

Therefore, either of the two algorithms are deemed to be feasible for real time or near real time 

estimation. 

Given that all four baseline models are equally capable, the model parameters obtained 

from RLS technique by processing ID Manoeuvre 1 was utilised for the discussion hereinafter. 

The baseline model-aided INS solution was obtained by fusing the vehicle velocities from the 

RLS baseline model with unaided INS acceleration measurements. A Kalman filter based data 

fusion algorithm developed according to Farrell (2008) was utilised for INS aiding. The 

baseline model-aided INS was tested for the lawn mower pattern run in Lake Ohau (AUV Runs 

5 – 8) to investigate the performance in different environments (recall Figure 2.2b). Figure 2.6a, 

2.6b and 2.6c compare u, v and w velocities of the vehicle from baseline model-aided INS 

against those measured by the AUV’s DVL aided INS. The sudden peaks and dips at the time 

periods of 300s, 650s and 1050s were a result of the 180˚ heading turns of the vehicle at the 

end of each straight line run. The RMS errors between the baseline model-aided INS and 
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experimentally measured DVL aided INS were 0.15 m s-1, 0.02 m s-1 and 0.02 m s-1 for u, v 

and w respectively. The AUV’s on board ADCP measured an averaged background water 

current magnitude of around 0.1 m s-1 in the Lake Ohau test site. According to the WVAM 

method (Randeni et al., 2015a), the difference between the actual vehicle velocities and those 

simulated by a baseline model that represents a calm environment provides the velocities of 

the water column around the AUV.  Although, this difference is reduced when the baseline 

model is fused with actual vehicle acceleration measurements from the INS. The observed 

difference between the actual and baseline model-aided INS results is due to the water currents 

in Lake Ohau. 

 

Figure 2.6 – Comparison of the baseline and calibrated model-aided INS velocities in (a) x, (b) y 

and (c) z directions against those from the DVL aided INS for the Lake Ohau runs 2 and 3 

The baseline model was calibrated by running the calibration algorithm for AUV Runs 1 

– 4 in Lake Ohau. The solid blue lines in Figure 2.6 show the velocity from the calibrated 

model-aided INS for AUV Runs 5 – 8. A significant improvement is that RMS errors compared 

to actual measurements have reduced to 0.04 m s-1, 0.01 m s-1 and 0.01 m s-1 for respective 
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velocities in surge, sway and heave directions. That is an improvement of 73%, 50% and 50% 

in each of the three directions, respectively.  Table 2.5 presents the numerical values of the 

baseline model parameters (i.e., from RLS method with ID Manoeuvre 1) and those of the 

model calibrated for the Lake Ohau environmental condition. 

Table 2.5 – Numerical values of the Gavia AUV’s baseline model (i.e., from RLS method with ID 

Manoeuvre 1) parameters and those of the model calibrated for Lake Ohau. 

Parameter Baseline model 

 

Calibrated model 

 1
g

u

my

m X
 


 0.5294 0.5294 

 2
g

u

mz

m X






 0.0909 0.0909 

   
 3
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u
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m X








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X
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
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X
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
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u

u

X
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
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u

X

m X
 


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 8
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u

X

m X
 


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u

X

m X

 
 


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u

X

m X


 


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 11
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u

X

m X
 


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v

Y mx
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


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Y
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 5
p

v

Y

m Y
 


 

0.0005 0.0007 

 6
q

v

Y

m Y
 


 

-0.0001 0.0001 
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 
 6

static

w

W B Z

m Z


 




 0.0016 0.0003 

 

The baseline model-aided INS surge velocity prediction diverges with time compared to 

DVL aided INS solution due to accumulation of error. However, the surge velocity is 

accurately estimated by the calibrated model-aided INS for the entire duration of the mission. 

Out of the three, the heave velocity component delivered the most accurate replication of the 

actual velocity of the AUV. Although, the velocity prediction in z direction is not critical for 

localisation as the vehicle depth and depth rates can be accurately measured with the pressure 

sensor, it can be used as a backup for emergency situations. 

There is an uneven divergence between the actual and calibrated sway velocities (Figure 

2.6b). Consistently, this difference is observed at one side of the four lawn mower pattern 

straight lines; i.e., at the right-hand side of the bathymetry shown in Figure 2.2c. This could be 

due to strong underwater currents of around 0.15 m s-1 present near the inflow point caused by 

the Hopkins and Dobson Rivers (Cossu et al., 2015). This discrepancy gets larger as the 

distance gets smaller. Therefore, a water column velocity measurement method could be 

integrated together with the model predicted vehicle velocities in order to improve the accuracy 

of the localisation solution of the AUV when DVL aiding is unavailable for longer time 

intervals (Hegrenaes and Hallingstad, 2011, Randeni et al., 2016).  

Figure 2.7a compares the 2-dimensional (2D) localisation solutions computed using the 

measured vehicle velocities (i.e., the actual vehicle path) and those estimated using the baseline 

model for the pitch and yaw plane zig-zag manoeuvres conducted in Lake Trevallyn site. Note 

that the AUV paths are plotted in a local coordinate system. The baseline model predicted 
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localisation solution was within the 1.5% of the distance travelled uncertainty range. Therefore, 

the estimated baseline model is deemed accurate to predict the vehicle position with an 

uncertainty margin of 1.5% of the distance travelled when the AUV is operating under similar 

environmental forcings. 

Figure 2.7b compares the 2D localisation solutions of the AUV for Lake Ohau Runs 5 – 

8 computed using the measured DVL aided INS velocities and those from the baseline and 

calibrated model-aided INSs. The baseline model-aided INS over predicts the surge velocity 

of the AUV by approximately 0.15 m s-1, resulting in a deviated vehicle position derivation 

compared to the actual path. However, this position error is counteracted during the opposite 

directions runs of the lawn mower pattern mission. The over prediction of the surge velocity is 

significantly reduced in the calibrated model providing a more accurate localisation solution.  

 

Figure 2.7 – (a) two dimensional AUV paths of Lake Trevallyn manoeuvres derived from the 

actual vehicle velocities (i.e., experimental), and baseline model predicted velocities plotted in a 

local coordinate system. (b) actual and model predicted (i.e., baseline model and calibrated 

model) localisation solutions of Lake Ohau Runs 5 – 8. (c) comparison of the localisation errors 

(i.e., the difference between the actual and model predicted vehicle positions) from baseline and 

calibrated models. Dark grey area indicates the 0.1% of the distance travelled localisation error 

level (i.e., positioning uncertainty of a typical DVL bottom-track aided INS) while grey and light 
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grey regions show that of 1.5% and 4.0% (i.e., the localisation error level of an DVL water-

track-aided INS) 

Figure 2.7c plots the localisation errors (i.e., the difference between the DVL aided and 

model-aided INS vehicle positions) for baseline and calibrated models against the AUV’s 

travel distance for the Lake Ohau mission. The fluctuations in the localisation errors are due to 

the error counteraction during the opposite direction runs.  Three different uncertainty margins 

are indicated by grey shaded areas with dark grey representing the localisation error level of 

0.1% of the distance travelled. Grey and light grey zones show respective error levels of 1.5% 

and 4.0% of the distance travelled. The localisation solution from the baseline model-aided 

INS was outside of the 1.5% band but, was generally within the 1.8% of the distance travelled 

margin. The positioning uncertainty is generally within 1.5% level when the model is calibrated 

to the operational environment.  

The localisation accuracy of the Gavia AUV with Kearfott T24 INS when DVL aiding 

is available is within 0.1% of the distance travelled; i.e., region shaded in dark grey (Hiller et 

al., 2011). However, according to the published specifications, the DVL water-track-aided 

Kearfott T24 INS (i.e., when DVL bottom-track is unavailable) has a time root mean squared 

localisation uncertainty of 1852 m (i.e., 1 nm) per 8 hours (Kearfott Corporation, 2016). 

Assuming a forward speed of 1.6 m s-1, this yields a positioning error of around 4.0% of the 

distance travelled (i.e., region shaded in light grey). A calibrated model-aided INS could limit 

the positioning uncertainty to around 1.5% of the distance travelled for a typical AUV mission. 

 Real time model identification 

2.6.1. Real time parameter calibration  

In highly dynamic environments, the parameters of the mathematical model fluctuate 

with time due to environmental and external forcing. The objective of the real time model 

calibration algorithm is to generate a mathematical model that continuously updates to provide 

the vehicle motion response in the present operational environment; especially in highly 

dynamic environments. The procedure outlined in Section 2.5.2 was employed for real time 

parameter calibration. However, in order to identify the variation of parameters in a dynamic 

environment, data from preceding measurements have to be forgotten/discarded as new data 

arrives and the successive measurements should contain a higher weighting in the estimation 

process. Therefore, the performance of the real time calibration model for different data 
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processing set lengths were investigated by testing for forgetting factors of 1.00, 0.95 and 0.90; 

i.e., an infinite length, a time period of 20 s and 10 s, respectively. 

2.6.2. Performance analysis & discussion 

In order to verify whether the mathematical model provided by the real time model 

calibration method precisely represents the hydrodynamic characteristics of the AUV, the real 

time algorithm was tested using a horizontal heading angle zig-zag manoeuvre conducted in 

Lake Trevallyn (i.e., the first 260 s of the ID Manoeuvre 1 shown in Figure 2.3) and a straight 

line run conducted in Lake Ohau (i.e., AUV Run 1 shown in Figure 2.2b). Parameters that are 

being updated in real time were used in the simulation model to determine the vehicle linear 

accelerations along surge, sway and heave directions and were compared against those 

measured by the vehicle INS. The maximum discrepancy between the two was observed in the 

surge acceleration.  

Table 2.6 presents the averaged difference between the actual and simulated 

accelerations for forgetting factors of 1.00, 0.95 and 0.90. The accuracy of the real time 

model is comparatively lower when the forgetting factor was set to 1 in order to disable the 

forgetting effect and to process the entire data series from the first to the last measurement. 

On the other hand, the averaged percentage differences for the Lake Trevallyn and Lake 

Ohau runs for the forgetting factors of both 0.90 and 0.95 were less than 1%. Thus, the 

accuracies of the mathematical models identified using the real time algorithm increased after 

enabling the forgetting effect. It can be concluded that the smaller the forgetting factor is (i.e., 

the shorter the length of the data series being processed) the higher the accuracy is. However, 

the numerical values of all parameters converged within 5% of the mean values for all the 

tested forgetting factors. 

Table 2.6 – The variation of the averaged difference between the actual and simulated 

accelerations with the forgetting factor for Lake Trevallyn and Ohau runs. 

Forgetting 

factor 

Averaged difference between actual and simulation 

accelerations (m s-2) 

Lake Trevallyn test Lake Ohau test 

Surge Sway Heave Surge Sway Heave 

0.90 1.49×10-8  2.59×10-7 9.19×10-9 3.14×10-8 1.59×10-8 2.11×10-8 
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0.95 1.84×10-7 1.93×10-6 1.13×10-7 3.55×10-8 3.67×10-7 4.83×10-8 

1.00 1.37 4.60×10-3 3.81×10-3 4.18×10-3 1.55×10-3 1.61×10-3 

 Limitations and future work 

The model identification algorithms presented in this article utilise the roll, pitch and yaw 

rates and accelerations as the control command inputs instead of the control surface angles to 

create a simplified 3-DOF model of the vehicle. Although the use of this model presents a 

major limitation for using on AUVs without accurate sensors to measure vehicle orientations, 

it would be widely applicable for most commercially available AUVs on the market today.  

Although the calibration method can be utilised to adjust a baseline model of an AUV 

for different configurations, this was not experimentally verified in this work. Authors expect 

to investigate this by testing the algorithm for different configurations of the Gavia AUV. 

Furthermore, it is anticipated to link the model predicted vehicle velocities with the non-

acoustic water column velocity estimation method (i.e., the WVAM method) previously 

developed by the authors (Randeni et al., 2016) in order to accurately estimate the vehicle 

velocities over ground for INS aiding.  

One of the key advantages of the mathematical model identification and calibration 

algorithms is that they could be applied to any torpedo shaped AUV (e.g. REMUS, Iver, Bluefin, 

Explorer, etc.) in any configuration. Authors have utilised this algorithm to successfully 

identify the mathematical models of an Iver III AUV and a Gavia AUV with different module 

configurations.  

 Conclusions 

This study presents a system identification algorithm to determine the linear and 

nonlinear parameters of an AUV mathematical model utilising the RLS and PEM optimisation 

methods. A baseline model that represents the dynamics of the Gavia AUV in a calm water 

environment was developed. The estimated baseline model accurately predicted the vehicle 

velocities in three dimensions when the vehicle and environmental conditions are similar to 

those represented by the baseline model. Model accuracy decreases when the operational 

environment is different. A novel technique was developed in this study to calibrate the 

parameters within the baseline model to different environmental conditions by conducting a 

calibration mission in the new environment. The accuracy of the velocity measurements from 
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the calibrated model was substantially greater than those from the baseline model for the tested 

scenarios with a minimum velocity prediction improvement of 50%. The calibrated model is 

able to compute the position of the AUV within an uncertainty range of 1.5% of the distance 

travelled. It is hypothesised that this uncertainty could be further reduced by incorporating the 

model predicted vehicle speeds obtained through a water column velocity estimation method. 

In comparison, the uncertainty of a DVL aided INS is around 0.1% of the distance travelled 

and that of a DVL water-track aided INS is around 4% (assuming a forward speed of 1.6 m s-

1). 

The algorithm was extended to real time parameter calibration and the extended 

algorithm was tested at two field sites with different environmental conditions; i.e., in a 

quiescent lake with relatively flat seabed, and in a more dynamic water column with rough and 

unstructured bathymetry. The performance of the real time calibration model for different 

processing data set lengths were investigated by testing for forgetting factors of 1.00, 0.95 and 

0.90. The smaller the forgetting factor is (i.e., the shorter the length of the data series being 

processed) the higher is the accuracy. 

The long term objective of this work is to predict the three dimensional velocity vector of the 

AUV in order to localise the vehicle when velocity over ground measurements from the DVL 

are unavailable for INS aiding.  
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Chapter 3: WVAM method – a non-acoustic 

technique to determine the velocity components of 

the water column  

 

Chapter 3 is based on the journal article ‘Determining the Horizontal and Vertical Water 

Velocity Components of a Turbulent Water Column Using the Motion Response of an 

Autonomous Underwater Vehicle’ published in the ‘Journal of Marine Science and 

Engineering’. The citation for the article is: 

Randeni, S. A. T., Forrest, A. L., Cossu, R., Leong, Z. Q., & Ranmuthugala, D. (2017). 

Determining the Horizontal and Vertical Water Velocity Components of a Turbulent Water 

Column Using the Motion Response of an Autonomous Underwater Vehicle. Journal of Marine 

Science and Engineering, 5(3), 25. 
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Abstract 

This work introduces a new method to calculate the water velocity components of a 

turbulent water column in the x, y, and z directions using the Autonomous Underwater Vehicle 

(AUV) motion response (referred to as the ‘WVAM method’). The water column velocities 

were determined by calculating the difference between the motion responses of the vehicle in 

calm and turbulent water environments. The velocity components obtained using the WVAM 

method showed good agreement with measurements from an acoustic Doppler current profiler 

(ADCP) mounted to the AUV. The standard deviation between the two datasets were below 

0.09 m s−1 for the velocity components in the x, y, and z directions, and were within the 

uncertainty margin of the ADCP measurements. With the WVAM method, it is possible to 

estimate the velocity components within close proximity to the AUV. This region encompasses 

the vehicle boundary layer and the ADCP blanking distance, which is not typically resolved. 

Estimating vertical and horizontal velocities around the boundary layer of the AUV is 

important for vehicle navigation and control system optimisation, and to fill the blanking 

distance gap within a water column velocity profile, which is important for flow field 

characterisation. The results show that it is possible to estimate the flow field in the vicinity of 

AUVs and other self-propelled vehicles. 
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 Introduction 

Measuring water column velocities is an essential component of physical oceanographic 

surveys but is also important for many applications, such as determining sediment transport 

(Hughes et al., 1997) and assessing the turbulent flux in the surface mixed layer (Hayes and 

Morison, 2002). Conventionally, broadband Acoustic Doppler Current Profilers (ADCPs) are 

used to measure water column velocity profiles using the Doppler frequency shift of a sound 

wave transmitted by the device resulting from particles in the water column moving with the 

fluid (Simpson, 2001). Stationary ADCPs can be used to determine flow profiles at a fixed 

location. The spatial and temporal distributions of velocity fields can be potentially determined 

with an array of such devices; however, the associated costs may restrict the number of sensors, 

limiting the spatial resolution of the measured velocity profiles. 

An alternative is to install similar instrumentation on mobile platforms to map the three 

dimensional water velocity components with a higher spatial resolution, although it is difficult 

to capture time series information with these vehicles (Sprintall et al., 2012). At larger water 

depths, subsea mobile platforms, such as Autonomous Underwater Vehicles (AUVs), provide 

increased potential for such surveys that are logistically not possible using surface-borne 

techniques. AUVs are more reliable to undertake missions in areas logistically difficult or 

inaccessible for surface vessels and other types of underwater vehicles such as Remotely-

Operated Vehicles (ROVs) and manned submersibles. For this reason, combined with the 

relative stability of the vessel and being decoupled from surface noise and reflectance, AUV 

mounted ADCPs have been frequently used to measure water column velocities (Fong and 

Jones, 2006, Kimura et al., 2016). 

Acoustic Doppler current profilers have a blanking distance in proximity to the device 

whose size depends on the frequency of the instrument in which the flow velocity data is not 

resolved (Simpson, 2001). Larger AUVs tend to have low frequency ADCPs to obtain a larger 

range; however, it also increases the size of the blanking distance. For example, 150 kHz 

ADCPs have a maximum range of around 200 m and a blanking distance of around 2–3 m, 

while the maximum range and blanking distance of 1200 kHz ADCPs are around 20 m and 

0.5–1 m respectively. Gandhi et al. (2008) utilised a power-law relation to interpolate the water 

velocity profile for the blanking distance near the sensor when determining discharge 

measurements in small hydropower stations in order to reduce the error due to the blanking 

distance. However, such interpolations are invalid in unstructured flow fields. 
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Previously, Hayes and Morison (2002) introduced a new technique to determine the 

turbulent vertical water velocities, and fluxes of heat and salt using the AUV motion data. A 

horizontal profile of vertical water velocity was obtained by applying a Kalman filter to the 

AUV motion data. However, it cannot be readily adopted for commercial AUVs due to the 

modelling complexity and the requirement of the typically unavailable vehicle control law 

algorithm. Frajka-Williams et al. (2011) developed a technique to estimate vertical water 

velocities from Seaglider autonomous underwater gliders, produced by Kongsberg Maritime 

AS, Kongsberg, Norway, using the difference between a predicted glider flight speed in still 

water and the observed glider vertical velocity from pressure. Rudnick et al. (2013) determined 

the vertical water velocity from Spray gliders using two methods; first, using a model approach 

similar to the Frajka-Williams et al. (2011). The second approach was to high-pass the 

measured vertical velocity of the vehicle under the assumption that changes in glider flights 

are low frequency compared to the water velocities. All three of these methods were limited to 

the vertical water velocity. 

This study introduces a method to calculate the water velocity components in the x, y, 

and z directions of a turbulent water column using the AUV motion response (hereinafter 

referred to as the ‘WVAM method’). The WVAM method determines the fine scale variations 

of water velocities (with a smallest measurable length scale of around 2.7 m in the current 

vehicle configuration) by comparing the motion response of the vehicle when operating within 

turbulent and calm water environments respectively. The key advantage of the WVAM method 

is that it provides velocity estimates within the blanking distance of the ADCP and the 

associated vehicle boundary layer which are usually unknown based on previous methods. The 

following sections of the article provide an overview of the experimental tools, test field details 

and novel methodologies employed for this work. Subsequently, the assessment and discussion 

of the validation and verification of the WVAM method are presented. Potential applications 

of the WVAM method and possible future developments are discussed in the 

Recommendations section of this chapter (i.e., Section 3.5). 

 Materials and Procedures 

3.2.1. Instrumentation 

A Gavia-class modular AUV (Forrest et al., 2012) built by Teledyne Gavia ehf., 

Kópavogur, Iceland was used to test and validate the proposed WVAM method. As configured 
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for testing, this vehicle consists of a nose cone module, battery module, GeoSwath Plus 

Kongsberg Maritime AS (Kongsberg, Norway) interferometric sonar module, 1200 kHz 

Teledyne RD Instruments (San Diego, USA) ADCP/Doppler Velocity Log (DVL) module, 

Kearfott (New Jersey, USA) T24 inertial navigation system (INS) module, control module, and 

a propulsion module (Figure 3.1). The overall length of the vehicle was 2.7 m, the diameter 

was 0.2 m, and the dry weight in air was approximately 70 kg. The Kearfott T24 INS, aided 

with velocity over ground measurements obtained from the DVL bottom-tracking mode, was 

utilised by the AUV to determine position of the AUV and vehicle velocities in six-degree-of-

freedom (6-DOF). The depth of the vehicle was obtained from the Keller (Winterthur, 

Switzerland) Series 33Xe pressure sensor on-board the AUV. These sensor measurements were 

recorded in the vehicle log at a frequency of 0.87 Hz. 

 

Figure 3.1 – Configuration of the utilised Gavia AUV with the ADCP beam geometry as 

indicated. 

AUVs are preprogramed to follow a pre-set mission route with a given surge speed. 

When an AUV is operating in an environment with highly-fluctuating water velocities (e.g., in 

a turbulent water column), the forces induced by these velocities can interrupt the control 

stability and change the vehicle speed, depth, pitch, and yaw angles (i.e., motion response of 

the AUV) from the pre-set values. In order to compensate for such changes in performance, 

the vehicle’s dynamic control system adjusts the revolution speed of the propeller and the 

angles of the four control surfaces located at the stern of the propulsion module. According to 
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these adjustments, the motion response of the AUV will change and the AUV will target the 

initially-prescribed mission track (Kim and Ura, 2003) unless the propeller and the control 

surfaces are unable to cope with the external forces. 

The ADCP module of the AUV included two 1200 kHz Teledyne RD Instruments 

ADCPs/DVLs arranged in upward- and downward-looking configurations. While the upward-

looking transducers were configured so that the instrument only collected water column 

velocity data relative to the AUV, the downward-looking set had a dual purpose: (i) water 

column data collection (i.e., ADCP mode), and (ii) estimation of the velocity of the vehicle 

relative to the ground as an input into the navigation solution of the vehicle (i.e., DVL mode). 

At every sampling time-step, the instrument’s mode of operation switched between the ADCP 

and DVL. The ADCPs were programmed to profile approximately 10 m of water column in 

0.5 m range bins so that the three directional water velocity components relative to the AUV 

in the body-fixed coordinate system are measured in each bin. During post processing, water 

velocity components relative to the AUV were converted to the Earth-relative velocities by 

using the vehicle’s Earth-referenced velocity measurements from the DVL aided INS. 

However, the water velocity measurements remained in the body-fixed coordinate system. 

In front of the ADCP transducers (both above and below) there was a blanking distance 

of 0.44 m (shown in Figure 3.1). This blanking distance (i.e., a vertical extent away from the 

vehicle where no velocity measurements are made) exists as transducers are required to recover 

electronically from the transmit pulse and to prepare to receive the return signal (Simpson, 

2001). An ADCP requires only three transducer beams to acquire the three dimensional water 

velocity components. The fourth redundant transducer evaluates the quality of the velocity 

measurements by comparing two estimations of the vertical water velocity. The difference 

between the two is called the error velocity (Lu and Lueck, 1999). 

3.2.2. Site Description 

The objective of this study was to derive the WVAM method that calculates the velocity 

components of a water column by comparing the motion response of the vehicle when 

operating within a turbulent environment and a simulated calm water environment. The 

determined velocities are validated with the velocity measurements from the on-board ADCP. 

Field tests were carried out at two locations in Tasmania, Australia—in Lake Trevallyn (a low 

energy system with average flows at <0.05 m s−1) to develop the calm water based simulation 
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model and in the Tamar estuary (a high energy system with peak flows at 2.5 m s−1) to test the 

WVAM method (Figure 3.2a). 

 

Figure 3.2 – (a) The two experimental field sites in Tasmania, Australia (inset). (b) The Batman 

Bridge site with the direction of dominant tidal current flow as shown with solid straight-line 

arrows. AUV tracks are illustrated with dotted arrows. (c) The Lake Trevallyn site with low 

turbulence conditions. AUV missions were conducted along the dotted line. 

The main field study was conducted in the Tamar estuary near the Batman Bridge (Figure 

3.2b) on 14 June 2014. The width of the estuary narrows down to less than 300 m near the 

Batman Bridge, which causes highly turbulent flow conditions along the main channel axis, as 

shown in Figure 3.2b. In addition, varying bathymetry of the estuary (i.e., the 35 m depth at 

the north-west end of the test location reduces to 15 m near the bridge and increases again to 

30 m at the opposite end) induces further constraints to the tidal flow. As a result of the 

narrowing and resulting flow constriction, this section of the estuary usually exhibits strong 

tidal currents (with maximum flow of >2.5 m s−1) and water level fluctuations of around 3m 

(Green et al., 2016). Three straight-line AUV runs were conducted along, and against, the tidal 

flow direction (see Figure 3.2b), maintaining a constant altitude of 10m above the bottom, and 

a propeller speed of 700 Revolutions Per Min (RPM). These missions were used to determine 

the water column velocities using the WVAM method. 

A series of manoeuvres was conducted in Lake Trevallyn, Tasmania (Figure 3.2c) 

between 30 October and 14 November 2013 to derive the hydrodynamic coefficients of the 

AUV using a system identification approach. The manoeuvres included straight-line runs 

conducted for five different propeller speeds (i.e., 525 RPM, 600 RPM, 675 RPM, 750 RPM, 

and 825 RPM) and a zig-zag manoeuvre in yaw and pitch planes by changing the coordinate 

waypoints and operating depths concurrently. The manoeuvres were designed to simulate the 
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vehicle dynamics in vertical as well as the horizontal planes, which is critical for accurate 

estimation of simulation model parameters. The water depth of the test site was greater than 6 

m and surface wave heights were below 50 mm. The AUV missions were carried out between 

2 and 4 m below the free surface to minimise the surface wave formation and the interaction 

effects with the lake bottom (Ananthakrishnan and Zhang, 1998, Steel, 2010). During the 

manoeuvres, the vehicle’s ADCP recorded minor variations of the water column velocities with 

averaged values in the surge, sway, and heave directions of less than 0.05 m s−1. These minor 

water velocities indicate a calm water environment. The AUV missions were conducted along 

the dotted line shown in Figure 3.2c. 

3.2.3. WVAM Method 

The mathematical formulae presented in this paper are based on the SNAME (1952) 

notation. Force/moment, velocity, acceleration and position/Euler angle vectors are in the 

AUV’s body fixed coordinate system (i.e., as shown in Table 3.1 and Figure 3.4) and are 

relative to the ground unless stated otherwise. The origin of the body-fixed reference frame 

was at the centre of buoyancy of the vehicle, which is located at the ADCP module as shown 

in Figure 3.4. 

Table 3.1 – The 6-DOF notation system. 

Degree-of-Freedom 
Forces & 

Moments 

Linear & 

Angular Velocity 

Position & 

Euler Angles 

Motions in the x-direction (surge) X u x 

Motions in the y-direction (sway) Y v y 

Motions in the z-direction (heave) Z w z 

Rotation about the x-axis (roll) K p ϕ 

Rotation about the y-axis (pitch) M q θ 

Rotation about the z-axis (yaw) N r ψ 

 

The WVAM method (Figure 3.3) starts with the AUV undergoing a straight-line, 

constant altitude mission through a region where the water column velocities are to be 

measured (i.e., in the turbulent water column). The vehicle’s control system provides necessary 

commands to the propulsion motor and control surfaces (i.e., the propeller RPM commands 

and the control surface angle commands) to overcome the disturbances from the turbulent flow 
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and to continue the prescribed straight-line path while maintaining a constant altitude set point. 

These control commands, recorded in the vehicle log, are then executed with the simulation 

model that represents a calm water environment. Since there are no currents and flow 

disturbances in the simulated calm water condition, the vehicle velocities from the simulation 

model will be different to the actual velocities measured from the DVL aided INS of the AUV. 

The difference between the two motion responses provides a measurement of the water column 

velocities relative to the ground. Equation (3.1) gives the water velocity calculation in the 

general form. The requirement of the calm water manoeuvres is for initial development of the 

simulation model, which is applicable for a given vehicle configuration. 

 

Figure 3.3 – The WVAM method flowchart to predict water column velocities from the 

observed vehicle motions. As given in Equation (3.1), the difference between the motion 

responses in the turbulent (i.e., experimental) and calm (i.e., simulated) water flow condition 

provides a measurement of the water column velocities relative to the ground. 

  ( ) ( )( ) ( )( )water t AUV turbulent t AUV calm t     (3.1) 

where, water  is the linear velocity vector of the surrounding water column (along the x, 

y, and z directions) relative to the earth in the body-fixed coordinate system (see Figure 3.4), 

( )AUV turbulent  is the linear velocity vector of the AUV relative to the Earth measured in the 

turbulent environment using the DVL aided INS, and ( )AUV calm  is the linear velocity vector 

obtained from the calm water simulation model when the control commands recorded during 

the field tests were simulated. Subscript t indicates the time-step. 
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The AUV is required to be assumed as a particle if infinitely small water column velocity 

fluctuations are measured using Equation (3.1). However, an AUV is not sufficiently small in 

size to be assumed as a particle; therefore, due to the length of the vehicle, the water column 

velocity measurements derived from Equation (3.1) is restricted in terms of the length scale 

resolution. The minimum measurable velocity variation length scale is also limited by the 

sensor sampling frequency. This is further discussed in Section 3.4. 

 

Figure 3.4 – Inertial and body-fixed frames of reference. The origin of the body-fixed coordinate 

system was at the centre of buoyancy of the vehicle (marked by the filled circle). 

3.2.3.1. AUV Simulation Model 

The motion simulation model of the Gavia AUV was developed to reproduce the 

vehicle’s linear velocities in a calm water environment in response to the time series of the 

control commands. This included the propeller RPM command which was a direct input into 

the simulator. In order to simplify and reduce the associated uncertainties, the time series of 

pitch angle ( ), pitch rate (q), pitch acceleration ( q ), yaw rate (r) and yaw acceleration ( r ) 

values recorded during the physical runs (i.e., measured by the gyroscopic sensors within the 

INS) were given as inputs to the simulator instead of providing the associated control surface 

angle commands. This simplification avoided the requirement of determining the control 

surface forces and moments, and using them to derive the rolling, pitching and yawing motions 

as the actual vehicle attributes were provided as inputs to the simulator. Therefore, the 

mathematical model was able to be limited to a 3-DOF (i.e., linear motions along the x, y, and 

z directions), thereby eliminating the requirement to model the angular motions of the vehicle. 

The simulation model was developed using MATLAB Simulink software (developed by 

Mathworks, Massachusetts, USA) by modelling the rigid body dynamics and hydrodynamics 
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of the vehicle in accordance with Fossen (2011) for AUV dynamics and Prestero (2001) for 

the simulation model. The 6-DOF motion of an underwater vehicle can be described using the 

equations of motion given in Equation (3.2) in the vectorial form (Fossen, 2011).  

        controlM C D g           (3.2) 

where, M is the system inertia matrix,  C  is the Coriolis-centripetal matrix,  D  is 

the damping matrix,  g  is the vector of the gravitational/buoyancy forces and moments, 

τcontrol is the vector of propulsion, control surface forces, and moments,   is the velocity vector 

(i.e., [u, v, w, p, q, r] where p, q, and r are the angular velocities around the x, y, and z axes), 

and   is the vector of position/Euler angles (i.e., [x, y, z, φ, θ, ψ] where φ, θ and ψ are the roll, 

pitch, and yaw angles respectively). M and  C   are further expanded in Equations (3.3) and 

(3.4), where, MRB and  RBC   are the rigid body force components of M and  C   matrices, 

while MA and  AC   are their added mass components. 

RB AM M M   (3.3) 

     RB AC C C     (3.4) 

The 6-DOF force and moment matrices that appear in Equation (3.2) are given in Fossen 

(2011) in their full form. In this study, Equation (3.2) has been reduced to 3 DOF (i.e., to 

equations of motion in x, y and z directions) and simplified assuming the products of inertia 

(i.e., Ixy, Ixz and Iyz) are zero since they are negligibly small compared to the moments of inertia 

(i.e., Ixx, Iyy, and Izz) of the vehicle (Prestero, 2001). Equations (3.5)–(3.7) represent the 

expanded forms of Equation (3.2) in the respective directions of x, y, and z. The left-hand sides 

of the equations demonstrate the rigid body dynamics and added mass terms while the right-

hand sides show the hydrostatic, hydrodynamic damping and control forces (Prestero, 2001). 

The hydrodynamic coefficients are non-dimensionalised according to prime-system I notation 

(Fossen, 1994) using 2.7 m as the vehicle length (L), 1000 kg m−3 as the fresh water density, 

and 2 m s−1 as the prescribed forward speed (U) . The notation of the hydrodynamic coefficients 

presented in the equations below follow SNAME (1952). For example, Xu|u| is the partial 

derivative of the surge force (X) with respect to the square of the surge speed (u|u|); i.e.,
 

 | | | |u uX X u u   . | |u uX  represents the non-dimensionalised coefficient. 
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(3.7) 

where RPM is the vehicle’s propeller revolutions per minute and 
nX  is the thrust coefficient, 

which is 95 × 10−6 for the Gavia AUV according to the estimation by Thorgilsson (2006). 

Equations (3.5) – (3.7) were rearranged and parameterised to the forms given in 

Equations (3.8) – (3.10) in order to calculate the instantaneous linear accelerations of the AUV 

in x, y, and z directions, where    , and    are unknown parameters to be identified using 

system identification. The physical properties of the AUV, such as the mass, positive buoyancy 

force, and distances to the vehicle centre of gravity, were superimposed within the parameters, 

eliminating the requirement to measure them. 
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(3.10) 

As shown in the simulation model flowchart given in Figure 3.5, the instantaneous linear 

acceleration components of the current time-step is solved using the recorded input parameters 
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(i.e., propeller RPM, θ, q, r, q , and r ) corresponding to the current time-step and linear vehicle 

velocities of the previous time-step. The calculated accelerations are then integrated with 

respect to time to obtain the linear velocity components in the body-fixed reference frame (i.e., 

u, v, and w), which is the key objective of the simulation model. These velocity components 

are also used as the input velocities for the future time-step. 

 

Figure 3.5 – Simulation model flowchart. The acceleration vector of the current time-step is 

solved using the velocity vector from the previous time-step and commanded propeller RPM 

while θ, q, r, q , and r  are subsequently replaced with the values recorded during field tests. 

The body-fixed velocity vector was obtained by integrating the acceleration vector with respect 

to time. 

3.2.3.2. System Identification 

The simulation model requires an accurate representation of the associated system 

parameters to precisely predict the motion of the AUV. Identification of the parameters was 

conducted in the MATLAB Simulink environment using the recursive least squares estimation 

block set of the MATLAB System Identification toolbox, which utilises the theoretical 

approach outlined in Ljung (1999). Equations (3.8) – (3.10) were modified to the format given 

in Equation (3.11): 

( ) ( ) ( )t t ty H   (3.11) 

where, y(t), H(t) and (t)
vectors are as defined in Table 3.2 for models in x, y, and z directions. 
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Table 3.2 – y(t), H(t) and Θ(t) vectors of Equation (11) for x, y, and z directions. 
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The unknown parameter vectors (i.e., (t)
) were estimated by running the recursive least 

squares algorithm for the time series motion response data of zig-zag and straight-line 

manoeuvres conducted at Lake Trevallyn (further information regarding the utilised recursive 

squares technique could be obtained from Ljung (1999)). The values of the identified 

parameters given in Table 3.3. 

The utilised system identification technique is a simple and robust method to determine 

the mathematical model parameters of a modular AUV, but it has limitations to estimate values 

for individual hydrodynamic derivatives as several coefficients and vehicle physical properties 

are overlaid within each parameter. System identification, in general, also has the risk of 

providing non-physical values for the parameters, limiting the applicability of the parameters 

to the propeller RPM range, pitch and yaw angle range of the identification manoeuvres. 

However, similar to most other AUV mapping missions, the AUV is prescribed to run in 

straight-line paths in the WVAM method, thus requiring the simulations to be conducted 

generally for straight-line and small pitch and yaw angle (generally below around 8°) 

manoeuvres, where the hydrodynamic coefficients are within the linear range (Wolkerstorfer, 

1995). The identified parameters obtained from system identification were sufficient for the 

WVAM method and were verified by simulating a secondary set of manoeuvres conducted in 

the calm water environment. The results of the verification study are presented in Section 3.3 

below.  

 

 



80 

Chapter 3 

Table 3.3 – Values of the parameters in Equations (3.8) – (3.10) 

Parameter Value Parameter Value Parameter Value 
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The utilised system identification technique is a simple and robust method to determine 

the mathematical model parameters of a modular AUV, but it has limitations to estimate values 

for individual hydrodynamic derivatives as several coefficients and vehicle physical properties 

are overlaid within each parameter. System identification, in general, also has the risk of 

providing non-physical values for the parameters, limiting the applicability of the parameters 

to the propeller RPM range, pitch and yaw angle range of the identification manoeuvres. 

However, similar to most other AUV mapping missions, the AUV is prescribed to run in 

straight-line paths in the WVAM method, thus requiring the simulations to be conducted 

generally for straight-line and small pitch and yaw angle (generally below around 8°) 

manoeuvres, where the hydrodynamic coefficients are within the linear range (Wolkerstorfer, 
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1995). The identified parameters obtained from system identification were sufficient for the 

WVAM method and were verified by simulating a secondary set of manoeuvres conducted in 

the calm water environment. 

 Assessment 

3.3.1. Validation of the WVAM Method 

The WVAM method was validated by comparing the calculated velocity components of 

the water column with velocity observations obtained with the on-board ADCP. Out of the 

three straight-line runs conducted at the Batman Bridge site, the one with the largest 

discrepancy with the ADCP results is presented in Figure 3.6. The vehicle path was aligned 

with the predominant tidal flow direction during this run. 

Figure 3.6a compares the vertical velocity response of the AUV (i.e., the velocity 

component of the AUV in the z direction—w) observed in the turbulent environment (i.e., the 

Batman Bridge site) with the response obtained from the simulation model representing the 

calm water. During the experiments, the vertical velocity of the AUV was determined using 

the DVL aided INS. Since there are no flow variations in the calm water condition, there is no 

external forcing on the vehicle. Therefore, the velocity responses from calm and turbulent water 

surroundings vary from each other. As given in Equation (3.1), the difference between the two 

vertical velocity responses provides the vertical water velocity variation along the AUV track 

at the Batman Bridge site. The horizontal water velocity components in x and y directions were 

obtained by comparing the vehicle’s measured and simulated surge and sway speed responses, 

respectively. 

Figure 3.6b – 3.6d compares the WVAM estimates and ADCP measured water velocity 

components in the x, y, and z directions, respectively. The ADCP results were smoothed using 

a moving average filter using a backward scheme with a frame size of six time-steps. The 

filtered flow velocity components from the first bin of upward and downward looking 

transducers (i.e., 0.44 m away from the vehicle) were averaged together and taken as the ADCP 

measurements for the comparison. 

The difference between velocities obtained from the WVAM method and the ADCP were 

calculated by quantifying the standard deviation between the two. The standard deviations of 

the velocity components in x, y, and z directions were 0.09 m s−1, 0.07 m s−1, and 0.06 m s−1, 

respectively. The maximum error velocity of the ADCP vertical flow measurements estimated 
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with the redundant transducer was ±0.10 m s−1 and Fong and Jones (2006) indicated that the 

velocity measurements taken from an AUV-fixed ADCP typically has an uncertainty margin 

of ±0.1 m s−1. Thus, the standard deviation of the WVAM method results are within the 

uncertainty margin of ADCP measurements for the x and z directions. The WVAM method 

provides the water column velocities at the vehicle while the ADCP velocity measurements are 

the averaged values of the first bins of the upward and downward looking transducers. The 

WVAM method was further validated by comparing the velocity measured by a stationary 

upward-looking ADCP moored to the seabed as discussed in Section 3.4.1. 

Since the vehicle was moving against the predominant tidal flow direction, a negative 

water velocity along the x direction is seen in Figure 3.6b (positive water velocities were 

observed when the AUV was running with the flow direction as a result of the inverted body-

fixed coordinate system). The best replica between the WVAM and ADCP velocities is noticed 

in the vertical velocity component. The largest mismatches in velocities along y and z directions 

are seen at the peaks. The estimated hydrodynamic coefficients of the simulation model using 

the system identification method could be less accurate for large angles of incidence of the 

vehicle, where the hydrodynamic forces and moments are in their nonlinear ranges. Therefore, 

as the yaw and pitch angle fluctuations become larger, the accuracy of the simulation model 

decreases; adversely affecting the WVAM velocity prediction (Randeni et al., 2016). The 

disparity at peaks of the velocity components is due to the hydrodynamic coefficients 

exceeding their linear ranges causing a reduction in the accuracy of the simulation model. 

Although the peak discrepancy is negligible for the tested runs, it is critical to ensure that the 

vehicle motion response remains within the applicable range of the hydrodynamic coefficients 

in order to use the WVAM method. The nonlinear hydrodynamic coefficients of an AUV could 

be obtained more accurately using techniques such as captive model experiments and 

computational fluid dynamics simulations (Randeni et al., 2015b, Phillips, 2010). 
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Figure 3.6 – (a) The vertical velocity of the vehicle observed in the turbulent (experimental) and 

calm (simulated) water environments. The difference between the two responses provides the 

velocity of the water column in the z direction. The comparison between the velocity 

components of the water column in x, y and z axes (panels (b), (c), and (d), respectively) was 

calculated using the WVAM method and those obtained from the ADCP measurements 

smoothed with a moving average filter. 

3.3.2. Verification of the WVAM Method 

The validation study discussed above demonstrates that the WVAM method is 

compatible with experimental measurements and could be used to calculate water column 

velocities in the vicinity of an AUV within the ADCP blanking distance. To gain further 

confidence, a verification study was conducted to identify the uncertainty margins of the results 

obtained from this method. The analysis was based on computing the error margins of 

individual steps, and adding them to obtain the total ambiguity. 
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The hydrodynamic coefficients of the Gavia AUV for the simulation model were 

identified by running the recursive least squares algorithm for the time series motion response 

data collected from the calm water environment at Lake Trevallyn. The uncertainty present in 

the identified coefficients may affect the water column velocity calculations and therefore it 

was necessary to quantify the ambiguity of the WVAM method. The performance of the 

determined coefficients was examined by applying them to the simulation model and 

simulating a different set of manoeuvres conducted at the Lake Trevallyn site. The AUV runs 

used for model estimation were not used for this verification process guaranteeing an unbiased 

verification. The accuracy of the identified coefficients was quantified by computing the 

standard deviation between the simulated and actual vehicle velocities in x, y, and z axes, which 

were 0.010 m s−1, 0.005 m s−1, and 0.002 m s−1, respectively. 

During the field tests at the Lake Trevallyn site (i.e., a calm water environment), the on-

board ADCP showed minor variations of the water column velocities, with averaged values in 

the surge, sway and heave directions of less than 0.05 m s−1. These minor water velocities 

indicate a calm water environment. Nevertheless, there is a minor contribution towards the 

ambiguity of the results from the WVAM method. Therefore, these velocity components were 

included in the final uncertainty calculation. 

During the experiments, the velocities of the AUV over ground and the pitch and yaw 

rates were measured using the INS, which was aided with the velocity over ground 

measurements from the DVL bottom-tracking mode. The uncertainties associated with the 

DVL aided INS influence the calm water simulation results, as well as the measurements taken 

in the turbulent environment. These uncertainties were incorporated twice when calculating the 

total uncertainty margin of the WVAM method. The uncertainty of the DVL aided Kearfott 

T24 INS in measuring the speeds over ground is ±0.05 m s−1 (Hildebrandt and Hilljegerdes, 

2010). The respective uncertainties of the INS in providing the pitch and yaw rates of the AUV 

are ±7.96 × 10−5 rad s−1 and ±1.60 × 10−4 rad s−1. 

The total uncertainty margin of the WVAM method was determined by adding the 

individual error components as discussed above and shown in Table 3.4. Using these values it 

can be determined that the WVAM method is able to provide velocity components of a 

turbulent water column in x, y, and z axes with respective uncertainty margins of ±0.160 m s−1, 

±0.155 m s−1, and ±0.152 m s−1. In comparison, the uncertainty margins of an ADCP mounted 
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on an AUV and a stationary ADCP in measuring water column velocities is around ±0.1 m s−1 

and ±0.002 m s−1, respectively, for velocity components in the x, y, and z directions. 

Table 3.4 – Uncertainty margin of the WVAM method was determined by adding the individual 

error components of each step. 

Uncertainty Components Uncertainties Along 

x Direction y Direction z Direction 

Due to hydrodynamic coefficients 

 

±0.010 m s−1 ±0.005 m s−1 ±0.002 m s−1 

Due to the turbulence present in the 

calm water environment 

 

±0.05 m s−1 ±0.05 m s−1 ±0.05 m s−1 

Due to sensor errors 

 

±0.100 m s−1 ±0.100 m s−1 ±0.100 m s−1 

Total uncertainty of the WVAM 

method 

±0.160 m s−1 ±0.155 m s−1 ±0.152 m s−1 

 

 Discussion 

3.4.1. Accuracy with the Distance from the AUV 

The ADCP captures the water velocity components at each bin up to a distance of 10 m 

away from the AUV, whereas the WVAM method returns only a single estimate of flow 

velocity at, or near, the AUV. The reason for this is because the WVAM method measures the 

water column velocities by comparing the hydrodynamic forces acting on the vehicle, and these 

forces arise from the near AUV flow field. For example, the standard deviation between the 

ADCP and WVAM vertical water velocities at 0.5 m away from the AUV was 0.06 m s−1 and 

it increased up to 0.15 m s−1 at 9.5 m away from the vehicle. In turbulent environments, velocity 

fluctuations are typically larger and it is unlikely to have a single velocity value for a range of 

10m. Figure 3.7 illustrates the variation of the difference between ADCP and WVAM vertical 

water velocity magnitudes with the vertical distance from the AUV. A good correlation with 

variations less than around 0.08 m s−1 is seen until a vertical distance of around 4 m. Beyond 4 

m, the difference increases up to around 0.3 m s−1; that is, the water column velocity pattern 

changes significantly compared to 0 – 4 m as a result of the seawater and fresh water mixing 

in the estuary. This shows that the WVAM method can be considered as accurate only in the 

vicinity of the vehicle. 
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Figure 3.7 – The variation of the difference between ADCP and WVAM vertical water velocity 

magnitudes with the vertical distance from the AUV. 

Both the WVAM and vehicle on-board ADCP measurements use the same Earth 

referenced AUV velocities. Therefore, in order to further validate the WVAM method Randeni 

et al. (2016) compared the WVAM estimations with those obtained from a stationary ADCP 

moored to the seabed. When the AUV was flying over the location of the stationary ADCP, it 

maintained an altitude of 11 m; hence, the ADCP water column velocities recorded from the 

bins at 11 m altitude were used for the comparison. The investigation was conducted using the 

same Gavia AUV at the same test location where the current study was carried out (i.e., Tamar 

estuary near the Batman Bridge) and the horizontal water column velocity recorded by the 

stationary ADCP was around 0.7 m s−1. A good agreement between the two was observed with 

differences of 0.05 m s−1, 0.08 m s−1, and 0.01 m s−1 for the respective velocity components in 

the x, y, and z directions, further validating the WVAM method’s ability to estimate flow 

velocities near, or at, the AUV and that the accuracy is independent of the vehicle velocities. 

3.4.2. Length Scale of the WVAM Velocity Measurements 

During the AUV field tests in the Tamar estuary, the motion response data of the vehicle 

were recorded at a rate of 0.87 Hz while the vehicle was travelling at an average forward speed 

of approximately 1.8 m s−1. Hence, the data sampling distance was around 2.1 m (i.e., there 

was a horizontal distance of 2.1 m in between each data point). Therefore, the WVAM method 

neglects the velocity variations with length scales smaller than the data sampling distance. Also, 

the WVAM method assumes that the velocity components along the y and z axes are acting 

uniformly along the length of the AUV; i.e., the WVAM method estimates the mean velocity 

variation along the length of the AUV. Therefore, the smallest measurable length scale of the 

velocity variations in y and z axes is the data sampling distance or the length of the AUV, 
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whichever is greater. In this case, the length of the AUV is approximately 2.7 m. However, the 

length scale of the velocity variations in the x axis is limited only by the data sampling distance. 

Hayes and Morison (2002) estimated the vertical water velocity in the upper ocean by applying 

a Kalman filter to the AUV motion data. They reduced the measurement length scale down to 

half the AUV length by incorporating the phenomenon of pitching of the vehicle across a 

horizontal gradient of the vertical water velocity. 

 Recommendations 

The WVAM method can be improved to capture the water velocity variations with length 

scales smaller than 2.7 m by overcoming the two limiting factors; i.e., the length of the AUV 

and the data sampling distance. The latter can be addressed by increasing the data sampling 

rate. Additionally, the scale restriction caused by the length of the AUV has to be resolved by 

identifying the variations of water velocities along the length of the AUV. This can be achieved 

by incorporating the difference between the vehicle angles of attack observed in the turbulent 

environment and that obtained from the calm water simulation model (i.e., pitch angle 

difference for vertical water velocity gradient and the yaw angle for the horizontal gradient). 

The WVAM method can be further improved by incorporating a more accurate representation 

of the linear and nonlinear hydrodynamic coefficients determined using techniques such as the 

captive model experiments and computational fluid dynamics simulations (Randeni et al., 

2015b, Phillips, 2010). The accuracy of the WVAM method reduces in time periods where the 

AUV glides through the water column when the current is either accelerating or decelerating. 

Further improvements to the model to calculate the gliding effect of the AUV due to 

accelerating/decelerating water columns could improve the performance of the WVAM 

method. 

Autonomous underwater gliders utilise a similar approach to determine the vertical water 

column velocities using the model predicted vertical velocity of the glider and the observed 

vertical velocity from the pressure sensor. The WVAM method can be adopted for such 

platforms to estimate the horizontal water column velocities by calculating difference between 

the model predicted horizontal position and the actual position from the GPS (i.e., when the 

glider comes to the surface). 
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 Conclusions 

This study presents the WVAM method to estimate the flow velocity components of a 

turbulent water column, relative to the Earth, in x, y, and z axes of the AUV body-fixed 

coordinate system using the motion response of the vehicle. The water column velocities were 

determined by calculating the difference between the motion responses of the AUV observed 

in calm and turbulent water column conditions. The motion of the vehicle in the calm water 

environment was obtained by simulating the control commands executed during the field 

experiments conducted in the turbulent condition with a mathematical model that represents 

the calm water. The simulation model was developed within MATLAB Simulink and the 

associated hydrodynamic coefficients of the AUV were obtained using a recursive least squares 

system identification method. 

The estimated water column velocity components in x, y, and z direction agreed well with 

the measurements from the AUV’s on-board ADCP with standard deviations of 0.09 m s−1, 

0.07 m s−1, and 0.06 m s−1 for the respective components. These standard differences were well 

within the uncertainty margin of the ADCP results. WVAM velocity estimates were also 

compared with a bottom-mounted stationary ADCP data obtained while the AUV was flying 

over the stationary ADCP. Both datasets show good agreement with velocity differences of 

approximately 0.05 m s−1, 0.08 m s−1, and 0.01 m s−1 for the respective velocity components. 

An uncertainty analysis showed that the WVAM method estimates the respective velocity 

components within of ±0.16 m s−1, ±0.16 m s−1, and ±0.15 m s−1. The advantage of the proposed 

method is to determine velocity components closer to the vehicle where standard ADCPs are 

incapable of capturing the flow velocities due to their blanking distance or if they are 

unavailable in the scientific payload. Estimating vertical and horizontal velocities around the 

boundary layer of the AUV is important to fill the blanking distance gap within a water column 

velocity profile, which is required for flow field characterisation. 
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Chapter 4: Feasibility of WVAM method for AUV 

localisation error counteraction 

 

Chapter 4 is based on the journal article ‘Autonomous Underwater Vehicle motion response: A 

non-acoustic tool for blue water navigation’ published in the ‘Marine Technology Society 

Journal’. The citation for the article is: 

Randeni SAT, Forrest AL, Cossu R, Leong ZQ, King PD, Ranmuthugala D. Autonomous 

Underwater Vehicle Motion Response: A Non-acoustic Tool for Blue Water Navigation. 

Marine Technology Society Journal. 2016;50:17-26. 
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Abstract 

Autonomous Underwater Vehicles (AUVs) use secondary velocity over ground 

measurements to aid the Inertial Navigation Systems (INS) to avoid unbounded drift in the 

point-to-point navigation solution. When operating in deep open ocean (i.e., in blue water – 

beyond the frequency specific instrument range), the velocity measurements are either based 

on water column velocities or are completely unavailable. In such scenarios, the velocity 

relative to water measurements from an Acoustic Doppler Current Profiler (ADCP) are often 

used for INS aiding. ADCPs have a blanking distance (typically ranging between 0.5 m to 5 m) 

in proximity to the device in which the flow velocity data is undetectable. Hence, water 

velocities used to aid the INS solution can be significantly different to that near the vehicle and 

are subject to significant noise. Previously, the authors introduced a non-acoustic method to 

calculate the velocity components of a turbulent water column within the ADCP dead-zone 

using the motion response of an AUV (referred to as the WVAM method). The current study 

analyses the feasibility of incorporating the WVAM method within the INS by investigating 

the accuracy of it at different turbulence levels of the water column. Findings of this work 

demonstrate that the threshold limits of the method can be improved in the nonlinear ranges 

(i.e., at low and high levels of energy); however, by estimating a more accurate representation 

of vehicle hydrodynamic coefficients, this method has proven robust in a range of tidally 

induced flow conditions. The WVAM method in its current state offers significant potential to 

be a key contribution to blue water navigation when integrated within the vehicle’s INS.  
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 Introduction  

Autonomous Underwater Vehicles (AUVs) are submarine robots that are able to carry 

out ocean sampling campaigns (Curtin et al., 1993), bathymetric data collections (Grasmueck 

et al., 2006), and military and security exercises in unstructured environments (Paull et al., 

2014). Accurate point to point guidance of an AUV (i.e., navigation), as well as precise 

knowledge of its position within a three dimensional (3D) domain (i.e., localisation) are 

mandatory (Paull et al., 2014). Despite the developments of AUVs reaching back to the 1970s, 

the current navigation and localisation techniques need improvement, particularly for blue 

water operations (Hegrenaes and Berglund, 2009). 

Inertial navigation is one of the key navigation techniques used by AUVs where the 

rotational and translation accelerations of the AUV is determined using the INS sensors. 

Inertial navigation is most effective when the acceleration solution from the Inertial Navigation 

System (INS) is aided with the velocity over ground measurements from a bottom tracking 

Doppler Velocity Log (DVL) or a Global Positioning System (GPS). An INS determines the 

position, velocity and orientation of the vehicle using the data from Inertial Measurement Units 

(IMUs) relative to inertial space. Due to inherent errors, the INS navigation solution will have 

an unbounded drift unless counteracted with the speed over ground velocity estimates 

(Hegrenaes and Hallingstad, 2011). The DVL bottom track, where the velocity relative to the 

ground is determined from the Doppler frequency shift of soundwaves reflected off the seabed, 

is commonly used for this purpose. This technology is limited by frequency specific penetration 

of 10s to 100s of meters through the water column (Hegrenaes et al., 2008). 

In blue water, specifically during deep descents/ascents, operating in the mid-water zone 

and over rough bathymetry, DVL bottom track data may be intermittently or completely 

unavailable (Hegrenaes et al., 2008). In such cases, as illustrated in Figure 4.1a and 4.1b, an 

alternative approach is to use the DVL water tracking mode; i.e., Acoustic Doppler Current 

Profiler (ADCP) mode, in conjunction with a real-time current estimation methods to aid the 

INS navigation solution (Hegrenaes and Berglund, 2009). This method has proven to produce 

better navigation solutions and less free inertial drift compared to systems utilising INS alone, 

however they are inherently susceptible to instrument noise (Hegrenaes and Berglund, 2009). 

Medagoda et al. (2016) proposed a mid-water column ADCP aided localisation technique using 

the correlation between bins of a descending ADCP as they pass through the same layers to 
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restrain drift, with the assumption of near constant current profile layer velocities over short 

time periods. 

In addition to instrument noise, ADCPs or water tracking DVLs, have a blanking distance 

(i.e., a dead zone) in proximity to the device in which the flow velocity data remains unresolved 

(Simpson, 2001). The blanking distance can typically span from 0.5 m to 5 m away from the 

vehicle depending on the sampling frequency and selected bin size of the instrument (see 

Figure 4.1a). Therefore, the water-tracked velocity used to aid the INS navigation is at least 0.5 

m and sometimes even up to 5 m away from the vehicle resulting in an uncertainty of the water-

tracked velocity near the vehicle. This can induce error and cause adverse effects on the 

navigation and localisation solutions.  

 

Figure 4.1 – (a) An AUV descending to a test site in blue water where the bottom track velocities 

of the vehicle are unavailable to the INS since the DVL beam span is unable to reach the seabed, 

and (b) DVL is incapable of providing continuous bottom track velocity measurements when 

travelling over rough bathymetry. 
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In this context, the current work was conducted as a feasibility study to find the threshold 

limits by investigating the variation of the WVAM method’s accuracy in varying turbulence 

levels in the water column through field deployments in a river estuary that exhibits strong tidal 

currents up to 2.5 m s-1. The uncertainty of the method was calculated based on a direct 

comparison with velocity measurements obtained from the AUV’s ADCP at different stages 

within the tidal cycle. A disadvantage of the WVAM method is that it requires an estimation 

of the vehicle velocity relative to the ground in order to measure the water column velocities. 

Additional improvements required to overcome this disadvantage and to prepare it as a tool for 

blue water navigation are also discussed and the approach of how to use this are detailed. 

 Methodology 

4.2.1. Instruments 

A Gavia-class modular AUV was used to test the WVAM method (Forrest et al., 2012), 

with the vehicle configured to an overall length of 2.7 m, diameter of 0.2 m, and a dry weight 

in air of approximately 70 kg (see Figure 4.2a). The modularised vehicle in the tested 

configuration consisted of a Nose Cone, Battery, Geoswath Interferometric Sonar, 1200 kHz 

Teledyne RDI ADCP/DVL, Kearfott T24 Inertial Navigation System (INS), Control and 

Propulsion Modules as shown in Figure 4.2b. The ADCP module of the AUV included two 4-

beam ADCPs arranged in a vertical plane to make both upwards and downwards oriented 

velocity measurements (see Figure 4.2c). The ADCPs were set to profile the 9.94 m of water 

column in 0.5 m range bins so that the three directional water column velocity components in 

the vehicle’s body-fixed coordinate system are measured in each bin. Adjacent to the 

transducers (both above and below) there was a blanking distance of 0.44 m as shown in Figure 

4.2c.  The maximum uncertainty margin of the DVL in measuring the speeds over ground is 

±0.03 m s-1 (Hildebrandt and Hilljegerdes, 2010).  
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Figure 4.2 – (a) Omarama Primary School (Lake Ohau, New Zealand) students inspecting the 

Gavia, the modular AUV that was utilised to test the WVAM method, (b) the tested 

configuration of the vehicle, and (c) the body-fixed coordinate system (origin at the centre of 

buoyancy – marked by the filled ‘O’) showing the ADCP beam geometry. 

The Kearfott T24 INS together with the ADCP/DVL module measured the orientation, 

velocities in Six-Degree-of-Freedom (6-DOF) and the position of the AUV. The depth of the 

vehicle was obtained from the pressure sensor on-board the AUV. These sensor measurements 

were recorded in the vehicle log at a frequency of 0.87 Hz. The percentage uncertainty of the 

pressure sensor is 0.1% giving a depth rate uncertainty margin of ±1.0×10-4 m s-1 (Hildebrandt 

and Hilljegerdes, 2010). The respective uncertainties of the INS in providing the pitch and yaw 

rates of the AUV are ±7.96×10-5 rad s-1 and ±1.60×10-4 rad s-1. 

4.2.2. Site description 

The objective of this study was to determine the accuracy WVAM method in different 

flow conditions in order to assess the feasibility of using the method for blue water AUV 

navigation. To achieve this, the WVAM method was tested in the Tamar estuary near the 

Batman Bridge (see Figure 4.3a and 4.3b), located in Tasmania, Australia. Due to the proximity 

to the open sea and the flow constriction of the river bed, the Tamar estuary exhibits strong 

tidal currents with maximum flow velocities of up to 2.5 m s-1 (see Figure 4.3c).  
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Figure 4.3 – (a) The experimental field site in Tasmania, Australia (inset), (b) the Tamar estuary 

with a bi-directional arrow representing the AUV track, and (c) due to the proximity to the 

open sea and the flow constriction of the river bed, the site exhibited strong tidal currents. 

 

Figure 4.4 – The water level relative to the Mean Sea Level (MSL) observed on 14 and 15 April, 

2015 with the time periods that the AUV runs were conducted indicated by filled diamond 

markers. 

Nine AUV runs were conducted along the track line shown in Figure 4.3b. The first five 

were conducted on 14 April, 2015 and the last four on 15 April, 2015. Runs 1 to 3 and 6 to 9 

were conducted during slack water as shown in the tidal curve given in Figure 4.4. The velocity 
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of the water column during the first runs on each day (i.e., runs 1 and 6) was relatively low at 

0.25 m s-1. Due to the development of the strong flood tide, the water column velocity increased 

rapidly during the subsequent runs on each day up to a maximum of 2 m s-1. Runs 4 and 5 were 

carried out at partially and fully developed tidal currents of around 1.5 m s-1 and 2 m s-1 

respectively. 

4.2.3. WVAM method 

For the WVAM method (Randeni et al., 2017a), the AUV needs to undergo a straight-

line, constant depth trajectory through the region where the water column velocities are to be 

measured. Typically, when an AUV is operating in an environment with fluctuating water 

velocities, the forces and moments induced by these velocities can interrupt the control stability 

and change the vehicle speed, depth, pitch and yaw angles from the desired values. In order to 

compensate for such changes in performance, the vehicle’s control system adjusts the 

revolution speed of the propeller and the angles of the four control surfaces. In response to 

these adjustments, the motion of the AUV will change in order to return the AUV to the 

prescribed mission track unless the propeller and the control surfaces are unable to compensate 

for the external forces (Kim and Ura, 2003). 

The WVAM method uses the compensation commands given by the vehicle’s control 

system to the propulsion motor and control surfaces as recorded in the vehicle log and executes 

these commands within a simulation model representing a calm water environment. Since there 

are no disturbing forces due to flow variations in calm water conditions, the simulated vehicle 

motion will be different to the actual motion. The difference between the two motion responses 

provides an estimation of the absolute water column velocities in the body-fixed coordinate 

system. 

Equation (4.1) gives a generalised form of the water column velocity calculation used 

within the WVAM method: 

   (4.1) 

where is the velocity component of the surrounding water column relative to the 

earth in the body-fixed coordinate system (see Figure 4.2c),  is the velocity 

component of the AUV observed in the turbulent environment and  is the velocity 

component obtained from the calm water simulation when the control commands recorded 
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during the field tests were simulated. Subscript t indicates the time-step. To estimate the water 

column velocity component along the x, y and z axes, is replaced with the surge, sway and 

heave velocity components (i.e., u, v and w) of the vehicle in the body-fixed frame of reference 

respectively. 

4.2.4. Simulation model and hydrodynamic coefficients 

The simulation model of the Gavia AUV was developed to reproduce the vehicle’s 

trajectory within a calm water environment in response to the time series of the control 

commands. It requires an accurate approximation of the associated hydrodynamic coefficients 

(i.e., a representation of the forces and moments acting on the vehicle at different orientations, 

velocities, etc.) to adequately predict the motion of the AUV. Generally, the forces and 

moments acting on submerged bodies in 6-DOF are highly nonlinear(Lewis, 1988). For 

example, the vertical hydrodynamic force acting on an AUV varies linearly with its pitch angle 

up to a value of around ±8º, beyond which it becomes nonlinear (Randeni et al., 2015a). Similar 

threshold values exist for other hydrodynamic forces and moments transiting between their 

respective linear and nonlinear rangers. Therefore, the hydrodynamic coefficients estimated for 

the linear ranges are only valid up to a certain threshold value (Lewis, 1988).  

During the initial development of the WVAM method, a basic curve fitting method was 

utilised to determine the hydrodynamic coefficients due to its relative simplicity. The 

coefficients obtained from this method were limited to small angles of incidence (i.e., generally 

below 8º) restricting them to the linear range. When an AUV operates in turbulent 

environments, its pitch and yaw angles typically fluctuate around the baseline values. The 

magnitude of these fluctuations increases with increasing levels of turbulence due to the 

inability of the AUV’s control system to compensate for the severe disturbance forces (Kim 

and Ura, 2003). Therefore, in extremely turbulent water columns, these fluctuation angles will 

be greater than ±8º. Thus, a simulation model that is limited to linear hydrodynamics data is 

unable to adequately replicate the motion of the vehicle in extreme environments. 

 Results and Discussion 

4.3.1. Validation of the WVAM method 

Figure 4.5a, 4.5b and 4.5c illustrate the variations of the water column velocity 

components (i.e., velocities in x, y and z directions respectively, relative to the ground, in the 



98 

Chapter 4 

body-fixed coordinate system) as a function of the vertical distance away from the AUV. The 

water column velocities from 0 – 0.5 m are from the WVAM method while the rest of the 

profile is from the ADCP measurements. The velocity data shown in Figure 4.5 were recorded 

during Run 1 (i.e., when the AUV was moving with the predominant tidal currents). As seen, 

the WVAM velocity estimates well correlate with the ADCP measurements, especially around 

the bins closer to the vehicle.  

The uncertainty of the water column velocity measurements from the WVAM method 

compared to the ADCP results was quantified using equation (4.2) that approximates the 

Standard Error (SE) with a percentage confidence of 99.7% (Devore, 2011b), 
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where ( )water ADCPv is the water column velocity measured using the ADCP, ( )water WVAMv is 

the water column velocity calculated using the WVAM method, and n is the number of time-

steps. The standard errors for the velocity components in the x, y and z directions for the first 

run were ±0.068 m s-1, ±0.017 m s-1and ±0.045 m s-1 respectively. These numbers represent the 

difference between WVAM and ADCP velocity predictions in each of the three directions, with 

the greatest error seen in the x direction. 

It is evident from these plots that the WVAM method provides a good replication of the 

flow velocities measured using the on-board ADCP. Since the vehicle was moving with the 

ground relative predominant tidal flow direction (i.e., towards North-West in Figure 4.3b), a 

positive water column velocity along the x direction is seen in Figure 4.5a. The negative water 

column velocity component in the y direction (Figure 4.5b) indicates that the transverse flow 

direction is from north-east side to south-west. Even though the transverse water column 

velocity does not follow the ADCP velocity trend for some periods, the averaged velocities are 

in favourable agreement. However, further studies will be conducted to investigate the reasons 

for this. The best replica between the WVAM and ADCP velocities is noticed in the vertical 

velocity component. The largest mismatches in the vertical velocities are seen at the peaks. The 

hydrodynamic coefficients of the simulation model estimated using the basic system 

identification method were only valid for small angles of incidence of the vehicle, where the 

coefficients are in their linear ranges. Therefore, as the yaw and pitch angle fluctuations become 

larger, the accuracy of the simulation model decrease; adversely affecting the WVAM velocity 

prediction (Randeni et al., 2015a). The disparity at peaks of the vertical velocity component is 
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due to the hydrodynamic coefficients exceeding their linear ranges causing a reduction in the 

accuracy of the simulation model. 

 

Figure 4.5 – Panels a, c and e illustrate the variations of the water column velocity components 

(i.e., velocities in x, y and z directions respectively) with the vertical distance from the AUV. The 

water column velocities from 0 – 0.5 m are from the WVAM method while the rest of the profile 

is from the ADCP measurements. The illustrated velocity data were obtained from Run 1 when 

the AUV was moving with the predominant tidal currents. 

A recent study (Green et al., 2016) compared the water column velocity measurements 

obtained from the Gavia AUV’s on-board ADCP with a stationary ADCP moored to the seabed. 

This investigation was carried out in the same test location (i.e., Tamar estuary) with the same 

Gavia-class AUV as used in this study. Green et al. (2016) found very good agreements 

between the AUV mounted and the stationary ADCP measurements. In addition, the stationary 

ADCP data set was used to validate estimates with the WVAM for a period when the AUV 

was in close proximity to the moored ADCP. Similar to the findings from the AUV-ADCP and 

stationary ADCP comparison, the velocities between WVAM and stationary ADCP showed a 
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good agreement with difference of 0.05 m s-1, 0.08 m s-1 and 0.01 m s-1 for the respective 

velocity components in the x, y and z directions (see Figure 4.6). 

 

 

Figure 4.6 – Comparison of the horizontal water velocities obtained from the WVAM method, 

stationary ADCP and the AUV fixed ADCP – modified from (Green et al., 2016) 

4.3.2. Accuracy of the WVAM method with the level of turbulence 

Runs 1 to 3 and 6 to 9 were conducted in lower turbulent environments, with a vertical 

water column velocity range of around -1 m s-1 to 1 m s-1 compared to the Runs 4 and 5, which 

were at vertical water column velocity range of -2 m s-1 to 0.5 m s-1. Due to the developing 

flood tide, the level of turbulence increased gradually with each run. The averaged fluctuations 

of the vehicle’s yaw angle, pitch angle and surge speed from the target values are given in 

Table 4.1. If the AUV’s control system is capable of guiding the vehicle accurately along the 

prescribed path in turbulent environments, these values would be close to zero. As seen from 

Table 4.1, the fluctuations have raised with the increasing level of turbulence.  

The standard errors of the WVAM water column velocity predictions compared to the 

ADCP measurements for each run are presented in Table 4.1 and Figure 4.7. The uncertainties 

of the vertical and transverse water column velocity estimates increase with the averaged 

fluctuations of the pitch and yaw angles (respectively). For example, in Run 2 the averaged 
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deviation of the yaw angle is around ±17º and the standard error of the transverse velocity 

prediction is much larger than for Run 1 (i.e., 0.153 m s-1). Run 1 has a smaller deviation of the 

yaw angle of around ±1.5º, which results in a much smaller uncertainty in the vicinity of 0.017 

m s-1. A similar outcome is seen in the vertical water column velocity component. In Run 9, 

the averaged deviation of the pitch angle is ±7.5º giving a standard error in the vertical water 

column velocity prediction of around 0.1 m s-1. However, in Run 6 the deviation of the pitch 

angle is comparatively lower at ±3.1º resulting in a smaller standard error for the velocity of 

around 0.05 m s-1. Even though the tides were not fully developed during the Runs 2 and 8, the 

yaw angle deviations are relatively higher. This could be as a result of a strong cross current 

acting on the vehicle at the particular water height. 

Table 4.1 – Standard errors of the WVAM method in comparison to the ADCP measurements, 

and the associated averaged deviations of the yaw angle, pitch angle and surge speed.  

Run 

Number 

Standard error Averaged deviation from the prescribed value 

u  v W Yaw angle (º) Pitch angle (º) Surge speed (m s-1) 

1 0.068 0.017 0.045 ±1.5 ±3.6 ±0.2 

2 0.029 0.153 0.075 ±17.4 ±7.1 ±0.6  

3 0.041 0.095 0.108 ±3.5 ±7.5 ±0.7  

4 0.063 0.061 0.241 ±2.8 ±9.2 ±1.6  

5 0.035 0.079 0.191 ±5.6 ±9.7 ±1.6  

6 0.042 0.063 0.052 ±3.1 ±3.1 ±0.1  

7 0.048 0.058 0.067 ±2.6 ±6.4 ±0.3  

8 0.025 0.104 0.092 ±14.5 ±7.4 ±0.4  

9 0.054 0.082 0.097 ±5.8 ±7.5 ±0.6  

 

Generally, a standard error between the ADCP and WVAM results up to 0.1 m s-1 is 

acceptable as the uncertainty of the measurements from an AUV mounted ADCP is of similar 

magnitude (Fong and Jones, 2006). The threshold averaged deviation of the pitch and yaw 

angles that provide the water column velocities with a standard error below 0.1 m s-1 is around 

7º to 8º. Above this threshold angle the hydrodynamic coefficients usually become nonlinear. 

The hydrodynamic coefficients estimated for the simulation model using the curve fitting 

method are only valid for small angles of incidence of the vehicle, i.e., when the coefficients 
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are in the linear range (Randeni et al., 2015a). Therefore, when the pitch and yaw angles are 

above the linear range, the accuracy of the simulation model decreases and hence the 

uncertainty of the vertical and transverse water column velocity components obtained from the 

WVAM method increases. Hence, the WVAM method, in its current state, is less accurate in 

determining transverse and vertical water velocities in high turbulent environments. 

 

Figure 4.7 – The variations of the WVAM method’s standard errors with the averaged 

fluctuations of the vehicle surge speed and, yaw and pitch angles from the prescribed values. 

The water column velocity components in x, y and z directions correspond with the surge speed, 

yaw angle and pitch angle respectively. 

The accuracy of the water column velocity component in the x direction remains 

generally the same for all the runs regardless of the averaged fluctuations of the surge speed 

(see Figure 4.7). During the development of the simulation model, the hydrodynamic 

coefficients dominating the motion in the x direction were estimated for a propeller speed range 

of 525 to 825 RPM (i.e., an approximate vehicle speed range of 1.43 m s-1 to 2.46 m s-1 in a 

calm water environment). During this study the AUV field runs were conducted at 700 RPM 

providing a mean forward speed of around 2.04 m s-1 in calm water conditions with a standard 

deviation of 0.01 m s-1. The observed speed during the runs varied as much as ±1.6 m s-1 from 

the calm water speed of 2.04 m s-1, especially during Runs 5 and 6 due to the strong drag on 

the vehicle imparted by the strong tidal currents. Although the actual vehicle speed deviated 

from the simulated speed, the prescribed propeller speed of 700 RPM provides a calm water 

simulated speed of around 2.04 m s-1, which is within the identified forward speed range of 

1.43 m s-1 to 2.46 m s-1. Therefore, the simulation model provided an accurate representation 
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of the forward speed of the AUV in calm water. It can thus be concluded that the standard error 

between the WVAM and ADCP results in the x direction generally remained unrelated to the 

turbulence level of the water column. 

4.3.3. Applicability of the WVAM method for blue water navigation 

The outcome of the above analysis shows that the WVAM method captures the water 

column velocity up to around 1 to 1.5 m s-1 with an acceptable accuracy. Therefore, it can be 

used to aid the INS navigation solution for the situations discussed in Figure 4.1 without further 

improvements. However, the threshold of the WVAM method in measuring velocity 

components in the y and z directions can be improved for higher turbulent environments by a 

more accurate estimation of the vehicle hydrodynamic coefficients within their linear as well 

as nonlinear ranges. Captive model experiments and Computational Fluid Dynamic (CFD) 

simulations are capable of determining the nonlinear hydrodynamic coefficients of AUVs with 

a greater accuracy; albeit the associated experimental costs and the computational times are 

higher (Randeni et al., 2015b). The coefficients obtained from such methods are only valid for 

the vehicle configuration that was tested during the experiments. However, the arrangement of 

modular AUVs change with the mission and addition/removal of payloads occurs frequently. 

As it is not feasible to conduct cost intensive experiments and simulations for each alteration, 

estimating the nonlinear hydrodynamic coefficients using a system identification method such 

as Least Squres Optimisation is more suitable (Ljung, 1999).  

4.3.4. Ascend and descend parallel to sea currents   

Gavia-class AUVs are under-actuated vehicles (i.e., they have a lower number of 

actuators than the vehicle’s DOF). Its actuator control is limited to the surge speed, roll angle, 

pitch angle and yaw angle of the vehicle. Depth and transverse displacement is obtained by 

changing the pitch and yaw angles respectively. Generally, under-actuated underwater vehicles 

are difficult to control when external forces such as currents are acting parallel to the under-

actuated directions (Aguiar and Pascoal, 2007). For example, the control system of the Gavia 

AUV struggles to maintain the trajectory when cross-currents are acting perpendicular to the 

AUV’s motion.  

In such situations, the vehicle tends to oscillate, resulting in higher unbound drifts in the 

INS navigation solution compared to normal operations, unless properly counteracted with the 

velocity over ground measurements from the DVL bottom track. These drift fluctuations are 
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considerably less when the vehicle is travelling in line with the currents (i.e., currents are acting 

along the x axis of the AUV). A positive outcome of this study is that water column velocities 

in x direction obtained from the WVAM method were accurate for all turbulence levels present 

during the field campaign in the Tamar estuary. The results suggest that deep water ascents and 

descents should be carried out with the vehicle in line with the currents to improve the accuracy 

of the WVAM-INS navigation solution (i.e., as seen from Figure 4.5, the accuracy is higher in 

the flow measurements along the x direction compared to y direction)  although this may be 

challenging in unknown environments. Occasionally surface reconnaissance missions are 

conducted over the test site prior to the deep dive to ensure the safety of the vehicle and to 

adjust instrument settings, for instance sonar parameters of the multi-beam unit. In such cases, 

the main flow direction could be simply and accurately determined using the WVAM method 

or the ADCP during this surface mission due to the availability of GPS derived ground relative 

vehicle velocity. Then an algorithm can be created to autonomously decide the direction of 

ascent/descent. 

4.3.5. Velocity over ground measurements for the WVAM method 

During the vehicle operations outlined in Figure 4.1, continuous velocity measurements 

of the AUV relative to the ground are not obtainable from DVL bottom tracking to assist the 

INS navigation solution. Therefore, the INS could be aided with velocity estimates from 

secondary instruments or methods although this does not represent typical operations. An 

accurate simulation model is able to predict the vehicle velocities in real-time when the control 

commands of the AUV are provided (Hegrenaes and Hallingstad, 2011). The hydrodynamic 

coefficients of simulation models generally represent the calm-water operational condition of 

the AUV. Therefore, vehicle drift resulting from currents in the water column will not be 

included in the velocity predictions, causing inaccuracies in the AUV position estimated by the 

INS (Augenstein and Rock, 2008, Hegrenaes and Berglund, 2009). The results discussed in the 

above sections show that the WVAM method could be successfully utilised to determine the 

water column velocities that can be used in conjunction with model predicted vehicle velocities 

to aid the INS navigation solution.  

A disadvantage of the WVAM method is that it requires an estimation of the vehicle 

velocity relative to the ground in order to measure the water column velocities. The position 

and velocity estimates of the vehicle can be determined using acoustic transponders (i.e., USBL 

or LBLs); albeit with an infrequent update rate. The intermittent velocity updates from the 
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transponders will be used for the WVAM to determine the water column velocities and the 

estimated flow measurements will then assumed to remain constant until the next reliable 

velocity update is received.  

As an alternative to the velocity estimates from acoustic transponders, the velocity of the 

AUV relative to the ground can be computed by using the unaided acceleration measurements 

of the AUV relative to the ground from the INS. In order to improve the accuracy of the water 

column velocity estimate, an outlier rejection filter maybe utilised to remove the outliers 

present within INS acceleration measurements prior to the data fusion, followed by a velocity 

profile smoothing algorithm (i.e., an algorithm that smooths velocity variations both forward 

and backward). This framework is discussed in detail in Chapter 5. 

 Conclusions 

The WVAM method is a non-acoustic technique to determine the water column velocity 

components of a turbulent water column using the motion response of an AUV. The accuracy 

of the WVAM method was examined at different turbulence levels of the water column. Nine 

AUV runs were conducted along the same track line at different times in the tidal cycle in the 

Tamar estuary in Tasmania, Australia. Typically, when an AUV undertakes missions in rough 

water environments, the pitch and yaw angles of the vehicle fluctuate around the target values 

due to the inability of the AUV’s dynamic controller to adequately compensate for the external 

disturbing forces. The greater the turbulence level of the water, larger are the fluctuations. The 

estimated water column velocity components in the y and z directions using the WVAM 

method agreed well with the experimental measurements obtained from the AUV’s on-board 

ADCP for low turbulent conditions (with a vertical water column velocity range of around -1 

m s-1 to +1 m s-1), where the averaged deviations of the vehicle’s pitch and yaw angles are 

below 7º to 8º. The correlation reduced when the averaged deviations were above 7º to 8º. The 

accuracy of the water column velocity component in the x direction remained generally the 

same for all the runs regardless of the turbulence level of the water column. 

The hydrodynamic coefficients for the simulation model utilised in the WVAM method 

were determined using a curve fitting technique. These estimated coefficients were only valid 

for small angles of incidence of the vehicle, where the coefficients are within their linear range. 

Therefore, as the pitch and yaw angle fluctuations become larger, the accuracy of the 

simulation model decreases adversely affecting the prediction of the vertical and transverse 
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water column velocity components obtained from the WVAM method. During the AUV 

missions, the vehicle speed remained within the identified forward speed range of 1.43 m s-1 to 

2.46 m s-1. Therefore, the simulation model was able to provide an accurate prediction of the 

forward speed of the vehicle enabling the WVAM method to accurately determine the water 

velocities in x direction.  

The WVAM method is capable of capturing the velocities from 1 – 1.5 m s-1 with an 

acceptable accuracy. Therefore, the WVAM method could be utilised to measure the water 

column velocities in blue water environments. However, the accuracy of the method will be 

increased by upgrading the simulation model to replicate the motion response of the vehicle in 

both the linear and nonlinear ranges. 
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Chapter 5: Counteracting AUV localisation error 

when operating beyond the range of bottom-

tracking sonar 

 

This chapter is based on the journal article ‘Counteracting Autonomous Underwater Vehicle 

(AUV) localisation error as a precursor for blue water navigation’ that is submitted for 

publication in the ‘IEEE Journal of Oceanic Engineering’. This article is in review at the time 

of writing. The citation for the article is: 

Randeni SAT, Forrest AL, Leong ZQ, Cossu R, Ranmuthugala D, King PD and Schmidt V. 

Counteracting Autonomous Underwater Vehicle (AUV) localisation error as a precursor for 

blue water navigation. IEEE Journal of Oceanic Engineering. In review. 
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Abstract 

This study proposes a novel localisation technique for an Autonomous Underwater 

Vehicle (AUV) in the descent phase of a mission in water depths greater than the range of 

bottom-tracking Doppler Velocity Log (DVL) sonar. The proposed technique is based on a 

mathematical model-aided Inertial Navigation System (INS). The main components of the 

proposed technique is an Outlier Rejection (OR) filter, which removes the outliers present 

within the INS acceleration measurements and a flow profile estimator that determines the 

water column velocity profile along the AUV descent track relative to the ground. The flow 

profile estimator is a combination of the WVAM method and a forward and backward flow 

profile smoothing algorithm. The proposed localisation technique is tested using a Gavia-class 

AUV for six short diving missions conducted in a high energy river estuary with strong tidal 

currents. The performance of the proposed technique is evaluated in comparison to the 

localisations solutions from DVL bottom-track aided, DVL water-track aided, conventional 

model-aided and unaided INS. The proposed technique provides the highest correlation with 

DVL bottom-track aided localisation solution with a maximum positioning uncertainty of 5.5% 

of the distance travelled and a minimum of 1.1%, where the uncertainties of other non-bottom-

tracking localisation methods are more than twice this. The proposed technique is most 

advantageous when the AUV was operating in environments with large water column 

velocities, where the uncertainty of conventional non-bottom-tracking localisation methods are 

in the orders of 10% to 35% of the distance travelled. The vehicle velocity solution from the 

proposed technique can also be used for navigation and control systems of AUVs when bottom-

track is unavailable. 
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 Introduction 

Autonomous Underwater Vehicles (AUVs) are increasingly being recognised as a robust 

technology for a wide range of scientific, commercial and military applications in part, because 

they are decoupled from surface motions (Forrest et al., 2012, Forrest et al., 2008, Kimura et 

al., 2016). Accurate vehicle navigation; i.e., guiding the vehicle from one point to another, and 

localisation; i.e., awareness of its own position within the three dimensional domain, are crucial 

requirements in carrying out AUV missions successfully and effectively (Paull et al., 2014). 

For instance, when an AUV is conducting a bathymetric survey, precise navigation and 

localisation is critical to accurately geolocate the sampled data and to cover the target survey 

area (Randeni et al., 2016). 

One of the key methods to localise and navigate AUVs is the use of an Inertial Navigation 

System (INS). Linear and angular accelerations of the vehicle measured by the INS using its 

Inertial Measurement Unit (IMU) are integrated to determine the velocity and position of the 

vehicle respectively (Panish and Taylor, 2011). During this process, the uncertainties within 

the IMU measurements are also integrated; creating an unbounded drift in the INS position 

estimate with time. To counteract this drift, true position and/or velocity measurements of the 

AUV are fed back into the INS localisation solution through the use of a predictor-corrector 

model such as a Kalman filter (Medagoda et al., 2010). True position measurements can be 

delivered using Global Positioning System (GPS) fixes while at surface and true velocity over 

ground measurements from bottom-tracking Doppler Velocity Logs (DVLs) are commonly 

used for INS aiding while underwater. The acoustic transmissions of DVLs are limited in terms 

of the frequency specific penetration through the water column. For example, a 300 kHz DVL 

has a maximum range of around 200 m from the instrument and the range of a 1200 kHz DVL 

is around 15-25 m (Randeni et al., 2017a). Therefore, DVL aiding is unavailable when the 

vehicle-to-seabed distance (i.e., altitude) is larger than the range of the DVL.  

Blue water operations of AUVs often include long descents in the mid-water column 

without DVL bottom-track (Jalving et al., 2003). During such descents, the localisation error 

will increase rapidly if the INS is operating in its free inertial mode (i.e., unaided INS). 

Therefore, at altitudes larger than the DVL range, the INS is aided with the velocity of the 

AUV relative to the water column provided by the water-tracking mode of the DVL (Hegrenaes 

and Berglund, 2009). However, the DVL water-tracking mode assumes the movements of the 

water column relative to the bottom is negligible; hence, it is inaccurate in environments with 
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stronger underwater currents and is prone to position drifts (Medagoda et al., 2016). Once the 

AUV is at a depth relative to the seabed where it has acquired the DVL bottom-lock, the 

accuracy of the INS localisation solution will be maintained for the subsequent time steps. The 

positioning error that occurred during the descent phase prior to bottom-lock being achieved 

will remain as a steady state offset error to the geolocation of the data for the entire mission 

(Randeni et al., 2016). One of the solutions for this would be to deliver true position updates 

of the vehicle using acoustic transceivers to correct the INS drift. However, acoustic 

transceivers have disadvantages such as limited range, complexity and logistical difficulties; 

hence, they are less preferred, especially for deep water offshore applications; i.e., blue water 

operations (Jalving et al., 2003). Medagoda et al. (2016) proposed a mid-water column ADCP 

aided localisation technique using the correlation between bins of a descending ADCP as they 

pass through the same layers to restrain drift, with the assumption of near constant current 

profile layer velocities over short time periods. 

Mathematical model based AUV motion response prediction systems have been recently 

introduced for INS aiding; i.e., a model-aided INS (Hegrenaes et al., 2008, Randeni et al., 

2017b). One of the major advantages of model-aided localisation is that it does not require 

additional sensors beyond a typical AUV navigational payload and could be simply established 

with a modification to vehicle firmware. Such models characterise the hydrodynamic, 

hydrostatic and mass properties of the vehicle. For example, Yan et al. (2012) developed a 

model-aided INS using recursive identification for emergency navigation of AUVs when the 

DVL malfunctions. Hegrenaes and Hallingstad (2011) introduced a model-aided INS, 

including a Kalman Filter based sea current estimation technique for a HUGIN 4500 class AUV 

to be used when DVL aiding is unavailable. The velocities of the sea currents are calculated 

within the navigation system Kalman filter by using the model velocities that are relative to the 

water column and INS measurements relative to the inertial space. While these are two 

excellent examples, the majority of models exclude environmental forces due to currents; i.e., 

parameters within the model represent the characteristics of the AUV in a calm operational 

environment. The estimated sea currents could be less accurate in high current environments 

due to erroneous INS velocity measurements; since a pre error filtering technique is not utilised. 

For all these reasons, the vehicle velocities predicted with a mathematical model-aided INS are 

inaccurate in strong non-uniform currents.  

To address this, a mathematical model, together with a calibration technique, was 

previously introduced by Randeni et al. (2017b) to field calibrate the base-line model 
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parameters for diverse operational environments by identifying the true local environmental 

conditions and external forces acting on the vehicle. One of the advantages of this model was 

that it allows for changes in the vehicle configuration (Randeni et al., 2017b). Field calibration 

is conducted by running a Recursive Least Squares (RLS) based optimisation algorithm for the 

absolute motion response and control command data of an AUV run conducted in the 

anticipated field. The field calibrated model has proven capable of successfully aiding the INS 

position in low energy environments with flow velocities of around 0.2 m s-1; however, its 

accuracy is limited when an AUV descends through a high energy environments with strong 

non-uniform currents. 

This work presents an AUV localisation technique based on a mathematical model-aided 

INS to be used for AUVs diving in blue water without DVL bottom-track. Inputs to the 

algorithm are vehicle control commands and unaided acceleration measurements from the INS. 

The key components of the proposed technique is an Outlier Rejection (OR) filter, which 

removes the outliers present within the INS acceleration measurements and a flow profile 

estimator that determines the water column velocity profile along the AUV descent track 

relative to the ground. The flow profile estimator is a combination of the WVAM method 

(Randeni et al., 2015a, Randeni et al., 2017a) and a forward and backward flow profile 

smoothing algorithm. Using a Gavia-class AUV, the technique was tested for six short AUV 

descents conducted in a high energy river estuary with strong tidal currents. The localisation 

accuracy of the proposed technique is analysed, assuming the DVL bottom-track aided solution 

as the baseline measurement. The performance is evaluated in comparison to other 

conventional non-bottom-tracking localisation systems; i.e., DVL water-track aided, 

conventional mathematical model-aided and unaided. After demonstrating that the newly 

developed model produces better results than conventional non-bottom-tracking solutions, the 

implications for future blue water navigation work is discussed. 

 Field experimental setup 

5.2.1. AUV setup 

The proposed localisation technique was tested and validated using the unprocessed INS, 

DVL, Acoustic Doppler Current Profiler (ADCP) and pressure sensor data collected from a 

Gavia-class AUV (Forrest et al., 2012). Due to high modularity of the AUV, the vehicle 

configuration can be changed by changing the modules for any given deployment purpose, 
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which will alter the hydrodynamic, hydrostatic and mass properties of the vehicle. The vehicle 

in the tested configuration (see Figure 5.1) consisted of a Nose Cone Module, Battery Module, 

Geoswath Interferometric Sonar Module, 1200 kHz Teledyne RD Instruments ADCP / DVL 

Module, Kearfott T24 INS (KI-4902S model) Module, Control Module, and a Propulsion 

Module. The vehicle had a length of 2.7 m, a diameter of 0.2 m, and a dry weight in air of 

approximately 70 kg. The propulsion module was a three bladed ducted propeller system with 

four individually functioning control surfaces arranged in an ‘X’ configuration.  

 

 

Figure 5.1 – Omarama Primary School students inspecting the utilised Gavia AUV. 

Configuration of the vehicle – (A) Nose Cone Module, (B) Battery Module, (C) Geoswath 

Module, (D) ADCP/DVL Module, (E) INS Module, (F) Control Module and (G) Propulsion 

Module. 

The position and velocity estimation accuracies of the DVL aided Kearfott T24 INS, 

1200 kHz Teledyne RD Instruments DVL and Keller Series 33Xe pressure sensor are given in 

Table 5.1. During field tests, the INS data were recorded in the vehicle log at a frequency of 

25 Hz, DVL measurements at 0.5 Hz and other sensor measurements at the vehicle sampling 

frequency of 0.87 Hz.  
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Table 5.1 – Specifications of Gavia AUV sensor packages. “CEP” for Circular Error Probable 

and “RMS” for Root Mean Squared. 

Sensor package Measurements Measurement accuracy 

DVL bottom-track 

aided Kearfott T24 

INS  

Position estimate 0.1% of the distance travelled (CEP) 

Heading angle ±0.010° (RMS) 

Pitch angle ±0.005° (RMS) 

1200 kHz Teledyne 

RDI DVL bottom –

tracking mode 

Velocity  ±0.004 m s-1 (RMS) or 0.2% of the velocity 

Maximum range 30 m 

Minimum range 0.5 m 

Keller Series 33Xe 

pressure sensor 
Vehicle depth 0.1% of the depth 

 

5.2.2. Test sites and experimental runs 

Field tests were carried out in Tamar estuary, Tasmania, Australia – a high energy system 

with the water column velocities varying with the tidal cycle; see Figure 5.2. The test site was 

selected for the experimental runs to analyse the performance of the proposed localisation 

technique in comparison to other methods in different water column conditions. 

Six short AUV diving missions (i.e., Mission 1 to Mission 6) were conducted in Tamar 

estuary near the Batman Bridge (Figure 5.2) on 14th and 15th of June, 2014. As a result of the 

main channel at this location being relatively narrow and shallow, the flow is constricted and 

typically exhibits strong tidal currents and water level fluctuations at different periods of the 

tidal cycle (Green et al., 2016). The six diving missions were conducted at different time 

periods of the tidal cycle in order to analyse the performance of the proposed localisation 

technique in different flow conditions. Missions 1-2 were conducted during slack water and 

Missions 3-4 and 5-6 were carried out at partially and fully developed tide conditions with 

strong tidal currents. Table 5.2 presents the average water column velocity of the site (i.e., 

measured with the vehicle on-board ADCP), the depth and duration of each diving mission. 

The flow conditions varied from 0.08 m s-1 to 0.86 m s-1. Short diving missions were conducted 

so that the DVL bottom-track was available for the entire descent, facilitating the ability to 

analyse the performance of the proposed technique. All diving missions were conducted at a 

constant propeller Revolutions per Minute (RPM) of 700; i.e., a surge speed of around 2 m s-1 

in calm water.  
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Figure 5.2 –Tamar estuary experimental field site near the Batman Bridge was located in 

Tasmania, Australia (inset). AUV diving missions were conducted at the location indicated with 

filled star. 

Table 5.2 – Each mission’s descent depth, time taken for the descent and the average of the 

water column velocity measured using the ADCP of the vehicle 

Mission Descend depth (m) Descend time (s) Average flow velocity (m s-1) 

Mission 1 20 28 0.08 

Mission 2 28 51 0.10 

Mission 3 22 31 0.30 

Mission 4 22  30 0.51 

Mission 5 27 45 0.71 

Mission 6 31 61 0.86 

 

 Methodology 

5.3.1. Motion response predicting mathematical model 

The mathematical model of the Gavia AUV was developed to estimate the vehicle’s 

three-dimensional (3D) linear velocities relative to the water column in response to the time 

series of the control commands. The control commands included the propeller RPM commands, 
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and pitch angle ( ), pitch rate (q), pitch acceleration ( q ), yaw rate (r) and yaw acceleration ( r ) 

values recorded during the physical runs (i.e., measured by the gyroscopic sensors within the 

INS). The simulation model was developed within MATLAB Simulink environment by 

modelling the rigid body dynamics, hydrodynamics and hydrostatic properties of the AUV 

according to Randeni et al. (2017b) and Randeni et al. (2017a), which follows the theoretical 

aspects described by Fossen (2002).  

The acceleration vectors of the current time step in the x, y and z directions were 

calculated with equations (5.1), (5.2) and (5.3) respectively using the controlling commands 

(i.e., the time stamps of propeller RPMt, tp , tp , tq , tq , tr  and tr ) of the vehicle and the linear 

velocity vector from the previous time step; i.e., u(t-1), v(t-1) and w(t-1). The calculated 

acceleration vector is then integrated with respect to the time in order to obtain the velocity 

vector of the current time step in the body-fixed reference frame. This process is repeated with 

a time step of 0.0001 s for the entire mission time. The selected time step is large enough to 

maintain a low computational time and small enough to converge the velocity solution between 

two control command sampling intervals. 

  3
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where, u, v, w and p, q, r are the linear and angular velocities around the x, y and z axes of the 

AUV. Θ is the pitch angle, RPM is the vehicle’s propeller revolutions per minute and 
nX is 

the thrust coefficient, which is 95×10-6 for the Gavia AUV according to the estimation by 

Thorgilsson (2006). The thrust coefficient is only valid for the propeller speed range from 450 

RPM to 975 RPM. α1, α2 … α8, β1, β2 … β7 and γ1, γ2… γ6 are parameters that characterise the 

hydrodynamic, hydrostatic and mass properties of the AUV, and the values for the utilised 

Gavia AUV are given in Table 5.3. Derivation of equations (5.1), (5.2) and (5.3), and 

identification of the parameters are given in Randeni et al. (2017b). 
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Table 5.3 – numerical values of the Gavia AUV’s parameters  

Parameter value  Parameter value  Parameter value 

α1 0.5294 α8 -13.5405 β7 0.0008 

α2 0.0909 β1 0.0133 γ1 -0.0059 

α3 -2.5098 β2 0.0029 γ2 -0.0138 

α4 -8.5937 β3 0.0444 γ3 -0.0347 

α5 -22.3129 β4 -0.0364 γ4 -0.0011 

α6 -32.7171 β5 0.0005 γ5 0.0001 

α7 -7.1061 β6 -0.0001 γ6 0.0016 

 

5.3.2. Conventional mathematical model-aided INS 

The mathematical model (i.e., Block (1) of the proposed localisation technique flow chart 

illustrated in Figure 5.3) determines the velocities of the AUV relative to the water column in 

response to the provided control commands. Since the mathematical model predicts the vehicle 

velocities relative to the water column, the motion of the water column with respect to the 

ground could cause a disparity between the model predicted velocities in comparison to actual 

ground relative velocities. However, the INS measures the vehicle accelerations relative to the 

inertial space (i.e., with respect to the ground).  

Conventional model-aided INS methods blend the model predicted velocities and INS 

acceleration measurements using a Kalman filter data fusion algorithm. A complimentary 

blending between the two can assist each other by avoiding the accumulation of INS 

instrumental errors as well as by reducing the mathematical model velocity drift due to water 

column velocities. Since the two measurements are relative to two different reference frames 

and the quantity desired is the vehicle velocity with respect to the ground, the ground relative 

INS measurements should have a higher weight in the fusion algorithm. INS acceleration 

measurements generally can contain outliers originated from sensor noise, temporary sensor 

failures, unanticipated environmental disturbances, etc. Due to these outlier measurements, the 

performance of the Kalman filter data fusion algorithm could be reduced (Ting et al., 2007, 

Wadehn et al., 2016, Hu et al., 2011), especially if there is a considerable difference between 

the two fusing measurements. That is, the conventional model-aided INS localisation solution 

could be inaccurate in environments with large underwater currents. 
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Figure 5.3 – Flowchart of the proposed technique of estimating the absolute position of the AUV 

using unaided INS acceleration measurements and AUV control commands. wrt stands for 

‘with respect to’. 

5.3.3. Outlier Rejection (OR) filter  

To overcome this, the proposed method utilises a simple OR filter (i.e., Block (2) of 

Figure 5.3) to clean the INS outlier measurements prior to the data fusion. The OR filter 

evaluates the reasonableness of the difference between two immediate INS acceleration 

measurements in x and y directions; that is, the variation of the acceleration within 0.04 seconds. 

If the difference exceeds a pre-set threshold value; the measurement of that time stamp is 

considered as erroneous and the time step is neglected. That is, no change in vehicle 

acceleration will be assumed during that time step.  

The threshold value primarily depends on the performance of the vehicle control system; 

i.e., the ability to maintain the vehicle in the set constant velocities. For a straight line, constant 
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speed and constant depth mission, the tested Gavia AUV had an average acceleration 

fluctuation of 0.025 m s-2 between two consecutive time steps for both u and v (measured from 

the DVL bottom-track aided INS). The maximum fluctuations were 0.150 m s-2 and 0.225 m s-

2 for the respective acceleration components. The maximum allowed difference for the vehicle 

velocities between two sampling time steps (i.e., the threshold) was defined as 0.25 m s-2. That 

is, ten times the average acceleration fluctuation. The computed value ensured that the non-

outlier measurements are not filtered out and the selected value was accurate for all tested 

missions. For the tested missions, the minimum amount of encountered outliers was 2% of the 

overall time steps and the maximum was 25%. The threshold value is applicable only if the 

dive is started after the set forward speed is fully developed while at surface. This is generally 

the common procedure as the flow speed around the control surfaces is required to be well 

developed in order to acquire the force and moment necessary to dive the AUV.  

Outlier filtered INS measurements were aided with the vehicle velocity estimates from 

the mathematical model using the Kalman filter data fusion algorithm shown in Block (3) of 

Figure 5.3.  

5.3.4. Kalman filter data fusion algorithm 

The Kalman filter data fusion algorithm was developed using the MATLAB Kalman 

filter toolbox (Murphy, 2001, Murphy, 1999) to fuse the INS acceleration measurements with 

the aiding velocity; i.e., with model predicted velocities in Block (3), and estimates from the 

proposed technique in Block (5) of Figure 5.3. The fusion algorithm was also used to determine 

DVL bottom-track and water-track aided INS localisation solutions to evaluate the 

performance of the proposed technique. Only a brief description of the mechanisation equations 

used for the Kalman filter are provided here and the reader is referred to Farrell (2008) for 

detailed theoretical information on the Kalman filter’s measurement and state prediction 

solvers. 

According to Newton’s law of motion, the state vector of the current time step is 

calculated using previous time step’s state vector as given in Equation (5.4). 

     1 1k k k
x Fx w

 
   (5.4) 
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and w(k) is the plant noise matrix, a zero-mean Gaussian white noise matrix of covariance Q 

with a diagonal structure. The value of Q was empirically established as 1×10-8 followed by 

several data analyses. 

The measurement vector is given by Equation (5.5).  
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and v(k) is an uncorrelated, zero-mean measurement noise matrix R, a diagonal matrix with the 

respective measurement variances: 
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Equations (5.4) and (5.5) are used as respective state and measurement prediction equations 

for the Kalman filter. The acceleration and velocity measurements at the beginning of the 

descent obtained from the GPS aided INS were used as the initial condition of the state vector. 

( )INS ku and ( )INS kv are INS acceleration measurements along surge and sway directions and 2

INS  

is the variance of INS acceleration measurements. uaiding(k) and vaiding(k) are the velocity 

measurements/estimates used to aid the INS; i.e., either DVL bottom-tracking velocities, DVL 

water-tracking velocities, model predicted velocities or velocities from the proposed technique. 

2

 aidingu  and 
2

 aidingv  are their respective measurement/estimation variances for u and v.  
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5.3.5. Flow profile estimator  

Flow profile estimator compliments the proposed localisation technique by further 

refining the localisation solution using known physical properties of the operating water 

column. According to the WVAM method (Randeni et al., 2015a, Randeni et al., 2017a), the 

velocity of the surrounding water column can be obtained by computing the difference between 

velocity of the AUV relative to the bottom and the velocity predicted by a mathematical model 

relative to the water column as shown in Equation (5.6).  

water,ground(t) AUV,ground(t) AUV,water(t)     (5.6) 

where, water,ground(t)  is the linear velocity vector of the surrounding water column (along the x, 

y and z directions) relative to the earth in the body-fixed coordinate system, AUV,ground(t) is the 

linear velocity vector of the AUV relative to the earth, preferably measured using the DVL 

bottom-track aided INS, and AUV,water(t )  is the linear velocity vector obtained from the 

simulation model representing a calm water environment when the control commands recorded 

during the field tests were simulated. Subscript ‘t’ indicates the time step. 

The WVAM method ideally requires the velocity of the AUV relative to the ground from 

a bottom-tracking DVL (Randeni et al., 2017a), which is unavailable during the mid-water 

column descent and also is the final goal of this work. As outlined in Algorithm 1, which 

represents Block (4) of Figure 5.3, the true velocity of the surrounding water column is 

estimated when the AUV is at the surface (i.e., when AUV,ground(t)  can be measured from the 

GPS) using Equation (5.6) and is set as the initial value, i.e., water,ground(0) . After beginning the 

descent, the vehicle velocity from OR filtered model-aided INS is used as AUV,ground(t) ; i.e., the 

vehicle velocities from Block (3). The forward correcting and smoothing loop starts from this 

point on. If the difference between water,ground(t)  and water,ground(t 1)  is larger than a pre-defined 

threshold value, water,ground(t) will be replaced with either 
water,ground(t 1) threshold 

    or

water,ground(t 1) threshold 
   , depending on the sign of the difference (see Algorithm 1). The 

main purpose of this filter is to remove any erroneous outliers within the flow velocity profile. 

It also allows to smoothly settle the initial water,ground(t) to the values during the descent phase of 
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the vehicle, and smooths the flow velocity along the depth profile. This loop continues until 

the DVL bottom-lock is reached.  

Upon reaching the DVL bottom-lock, the true water column velocity is calculated using 

Equation (5.6) with AUV,ground(t) from the DVL bottom-track, and is set as the initial value for 

the back correction, i.e., water,ground(n) where n is the time step at which the DVL bottom lock is 

reached. As outlined in Algorithm 1, if the difference between water,ground(t 1)   and water,ground(t)  is 

larger than the pre-set threshold, water,ground(t 1)  will be replaced with either 

water,ground(t) threshold    or 
water,ground(t) threshold    depending on the sign of the difference. 

This loop will continue till t = n/2.  

The filtered water column velocity profile is considered as valid only if water,ground(n/2)  

from forward and back corrections are within the threshold limit. In situations where the water 

velocity back correction is unsuccessful, the AUV velocity from the OR filtered model-aided 

INS is used as the final localisation solution. It is required to reach the DVL bottom-lock in 

order to start the back correction algorithm. Therefore, only the forward correction is to be used 

to determine the localisation solution during the descent of the AUV. Upon obtaining a DVL 

bottom-lock, the back correction algorithm will be run to counteract the previously estimated 

localisation solution.   

Algorithm 1 – flow profile smoother 

1: determine water,ground(0)  prior to the descend using 
AUV,ground  from GPS 

2: set water,ground(0)  as the initial condition for the forward correction 

3: loop – Begin the descend, start forward correction 

4:   if water,ground(t 1) water,ground(t) 
    > threshold, then 

5:    water,ground(t) water,ground(t 1)  
   + threshold 

6:   else if water,ground(t 1) water,ground(t) 
    < -threshold, then 

7:    water,ground(t) water,ground(t 1)  
    – threshold 

8:   end if 

9:   t = t + 1 

10:   if DVL bottom-lock is not reached, then 

11:    go to 4 

12:   else 



122 

Chapter 5 

13:     set t = n 

14:   end if 

15: end loop – descent complete  

 

16: loop – start back correction 

17:   determine the true water,ground(n) upon DVL bottom-lock 

18:   set water,ground(n)  as the initial condition for the back correction 

19:   if water,ground(t) water,ground(t 1)  
    > threshold, then 

20:    water,ground(t 1) water,ground(t) 
   + threshold 

21:   else if water,ground(t) water,ground(t 1)  
    < -threshold, then 

22:    water,ground(t 1) water,ground(t) 
   – threshold 

23:   end if 

24:   t = t – 1 

25:   if the simulation has not reached n/2 time step, then 

26:    go  to 19 

27:   end if 

28: end loop – back correction complete 

 

The magnitude of the threshold depends on the dive angle and variation of the water 

column velocity along the depth profile. For the tested missions, the AUV dive angle was 

around 25º and the depth between two consecutively sampled data points was around 0.03 m. 

A threshold value of 0.001 m s-1 was selected after analysing the flow variation of the 

deployment site closer to the surface. For five out of six missions, the flow profile smoother 

was triggered less than 3.8% of the overall time stamps and, for Mission 4, it was 11.5%.  

5.3.6. Computation of final localisation solution 

The velocity of AUV relative to the ground is computed by adding the model predicted 

velocities relative to the water column to the velocity of the water column relative to the ground. 

This provides the velocity of the AUV relative to the ground and is used to aid the OR filtered 

INS acceleration measurements in Block (5) using a second Kalman filter data fusion algorithm, 

which computes the final vehicle velocity and localisation solutions from the proposed method. 
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 Results and discussion 

5.4.1. Comparison of vehicle velocity estimations 

The velocity measurements from the DVL bottom-track aided INS was considered as the 

true vehicle velocity measurement as it is the most accurate localisation approach. Figure 5.4 

compares the Root Mean Square (RMS) difference of the horizontal vehicle velocity (i.e., the 

magnitude of u and v) obtained from each method compared to the DVL bottom-track aided 

solution for six diving missions. The ‘OR filtered model-aided’ results represent the outcome 

from Block (3) of Figure 5.3 while the ‘Proposed technique’ results are the final localisation 

solution from Block (5). The average values of the water column velocities measured during 

each mission using the vehicle ADCP are also given.  

 

Figure 5.4 – RMS of the vehicle horizontal (i.e., the magnitude of u and v) velocity prediction 

difference of each method compared to the solution from DVL bottom-track aided INS.  The 

‘OR filtered model-aided’ results represent the outcome from Block (3) of Figure 5.3 while the 

‘Proposed technique’ results are the final localisation solution from Block (5). 

5.4.1.1. Unaided INS 

Integration of uncertainties within raw INS measurements will develop drift in the 

vehicle velocity and position calculations unless they are corrected with true measurements or 

realistic estimates (e.g. acoustic fixes). The magnitude of drift of an unaided solution is a 

function of several factors including the time spent underwater after the last position correction, 
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and the number of outlier measurements present during the unaided period (Titterton and 

Weston, 2004). The latter varies with the type of manoeuvre; therefore, the performance of an 

unaided INS is mission dependant. As shown in Figure 5.4, the maximum RMS difference 

between the unaided and DVL aided velocities was 0.95 m s-1, observed from Mission 6. 

Mission 6 had the highest average water column velocity of 0.86 m s-1. The minimum RMS 

difference of 0.14 m s-1 was from the mission with the lowest flow velocity, Mission 1. The 

general trend was that, the higher the water column velocity, the higher is the velocity 

prediction uncertainty of the unaided INS (see Figure 5.4).  

Figure 5.5a and 5.5b compare the horizontal vehicle velocities from all techniques for 

two sample missions; i.e., Mission 6 and Mission 5 respectively. The discrepancy between the 

DVL bottom-track aided and unaided velocity solutions are significantly large and they 

continue to diverge with time. This verifies that an unaided INS is unreliable for AUV 

localisation.  

 

Figure 5.5 – comparison of the horizontal velocities from the proposed technique with other 

aiding mechanisms for (a) Mission 6 and (b) Mission 5. Velocity calculation from the OR 

filtered model-aided INS as well as the final estimate are given. 
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5.4.1.2. DVL water-track aided INS 

Majority of the commercial AUVs utilise DVL water-track aided INS as the alternative 

localisation technique when DVL bottom-track is unavailable (Hegrenaes and Berglund, 2009, 

Jayasiri et al., 2016, Medagoda et al., 2016), which is determined by fusing the velocity 

measurements from the DVL water-track mode with raw INS accelerations. The key 

disadvantage of this method is that the movements of the water column relative to the ground 

are generally unaccounted for; therefore, it will cause drifts in the vehicle velocity and position 

estimate. The maximum uncertainty of the DVL water-track aided INS compared to the DVL 

bottom-track aided INS was recorded from Mission 6 as 0.61 m s-1. The smallest difference of 

0.06 m s-1 RMS was from Mission 1 that had the slowest moving water column (i.e., an average 

flow velocity of 0.08 m s-1).  

For tested missions, the accuracy of the DVL water-track aided INS velocity prediction 

is greater than that from the INS in its free inertial mode. When the INS is aided with water-

tracked velocity, the data fusion algorithm delivers a compromised solution between the raw 

INS acceleration measurements relative to the inertial frame, and velocity measurements 

relative to the water column. This helps to avoid INS error accumulation. Figure 5.5 shows that 

the water-track aided solution is not as prone to divergence with time as the unaided solution. 

However, steady offsets in comparison to bottom-track solutions are present due to the 

movement of the water column. 

5.4.1.3. Conventional model-aided INS 

The conventional model-aided INS velocity solution was obtained by fusing the raw INS 

acceleration measurements with the vehicle velocity estimates from the mathematical model. 

The mathematical model represents the hydrodynamic, hydrostatic and mass properties of the 

Gavia AUV that operates in a calm water environment. Therefore, similar to the DVL water-

track mode, the model predicts the vehicle velocities relative to the water column. For this 

reason, even though the INS measurements are relative to the ground, the aided solution could 

have a deviation compared to the bottom-track velocity if the velocity of the water column is 

significant. Furthermore, the outliers in raw INS acceleration measurements degrade the output 

of the aided solution, creating an error. For the tested missions, the largest discrepancy of 0.44 

m s-1 was observed from Mission 5, the mission that had the second largest average water 

column velocity of 0.71 m s-1 (see Figure 5.4). The best correlation was for the mission with 

the lowest flow speed. 
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The accuracy of the velocities from the conventional model-aided INS was better than 

the DVL water-track aided INS for five out of six tested missions. The DVL water-track mode 

measures the velocity of the AUV relative to the particles suspended within the water column 

that moves with the fluid. Therefore, due to entrained air bubbles in the flow, water-track 

velocity measurements are prone to outliers and erroneous readings, especially in turbulent 

environments. Furthermore, they are likely to suffer from outages and instrument re-

initialisations where the INS is run in its free inertial mode. In addition, the DVL had a lower 

measurement sampling frequency of around 2 Hz compared to the mathematical model that 

processes the vehicle control commands recorded at 25 Hz with a model update frequency of 

104 Hz. Thereby, the DVL assumes a constant velocity in between measurements while the 

model provides a continuous variation of the vehicle velocities. All these factors have assisted 

the model solution to perform better than the DVL water-track mode aided INS.  

5.4.1.4. OR filtered model-aided INS 

The OR filter was successfully able to improve the model-aided INS velocity prediction 

by removing outliers within the INS measurements prior to the data fusion. The OR filter was 

triggered 2% of the number of time steps in Mission 2, which was the minimum outlier 

occurrence, and the maximum occurrence was 25%, in Mission 6. The minimum vehicle 

velocity prediction improvement of the OR filtered model-aided INS compared to conventional 

model-aided solution is 9% (i.e., from Mission 5) and the maximum improvement is 60% (i.e., 

from Mission 4). The RMS difference compared to DVL bottom-track aided solution is below 

0.15 m s-1 for four out of six tested missions (see Figure 5.4). This shows that although the 

amount of outliers is less than 25%, the performance improvement once they are removed is 

significant. 

Figure 5.5 illustrates that velocity predictions from the OR filtered model-aided INS are 

closely correlated with the DVL bottom-track aided velocities even though minor variations 

due to water column velocities are not well replicated. The general trend is that the uncertainty 

is directly proportion to the average velocity of the water column. The AUV velocity prediction 

accuracy of the OR filtered model-aided INS decreases in environments with large flow speeds.  

5.4.1.5. Proposed technique 

The water column velocity estimate from the flow profile smoothing algorithm was 

compared against the measurements from the AUV’s on-board ADCP. The flow velocity 
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components from the first bin of the downward looking ADCP (i.e., 0.44 m away from the 

vehicle) were taken as the measurements for the comparison. Figure 5.6a and 5.6b present a 

comparison of the horizontal velocities of the water column (i.e., the magnitude of 
wateru  

and waterv ) for two sample missions (i.e., Mission 5 and Mission 4 respectively). The 

proposed technique well replicated the ADCP measured flow profiles for all the tested 

missions with a maximum RMS difference of 0.23 m s-1 from Mission 5. The best agreement 

was from Mission 1; i.e., an RMS difference of 0.05 m s-1. 

 

Figure 5.6 – comparison of horizontal water column velocities (i.e., the magnitude of 
wateru  and 

waterv ) from the proposed flow profile smoother against the ADCP measurements for (a) 

Mission 5 and (b) Mission 4. 

The flow profile smoother was triggered 1.5% of the overall time steps in Mission 2 (i.e., 

the minimum occurrence) and 11.5% in Mission 6 (i.e., the maximum occurrence). The 

percentage occurrence was less than 3.8% for five out of six missions.  

The final velocity prediction from the proposed localisation technique (i.e., the output 

from Block (5) of Figure 5.3) provided the best correlation with DVL bottom-track aided 

velocities for all tested missions (see Figure 5.4). The largest deviation of 0.14 m s-1 was from 

Mission 5 and the lowest of 0.02 m s-1 was from Mission 1. The performance of the proposed 
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technique has improved more than double of that of the conventional methods for the tested 

short descent missions. Hence, the vehicle velocity estimates from the proposed technique is 

likely to be able to use for the localisation, navigation and control systems of AUVs when 

bottom-track is unavailable. 

Unlike in DVL water-track and conventional model-aided INS solutions, the proposed 

technique well replicates the small velocity fluctuations of the AUV. Such fluctuations are 

mainly initiated and caused by the velocity variations of the surrounding water column. Since 

the proposed technique accounts for flow velocities, it has been able to perform better than 

conventional methods. DVL water-track and conventional model-aided INS solutions tend to 

be unusably inaccurate in high turbulent environments with large water column velocities. 

However, as illustrated in Figure 5.4, the proposed technique is generally independent of the 

average velocity of the water column. Therefore, it can be utilised for operational environments 

with high as well as low flow speeds, although it is most useful when the vehicle is operating 

in environments with strong non-uniform currents. Furthermore, due to low uncertainty it could 

be used for long descents conducted in low energy environments.  

5.4.2. Comparison of vehicle localisation solutions 

Vehicle localisation solutions (i.e., vehicle travel track) from each method were 

calculated by integrating the relevant vehicle velocities with respect to time. Figure 5.7a and 

6.7b illustrates the vehicle tracks from all techniques plotted in a local coordinate system for 

two sample missions (i.e., Mission 5 and Mission 6 respectively).  

 

Figure 5.7 – the vehicle localisation solutions of (a) Mission 5 and (b) Mission 6, in a local 

coordinate system. 
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As seen from Figure 5.7a and 5.7b, the vehicle track provided by the unaided INS is 

extremely unreliable in comparison to the DVL bottom-track aided localisation solution. The 

estimated vehicle position at the end of the manoeuvre has an uncertainty of over 50% of the 

travelled distance. The performance has increased when the INS is aided with the DVL water-

track mode or with the mathematical model; although, the vehicle track diverges with the 

distance travelled due to integration of drift due to current (see Figure 5.7). The proposed 

technique provided the highest accuracy with uncertainties less than 5.5% of the distance 

travelled for both Missions 5 and 6.  

Figure 5.8 illustrates the positioning errors at the end of each mission as a percentage of 

the distance travelled, in comparison to the DVL bottom-track aided INS solution. The average 

values of the water column velocities measured during each mission using the vehicle ADCP 

are also given. 

 

Figure 5.8 – the localisation errors at the end of each mission as a percentage of the distance 

travelled. The error is determined in comparison to the DVL bottom-track aided INS solution. 

For all test cases, the localisation error of the unaided INS is unacceptably large to be 

used for AUV localisation, navigation and motion control. The general trend is that the 

uncertainty increases with the average velocity of the surrounding water column.  

Localisation solutions from the DVL water-track aided INS is reasonably accurate for 

operational environments with lower surrounding water column velocities (see Figure 5.8). For 

instance, the positioning uncertainties at the end of Missions 1 to 3 (where the mean water 
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column velocities are below 0.1 m s-1) were less than 5% of the distance travelled. However, 

the uncertainties were above 14% of the distance travelled when the average water column 

velocity was beyond around 0.4 m s-1, making it an unreliable technique; although, it is the 

most typically used alternative approach for AUV localisation and navigation when DVL 

bottom-track is unavailable. The localisation uncertainty of the conventional model-aided INS 

was less than 5% of the distance travelled when the velocity of the surrounding water column 

was below 0.1 m s-1. The uncertainty was beyond 10% of the distance travelled when the 

average water column velocity was more than around 0.4 m s-1.  

The proposed localisation technique has provided the most accurate solutions for all 

tested missions. The largest uncertainty of 5.5% of the distance travelled was observed from 

Mission 5, where the uncertainties of model-aided and DVL water-track aided INS are 13.7% 

and 14.6%. The lowest uncertainty of 1.1% of the distance travelled was from Mission 1, which 

had the smallest average surrounding water column velocity. The ambiguity of the flow profile 

prediction becomes more significant when the flow speed is larger. As a result, the accuracy of 

the proposed technique is proportional to the magnitude of the average water column velocity. 

However, in comparison to other techniques, the accuracy of the proposed technique is 

relatively consistent, regardless of the water column velocity. 

Although the proposed technique performs better than conventional non-bottom-tracking 

localisation techniques, it is most advantageous when the AUV is operating in environments 

with large water column velocities. This is because conventional techniques tend to be 

erroneous in such conditions. Therefore, the proposed technique is beneficial for future AUV 

deployments of all sizes. One of the key advantages of this technique is that it could be 

implemented in the AUV with a software update, without additional instruments. 

 Limitations and future work 

For this study, it was required to compare the vehicle velocity and position estimates 

from the proposed technique against the DVL bottom-track aided INS solutions. Therefore, the 

analysis was limited for short vehicle descending missions conducted in water columns that 

are less than 45 m deep, which was a key limitation. The forward and backward corrector 

section of the proposed flow profile smoother will perform better for shallower water depths 

compared to deeper waters. Nevertheless, the performance of the OR filter and the flow profile 

smoothing sections are independent of the depth of the water column. It is expected to further 
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test the proposed technique using AUV missions conducted in a deeper water column that has 

a previously geolocated object on the seabed. Once the AUV has completed its descent, a sonar 

imaging mission will be conducted above the object. The true position of the vehicle will be 

determined by calculating the position offset to the object recorded in the sonar images, which 

will then be used to evaluate the performance of the proposed method. 

The accuracy of the flow profile estimator reduces in time periods where the AUV glides 

through the water column when the current is either accelerating or decelerating. This is a 

limitation of the WVAM method as stated in Chapter 3. Further improvements to the model to 

calculate the gliding effect of the AUV due to accelerating/decelerating water columns could 

improve the performance of the localisation solution in water columns with highly variable 

water column velocities. 

This study was not implemented in the actual AUV to be run in real time. Furthermore, 

it was limited to determine the position of the vehicle and the improved position estimate was 

not used for the navigation and control systems of the AUV. Further studies are currently 

ongoing to develop the algorithm as a Mission Oriented Operating Suite – Interval 

Programming (MOOS-IvP) application (Benjamin et al., 2010), which will run in a backseat 

driver computer of the AUV and feed necessary vehicle localisation, navigation and control 

corrections to the front seat computer. The proposed localisation algorithm was able to process 

all the longest mission with a 61-second long dataset in less than 1 s utilising an Intel Core i7-

4470 3.40 GHz central processing unit. That is, the measurement data can be processed in a 

rate of around 65 Hz. Real time measurement sampling rate of the AUV is around 25 Hz. 

Therefore, it is feasible to run the proposed technique is real time in a backseat driver computer. 

 Conclusions 

This study presents a novel localisation technique for AUVs descending in altitudes 

larger than the range of the bottom-tracking DVL sonar. A mathematical model of the Gavia 

AUV was developed to determine the velocities of the AUV in response to the control 

commands, which assumes that the vehicle is operating in a calm water environment.  The 

vehicle velocity estimates from the model were fused with OR filtered INS acceleration 

measurements to determine the model-aided velocity solution.  

The OR filter was successfully able to remove the outliers present in the INS 

measurements and to improve the model-aided INS velocity prediction. The minimum 
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percentage improvement of the vehicle velocity prediction compared to conventional model-

aided INS was 9% and the maximum improvement was 60%. The proposed flow profile 

smoother showed a good replication of the water column velocity measurements from the AUV 

on-board ADCP for all the tested missions with a maximum RMS difference of 0.23 m s-1.  

The proposed localisation technique provided the highest correlation with DVL bottom-

track aided localisation solution compared to other non-bottom-tracking localisation 

techniques. The accuracy of the proposed technique was relatively consistent regardless of the 

water column velocity. Therefore, the technique could be utilised for operational environments 

with high as well as low flow speeds; although it is most advantageous when the AUV is 

operating in environments with large water column velocities. 
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Chapter 6: Summary, conclusions and future work 

 

 Research summary 

In achieving the project objective, the literature review had the focus to improve the INS 

localisation performance when DVL aiding is unavailable. In comparison to other alternatives, 

model-aided localisation is most suitable for INS drift bounding since it does not require 

additional sensors beyond a typical AUV navigational payload or shadowing support vessels; 

unlike for LBL and USBL based localisation. That is, a model-aided INS could be simply 

established using either modifications to vehicle firmware or using a backseat driver (e.g. using 

MOOS-IvP). That said, cutting edge model aiding technology needs further improvements to 

handle the unpredictable environmental conditions. 

This thesis establishes a technique to determine the linear and nonlinear parameters of a 

baseline mathematical model, utilising RLS and PEM based system identification algorithms. 

The model predicts the velocities of the AUV in response to the vehicle’s control commands. 

The accuracy of the baseline model decreases if the operational environment or the 

configuration of the vehicle varies from the baseline environmental condition and vehicle 

configuration (Chapter 2). The model calibration method is introduced to calibrate the 

parameters within the baseline model to different environmental conditions and vehicle settings 

by conducting a calibration mission in the new environment. However, the model calibration 

could fail in flow fields with high spatial variations; for example, when the AUV is descending 

in a deep water column with strong non-uniform underwater currents that varies with the depth. 

The calibrated model approach is more suitable for low energy environments with a consistent 

flow field or to calibrate the model for a different vehicle configuration.  

The WVAM method is introduced to measure the velocity of the water column using the 

AUV motion response (Chapter 3). It is capable of accurately estimating the flow velocity 

around the AUV within the vehicle boundary layer (e.g. in high energy environments). The 

performance of the method is evaluated and validated against the measurements from on-board 

as well as stationary ADCPs in different water column conditions (Chapters 4 and 5). A major 

drawback of the WVAM method is its requirement of vehicle velocity relative to the ground, 

which is typically unavailable without DVL bottom-lock.  
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The WVAM method is further improved in Chapter 5 to determine the water column 

velocity profile along the descend path of the AUV, diving from the surface to seabed in blue 

water, without DVL bottom-track. In combination with the model-aided INS, this technique 

provides an improved positioning accuracy in comparison to existing non-bottom-tracking 

localisation techniques. Its performance is validated with AUV diving missions conducted in 

low as well as high energy water column conditions. 

A secondary, CFD and EFD based approach is also presented to determine the 

hydrodynamic parameters of the mathematical model in pre-defined complex flow conditions 

such as when operating in proximity to the pressure field of another underwater vehicle 

(Appendix C). 

Following sections provide a point by point summary of the outcomes from the overall 

project. 

6.1.1. Traditional non-bottom-tracking AUV localisation techniques 

 The unaided INS localisation solutions are extremely unreliable in comparison to DVL 

bottom-track aided localisation solution. The positioning error ranges from 20% to 60% 

of the distance travelled. The magnitude of uncertainty is mission dependent. Although 

most commercial AUVs utilise the DVL water-track mode when bottom-tracking is 

unavailable, it has the disadvantage of poor performance in environments with 

underwater currents. The accuracy of DVL water-track aided INS localisation depends 

on the magnitude of the water column velocity. The higher the flow speed, the greater 

is the uncertainty (Chapter 5). 

6.1.2. Model-aided AUV localisation in low energy environments 

6.1.2.1. AUV localisation in calm-water environments 

 The baseline model is capable of accurately predicting the linear velocities of the AUV 

using vehicle control commands for operations conducted in calm-water environments 

and baseline vehicle configuration. It assumes that the AUV is operating in a calm water 

environment as it neglects the parameters representing static and vehicle heading 

dependent environmental forces.  

 For the tested zig-zag manoeuvres conducted in the calm-water environment, the 

baseline model estimates u, v and w with respective RMS errors of 0.15 m s-1, 0.07 m 
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s-1 and 0.03 m s-1 in comparison to DVL bottom-track aided INS measurements 

(Chapter 2). However, should there be any movements of the water column relative to 

the ground, the drift of the vehicle due to current is not replicated by the baseline model 

(Chapter 2). Thus, the baseline model provides the vehicle velocities relative to the 

water column.  

 Similar to DVL water-track aided mode, the performance of the baseline model-aided 

INS varies with the velocity of the water column. Higher water column velocities have 

been found to cause drifts in the position estimate (Chapter 5).  

 The baseline model-aided INS provided more accurate solutions compared to DVL 

water-track aided INS for five out of six missions conducted in different water column 

conditions (Chapter 5). This is a result of DVL water-track mode’s low measurement 

sampling frequency and liability to outliers, outages and erroneous readings. The 

mission that disagreed with this trend also had a small uncertainty difference of 0.9% 

of the distance travelled.  Therefore, the baseline model-aided INS is a better approach 

for AUV localisation compared to the DVL water-track aided mode.  

6.1.2.2. Calibrated model-aided localisation 

 Once the baseline model is calibrated using the calibration technique (Chapter 2), it 

includes parameters representing static and vehicle heading dependent environmental 

forces. These parameters represent the flow field characteristics of the water column 

where the calibration run is being carried out. Therefore, the calibrated model precisely 

replicates the motion response of the AUV for missions conducted in the calibrated 

flow field. Therefore, it is substantially more accurate than the baseline model for 

operations conducted in water columns with different flow velocity conditions  (i.e., an 

improvement up to 73%). It is also able to compute the position of the AUV within an 

uncertainty range of 1.5% of the distance travelled (Chapter 2). 

 The accuracy of a calibrated model is restricted to flow fields with low spatial variations 

(i.e., even currents). If the velocity of the water column varies along the vehicle path, 

the parameters representing the environmental forces become invalid, adversely 

affecting the model accuracy. Therefore, the calibrated model should not be used in 

environments with strong non-uniform currents (Chapter 2). 
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6.1.2.3. Determining AUV models for complex flow conditions (Appendix C) 

 The hydrodynamic parameters of a model vary when the AUV is operating within 

external pressure fields such as those created by another moving underwater vehicle. 

System identification is not suitable to determine a large number of parameters in such 

scenarios. Therefore, captive model experiments or CFD simulations should be utilised 

to determine the hydrodynamic parameters of a mathematical model in complex flow 

conditions. The simplified method introduced in Appendix C is able to estimate the 

hydrodynamic coefficients of an AUV when operating in a complex flow field by 

simply adding the steady-state interaction force coefficient to the baseline parameters 

(Appendix C). 

 The anticipated operational condition should be predefined to determine the 

hydrodynamic coefficients of an AUV using captive model experiments and CFD 

simulations. That is, such techniques are most suitable for well-defined complex 

operations (Appendix C). 

6.1.3. Model-aided AUV localisation in high energy environments 

6.1.3.1. Water column velocity estimation 

 Neither the baseline model nor the calibrated model is able to predict the motion 

response of the AUV accurately in environments with strong non-uniform currents. 

Therefore, it is required to link the model predicted vehicle velocities relative to the 

water column with the water column velocities relative to the ground (Chapter 2). The 

water velocity components estimated by the WVAM method agreed well with the 

measurements of the AUV’s on-board ADCP with standard deviations of 0.09 m s−1, 

0.07 m s−1, and 0.06 m s−1 for the respective components in x, y, and z directions 

(Chapter 3). WVAM method also showed a good agreement in comparison to water 

column velocity measurements from a stationary ADCP with differences of 0.05 m s-1, 

0.08 m s-1 and 0.01 m s-1 for the respective components (Chapter 4). 

 When an AUV undertakes missions in environments with strong non-uniform currents, 

the yaw and pitch angles of the vehicle typically fluctuate around the target values due 

to the inability of the AUV’s dynamic controller to adequately compensate for the 

external disturbing forces. Hydrodynamic forces and moments acting on the AUV 

moves into their nonlinear range as the angles of incidence of the vehicle become larger. 
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The parameters of the model identified using system identification are most accurate 

within their identified range; for example, the model parameters are limited to a forward 

speed range of around 1.4 m s-1 to 2.5 m s-1. Therefore, if the vehicle motion exceeds 

the identified range, the accuracy of the model decreases adversely affecting predictions 

the WVAM method (Chapter 4). 

 The WVAM method was tested for water column velocities up to around 1.7 m s-1, and 

the method provided an acceptable accuracy with a maximum standard deviation of 

0.09 m s−1. Therefore, it could be incorporated to aid the INS navigation solution 

without further improvements. However, the applicable range of the method could be 

increased by extending the mathematical model for a wider range of speeds and angles 

of incidences (Chapter 4). 

 A disadvantage of the WVAM method is that it requires the vehicle velocity 

measurements relative to the ground in order to measure the water column velocities. 

The flow profile smoothing algorithm introduced in Chapter 5 is able to accurately 

determine the water column velocity profiles along the descend paths of the AUV 

without DVL bottom track. The flow profile smoothing algorithm provided a good 

replication of the actual horizontal water column velocity measurements from the 

ADCP for all the tested missions with maximum and minimum RMS differences of 

0.23 m s-1 0.05 m s-1 respectively. 

6.1.3.2. AUV localisation in high energy environments 

 When outliers within the INS acceleration measurements are removed using the OR 

filter and aided with the baseline model, the performance improved considerably 

compared to conventional model-aided INS localisation system (Chapter 5). When 

combined with the water column velocity profile from the flow profile smoothing 

algorithm, it provided the most accurate localisation solution compared to other non-

bottom-tracking localisation methods (i.e., DVL water-track aided, conventional 

model-aided, and unaided INS solutions). For the tested missions, the proposed 

technique was able to limit the positioning uncertainty to less than 5.5% of the distance 

travelled, even at extreme environmental conditions; whereas the other non-bottom-

tracking techniques reveal an uncertainty up to 30%. This approach is relatively 

consistent regardless of the water column velocity. Therefore, the technique could be 

utilised for operational environments with both high and low flow speeds. However, it 
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is most advantageous when the AUV is operating in environments with large water 

column velocities since conventional techniques such as DVL water-track aided INS 

and conventional model-aided INS are less accurate in such environments.  

 Conclusions 

AUVs operating in calm water environments without DVL bottom-track can utilise the 

baseline model-aided INS to improve the localisation performance, which is more accurate in 

comparison to conventional DVL water-track aided INS solution. Conducting a calibration 

mission prior to the actual survey mission can considerably improve the performance of the 

baseline model as it calibrates the model for any variations in the vehicle configuration as well 

as for environmental forces in the current operating condition. However, model calibration 

should not be done in environments with strong non-uniform underwater currents that largely 

vary with the depth and position. 

The OR filtered baseline model-aided INS should be used with the flow profile 

smoothing algorithm to determine the localisation solution in high energy environments with 

strong non-uniform currents. This approach is more accurate compared to other conventional 

non-bottom-tracking localisation methods. It can also be used for calm water environments; 

although, the performance improvement compared to baseline model-aided INS is not 

significant. 

 Research implications 

Novel techniques developed in this study also have many implications outside of the 

main objective of this project. For example, the WVAM method was well validated in this 

thesis as a tool to estimate water column velocities around the vehicle. This is an important 

outcome as the flow field around the vehicle is unresolvable with existing methods due to the 

ADCP blanking distance. Estimating water column velocities is essential to fill the blanking 

distance gap within a water column velocity profile, which is important for flow field 

characterisation. Furthermore, the flow velocities around the boundary layer of the AUV is 

critical for vehicle control system optimisation (Fan et al., 2016). 

The AUV mathematical models are a prerequisite for vehicle control system optimisation 

(Kokegei et al., 2008). The models developed in this study accurately characterise the 

hydrodynamic, hydrostatic and mass properties of the vehicle. Real time model calibration 
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compliments this by adding the environmental influences from the current operating 

environment. Therefore, the models of this study have a great potential for being used to 

improve the performance of model based AUV control systems, especially when operating in 

high energy environments.  

AUV simulators are used for a number of applications such as for operator training 

programs, for real time vehicle position tracking and to test new algorithms prior to the 

implementation in the actual vehicle. A mathematical model that characterises the vehicle 

properties is one of the key components of a simulator and the models developed in this project 

can be used for such applications. In addition, the system identification technique introduced 

to determine the models can be upgraded to obtain the model for autonomous surface vessels 

to be used for control system optimisation as well as to develop vehicle simulators (Keane et 

al., 2016). 

The investigation on the hydrodynamic interaction between an AUV operating in close 

proximity to another moving underwater vehicle has a number of implications outside the scope 

of this project. The validated CFD simulation models developed in this study enabled 

investigation of the effects of relative size and position between the two vehicles. The 

interaction effects can be used to examine the feasibility to launch and recover AUVs from 

moving military submarines and to investigate the operational envelope of the AUV (Leong et 

al., 2015). CFD models can also be used to investigate the hydrodynamic interaction effects of 

AUVs operating near the bottom, surface ice layers and sidewalls. In addition, the variation of 

hydrodynamic coefficients can be used to optimise the model based control systems to enable 

the AUV to be safely launched and recovered from a moving submarine. The simplified method 

introduced in Appendix C to determine the variation of hydrodynamic coefficients by 

transforming the single body hydrodynamic coefficients with steady-state interaction forces 

facilitates to conduct high resolution investigations with a lower CFD computational cost. 

 Future work 

Following future work is recommended for the continuance of this research program. 

 AUV localisation techniques presented in this thesis are tested and validated by running 

simulations with sensor data from real vehicle missions conducted in the field. 

Implementing these techniques in the actual vehicle was out of the scope of this project. 

Therefore it is recommended to convert the developed algorithms as Mission Oriented 
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Operating Suite – Interval Programming (MOOS-IvP) application (Benjamin et al., 

2010), which is to be run in a payload computer as a backseat driver for the AUV for 

real time localisation. The localisation solution computed by the MOOS-IvP application 

is to be used for the vehicle navigation and motion control systems to navigate the AUV 

more accurately when DVL bottom-track is unavailable. 

 One of the key advantages of the techniques developed in this thesis is that they could 

be applied to any torpedo shaped AUV (e.g. REMUS, Iver, Bluefin, Explorer, etc.). For 

instance, the system identification techniques and the WVAM method have been tested 

for an Iver III AUV and a Gavia AUV with a different module configuration. It is 

recommended to implement the proposed localisation technique as a generalised 

algorithm that can be used for any torpedo shaped AUV. The MOOS-IvP software has 

made this possible as it runs platform independently in a payload computer, decoupled 

from the vehicle manufacturer’s autonomy software. Furthermore, the applicability of 

the proposed technique for non-torpedo shaped AUVs is recommended to be 

investigated.  

 The RLS and PEM based system identification techniques developed in this thesis to 

determine and to field calibrate the mathematical models have a vast applicability, not 

only for underwater vehicle, but also for surface vessels (Keane et al., 2016). For 

example, it can be used to determine the mathematical models of Autonomous Surface 

Vessels (ASVs) for a number of purposes, such as to develop vehicle simulators, for 

model based control system optimisation, etc. Therefore, it is recommended to 

transform the model equations for surface vessels to identify the mathematical models 

of surface platforms such as ASVs. 

 The WVAM method is recommended to be used to develop and implement a water 

column velocity feedforward control algorithm to improve the vehicle motion control 

system when operating is high energy environments with strong non-uniform currents. 

Accurate motion control performance in strong currents is critical for better-quality 

survey data as well as for autonomous docking and launch and retrieval of AUVs from 

moving submarines. 
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Appendix A: WVAM method in high energy 

environments 

 

Appendix A is based on the conference article ‘Estimating flow velocities of the water column 

using the motion response of an Autonomous Underwater Vehicle (AUV)’ published in the 

Proceedings of the ‘MTS/IEEE Oceans 2015’. The citation for the article is: 

Randeni SAT, Forrest AL, Cossu R, Leong ZQ, Ranmuthugala D. Estimating flow velocities 

of the water column using the motion response of an Autonomous Underwater Vehicle (AUV).  

OCEANS '15 MTS/IEEE. Washington D.C.: IEEE; 2015. 
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Abstract 

The WVAM method is a non-acoustic method to calculate the velocity components of a 

turbulent water column using the motion response of an Autonomous Underwater Vehicle 

(AUV) without the aid of an Acoustic Doppler Current Profiler (ADCP). This study analyses 

water velocity measurements estimated using the WVAM method as a function of the 

turbulence level of the environment by testing the method in an estuary that exhibits strong 

tidal currents (around 2.5 m s-1). The uncertainty of this method at different water column 

conditions was computed by comparing the velocity measurements from the WVAM method 

with those obtained from the AUV mounted ADCP. The WVAM method determines the water 

velocities by comparing the motion response of the vehicle when operating within turbulent 

and calm water environments respectively. The motion of the vehicle in the calm water 

environment was obtained by conducting simulations of the vehicles in calm water under the 

same control commands executed during the field experiments in turbulent conditions. A 

reduction in the accuracy of the method in rougher water environments was observed due to 

the hydrodynamic coefficients of the simulation model reaching their nonlinear range limits. 

A possible strategy to overcome this limitation and improve the WVAM method’s ability to 

accurately estimate the flow field in the vicinity of AUVs operating in highly turbulent 

environments is also provided. 
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Introduction  

Many marine surveys, from physical oceanography to hydraulic engineering, involves 

measuring water column velocities; for example, determining the sediment load in a stream 

(Hughes et al., 1997) and assessing the turbulent flux in the surface mixed layer (Hayes and 

Morison, 2002). Traditionally, equipment such as broadband Acoustic Doppler Current 

Profilers (ADCPs), Acoustic Doppler Velocimeters (ADVs) and High Resolution (HR) 

profilers are used to measure the water column velocities (Horstman et al., 2011, de Schipper 

et al., 2011). These acoustic instruments determine the water column velocity profiles using 

the Doppler frequency shift of a sound wave transmitted by the device and reflected from 

particles in the water column itself (Simpson, 2001). These devices are used as stationary 

moorings to determine the flow speeds at fixed locations as well as on moving platforms in 

order to map spatial distributions of velocity fields. 

ADCPs mounted on Autonomous Underwater Vehicles (AUVs) are gradually being 

adopted to capture water column velocities due to their capability to undertake missions in 

areas logistically difficult or inaccessible to surface vessels and other types of underwater 

vehicles such as under-ice operations (Doble et al., 2009). In addition, their relative 

manoeuvring stability and the decoupling from surface noise and reflectance allows them to 

provide enhanced flow measurements as compared to other moving platforms  (Fong and Jones, 

2006).  

Acoustic instruments such as ADCPs are generally expensive and therefore, not feasible 

for low-cost AUVs that are being developed for commercial and scientific applications (Acosta 

et al., 2009, Anderson and Crowell, 2005, Javier, 2012). Furthermore, ADCPs have a blanking 

distance (i.e., a dead zone) in proximity to the device (typically around 0.5 m to 5 m, depending 

on the sampling frequency and selected bin size of the instrument), in which the flow velocity 

data remains unresolved (Simpson, 2001). In order to minimise these effects, the authors 

previously introduced a new method to calculate the water velocity components of a turbulent 

water column using the AUV motion response without the aid of an ADCP, referred to as the 

WVAM Method (Randeni et al., 2017a). In this method, the water velocities are determined by 

comparing the performance (i.e., the motion response) of the vehicle when operating within 

turbulent and calm water environments. 

The study presented in the paper investigates the variation of the WVAM method’s 

accuracy with the turbulence level of the water column through field deployments in the Tamar 
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estuary located in Tasmania, Australia that exhibits strong tidal currents. The uncertainty of 

the method was calculated by comparing with the velocity measurements obtained from the 

AUV’s ADCP at different stages within the tidal range. A potential technique to improve the 

capability of the WVAM method is also discussed. 

Methodology 

Instruments 

A Gavia-class modular AUV (Yeo, 2007) was used to test the WVAM method, with the 

AUV configured to an overall length of 2.7 m, diameter of 0.2 m, and a dry weight in air of 

approximately 70 kg. The modularised vehicle in the tested configuration consisted of a Nose 

Cone, Battery, Geoswath Interferometry Sonar, 1200 kHz RDI ADCP, Inertial Navigation 

System (INS), Control and Propulsion Modules. The ADCP module of the AUV included two 

4-beam ADCPs arranged in a vertical plane to scan up and downwards from the vehicle (see 

Figure A.1). The ADCPs were set to profile the 9.94 meters of water column in 0.5 m range 

bins so that the three directional water velocity components in the vehicle’s body-fixed 

coordinate system are measured in each bin.  However, adjacent to the transducers (both above 

and below) there was a blanking distance of 0.44 m as shown in Figure A.1.  

 

Figure A.1 – Body-fixed coordinate system of the Gavia AUV showing the ADCP beam 

geometry. The origin of the coordinate system is at the centre of buoyancy of the vehicle 

(marked by the ‘O’). 
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Site description 

The objective of this study was to determine the variation of the WVAM method’s 

accuracy at water columns with different flow velocities. To achieve this, the WVAM method 

was tested in the Tamar estuary near the Batman Bridge, which is located in Tasmania, 

Australia (see Figure A.2a and A.2b). Due to the proximity to the open sea, Tamar estuary 

exhibits strong tidal currents with maximum flow velocities of up to 2.5 m s-1. 

Nine AUV runs were conducted along the track line shown in Figure A.2b. Out of the 

nine, the first five were conducted on 14 April, 2015 and the last four on 15 April, 2015. Runs 

1 to 3 and 6 to 9 were conducted during slack water as shown in the tidal curve given in Figure 

A.2c. The velocity of the tidal currents during the first runs on each day (i.e., runs 1 and 6) was 

approximately 0.25 m s-1. Due to the development of the strong flood tide, the flow speeds 

increased rapidly during the following next runs. Runs 4 and 5 were carried out at partially and 

fully developed flood tide conditions with strong tidal currents (around 2 m s-1). 

 

Figure A.2 – (a) The experimental field site in Tasmania, Australia (inset); (b) Tamar estuary 

with the AUV track illustrated by the dotted line. (c) The tidal heights observed on 14th and 15th 

April, 2015. The time periods the AUV runs were conducted are shown by the diamond 

markers. 
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WVAM method 

For the WVAM method (Randeni et al., 2017a), the AUV needs to undergo a straight-

line, constant depth mission through the region where the water column velocities are to be 

measured. Typically, when an AUV is operating in an environment with fluctuating water 

velocities, the forces and moments induced by these velocities can interrupt the control stability 

and change the vehicle speed, depth, pitch and yaw angles (i.e., motion response of the AUV) 

from the pre-set values. In order to compensate for such changes in performance, the vehicle’s 

dynamic control system adjusts the revolution speed of the propeller and the angles of the four 

control surfaces. According to these adjustments, the motion response of the AUV will change 

and the AUV will return to the initially prescribed mission track unless the propeller and the 

control surfaces are unable to compensate for the external forces (Kim and Ura, 2003). 

The WVAM method uses the compensation commands given by the vehicle’s controller 

to the propulsion motor and control surfaces (recorded in the vehicle log) and executes these 

commands within a simulation model representing a calm water environment. Since there are 

no disturbing forces due to flow variations in calm water conditions, the simulated vehicle 

motion will be different to the actual motion. The difference between the two motion responses 

provides an estimation of the water column velocities relative to the earth. 

Equation (A.1) gives a generalised form of the water velocity calculation: 

))(())(()( tcalmAUVtturbulentAUVtwater vvv   (A.1) 

where, waterv is the velocity component of the surrounding water column relative to earth 

in the body-fixed coordinate system, )(turbulentAUVv is the velocity component of the AUV 

observed in the turbulent environment and )(calmAUVv is the velocity component of the vehicle 

obtained from the calm water simulation utilising the control commands recorded from the 

field tests. Subscript t indicates the time-step. To estimate the water velocity component in the 

x, y and z axes, AUVv  is replaced with the surge, sway and heave velocity components (i.e., u, v 

and w) of the vehicle in the body-fixed frame of reference respectively. 

Simulation model and hydrodynamic coefficients 

The manoeuvring simulation model of the Gavia AUV was developed to reproduce the 

vehicle’s trajectory in a calm water environment in response to the time series input of the 
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control commands. It requires an accurate approximation of the associated hydrodynamic 

coefficients (i.e., a representation of the forces and moments acting on the vehicle at different 

orientations and velocities) to adequately predict the motion of the AUV. Generally, the forces 

and moments acting on submerged bodies in Six-Degree-of-Freedom (6-DOF) are highly 

nonlinear (Lewis, 1988). For example, the vertical hydrodynamic force acting on the AUV 

varies linearly with its pitch angle up to a value of around ±8º, beyond which it becomes 

nonlinear (see Figure A.3). Similarly, threshold values exist for other hydrodynamic forces and 

moments as well. Therefore, the hydrodynamic coefficients estimated for the linear ranges are 

only valid up to a certain threshold angle (Lewis, 1988).  

 

Figure A.3 – Typical variation of the force acting on the AUV in z direction with the pitch angle 

(Granlund, 2009). The threshold angle that the linear variation changes to nonlinear is around 

±8º. 

During the initial development of the WVAM method, a basic curve fitting method was 

utilised to determine the hydrodynamic coefficients due to its relative simplicity. The 

coefficients obtained from this method were limited to small angles of incidence (i.e., generally 

below 8º) restricting them to their linear range. When an AUV operates in turbulent 

environments, its pitch and yaw angles typically fluctuate around the baseline values. The 

magnitude of these fluctuations increases with increasing levels of turbulence due to the 

inability of the AUV’s dynamic controller to adequately and/or quickly  compensate for the 

severe disturbance forces (Kim and Ura, 2003). Therefore, in extremely turbulent water 

columns, these fluctuation angles will be greater than ±8º. Thus, a simulation model that is 

limited to linear hydrodynamics data will not be able to adequately replicate the motion of the 

vehicle in extreme environments.  
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Results and Discussion 

The water velocity components determined using the WVAM method were compared 

with the ADCP velocity measurements in order to validate the former method. Figure A.4a, 

A.4b and A.4c compare ADCP water velocity components in the x, y and z directions obtained 

from the first AUV run with WVAM estimates. The ADCP results were smoothed using a 

moving average filter with a backward scheme and a frame size of six time-steps.  It is evident 

from these plots that the WVAM method provides a good replication of the flow velocities 

measured using the on-board ADCP.   

The uncertainty of the water velocity measurements from the WVAM method compared 

to the ADCP results was quantified using equation (A.2) that approximates the Standard Error 

(SE) with a percentage confidence of 99.7% (Devore, 2011a), 
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where, ( )water ADCPv is the water velocity measured using the ADCP, ( )water WVAMv is the water 

velocity calculated using the WVAM method, and n is the number of time-steps.  

The standard errors for the velocity components in the x, y and z directions for the first 

run were ±0.068 m s-1, ±0.017 m s-1 and ±0.045 m s-1 respectively. These numbers represent 

the difference between WVAM and ADCP velocity predictions in each of the three directions, 

with the greatest error seen in the x-direction. 

Runs 1 to 3 and 6 to 9 were conducted in lower turbulent environments compared to the 

Runs 4 and 5. Due to the developing flood tide, the level of turbulence increased gradually with 

each run; i.e., the flow conditions were usually more turbulent than in previous runs. Figure 

A.5a to A.5e presents the vertical velocity component of the water column obtained from the 

AUV runs conducted on 14th April, 2015 (i.e., Runs 1 to 5). The standard errors between the 

WVAM and ADCP results (also called as the uncertainty of the WVAM method) for these runs 

are given in Table A.1. The uncertainty of the vertical water velocity prediction generally 

increases with the increasing turbulence level of the water column. The development of 

increased divergence between the two results with the level of turbulence is clearly seen in 

Figure A.5. 
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The averaged fluctuation of the vehicle’s yaw angle, pitch angle and surge speed from 

the target values are given in Table A.1. If the AUV’s control system is capable of guiding the 

vehicle accurately along the prescribed path in turbulent environments, these values would be 

close to zero.  

 

Figure A.4 – Comparison between the velocity components of the water column in the x, y and z 

directions (panels a, b and c respectively) calculated using the WVAM method (solid black line) 

and those obtained from the on-board ADCP (dashed grey line). Data were obtained from Run 

1 when the AUV was moving with the predominant tidal currents. 

The uncertainties of the vertical and transverse water velocity predictions are larger when 

the averaged fluctuations of the pitch and yaw angles (respectively) increase (see Table A.1). 

For example, in Run 2 the averaged deviation of the yaw angle is around ±17º and the standard 

error of the transverse velocity prediction is much larger than for Run 1 (i.e., 0.153 m s-1). Run 

1 has a smaller deviation of the yaw angle of around ±1.5º results in a much smaller uncertainty 

in the vicinity of 0.017 m s-1. A similar outcome is seen in the vertical water velocity component. 

In Run 9, the averaged deviation of the pitch angle is ±7.5º giving a standard error in the vertical 

water velocity prediction of around 0.1 m s-1. However, in Run 6 the deviation of the pitch 
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angle is comparatively lower at ±3.1º resulting in a smaller standard error of the velocity of 

around 0.05 m s-1. 

 

Figure A.5 – The vertical water velocity components from the WVAM method and ADCP 

measurements for AUV runs 1 to 5. Panels (a) to (e) sequentially present the data for these runs. 

Generally, a standard error up to 0.1 m s-1 is acceptable as the uncertainty of the 

measurements from an AUV mounted ADCP is around ±0.1 m s-1 (Fong and Jones, 2006). The 

threshold averaged deviation of the pitch and yaw angles that provide the water column 

velocities with a standard error below 0.1 m s-1 is around 7º to 8º. Above this threshold angle 

the hydrodynamic coefficients usually become nonlinear. The hydrodynamic coefficients 
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estimated for the simulation model using the curve fitting method are only valid for small 

angles of incidence of the vehicle, i.e., where the coefficients are in the linear range. Therefore, 

when yaw and pitch angles are larger, the accuracy of the simulation model decreases and 

hence the uncertainty of the vertical and transverse water velocity components obtained from 

the WVAM method increases. 

Table A.1 – Standard errors of the water velocity components determined from the WVAM 

method compared to the on-board ADCP measurements and the associated averaged deviations 

for the prescribed parameters.  

Run 

Numbe

r 

Standard error Averaged deviation from the prescribed value 

u  v w Yaw angle (º) Pitch angle (º) Surge speed (m s-1) 

1 0.068 0.017 0.045 ±1.5 ±3.6 ±0.2 

2 0.029 0.153 0.075 ±17.4 ±7.1 ±0.6  

3 0.041 0.095 0.108 ±3.5 ±7.5 ±0.7  

4 0.063 0.061 0.241 ±2.8 ±9.2 ±1.6  

5 0.035 0.079 0.191 ±5.6 ±9.7 ±1.6  

6 0.042 0.063 0.052 ±3.1 ±3.1 ±0.1  

7 0.048 0.058 0.067 ±2.6 ±6.4 ±0.3  

8 0.025 0.104 0.092 ±14.5 ±7.4 ±0.4  

9 0.054 0.082 0.097 ±5.8 ±7.5 ±0.6  

 

The accuracy of the water velocity component in the x direction remains generally the 

same for all the runs regardless of the turbulence level of the environment. During the 

development of the simulation model, the hydrodynamic coefficients dominating the motion 

in the x direction were estimated for a propeller RPM range of 525 to 825 (i.e., a speed range 

of 1.43 m s-1  to 2.46 m s-1 in a calm environment). During this study, the AUV runs were 

conducted at 700 RPM, which typically provides a mean forward speed of around 2.04 m s-1 

in calm water with a standard deviation of 0.01 m s-1. The observed speed during the runs 

varied as much as ±1.6 m s-1 from the calm water speed of 2.04 m s-1, especially in Runs 5 and 
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6 due to the AUV being ‘dragged’ by the strong tidal currents. Even though the actual speed 

deviated, the prescribed propeller speed of 700 RPM provides a calm water speed of around 

2.04 m s-1 which is within the identified limits of the hydrodynamic coefficients dominating 

the forward motion. Therefore, the simulation model provided accurate prediction of the calm 

water based forward speed response of the AUV. Hence, the standard error between the 

WVAM and ADCP results in the x direction generally remained unrelated to the turbulence 

level of the water column. 

Recommendations and future work 

In order to expand the threshold of the WVAM method to higher turbulent environments, 

the simulation model should be improved to enable it to replicate the motion response of the 

vehicle in linear as well as nonlinear ranges. The hydrodynamic coefficients of an AUV could 

be obtained more accurately using techniques such as captive model experiments (Randeni et 

al., 2015b), Computational Fluid Dynamics (CFD) simulations (Randeni et al., 2015b) and 

system identification (Ljung, 1998). These methods could be employed to determine the 

coefficients within the linear and nonlinear ranges to improve the associated simulations and 

thus the predictions of the WVAM method. 

Conclusions 

The WVAM method is a non-acoustic technique to determine the water velocity 

components of a turbulent water column using the motion response of an AUV. This study 

investigated the accuracy of the WVAM method subject to the levels of turbulence in the water 

column. Nine AUV runs were conducted along the same AUV track line within the Tamar 

estuary in Tasmania, Australia, at different times in the tidal cycle. 

Typically, when an AUV undertakes missions in rough water environments, the yaw and 

pitch angles of the vehicle fluctuate around the target values due to the inability of the AUV’s 

dynamic controller to adequately compensate for the external disturbing forces. The greater the 

turbulence level of the water, generally larger are the fluctuations. The estimated water velocity 

components in the y and z directions using the WVAM method agreed well with the 

measurements from the AUV’s on-board ADCP for low turbulent conditions where the 

averaged deviations of the vehicle’s yaw and pitch angles are below 7º to 8º. 
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The hydrodynamic coefficients for the simulation model utilised in the WVAM method 

were determined using a curve fitting technique. These estimated coefficients were only valid 

for small angles of incidence of the vehicle, where the coefficients are in their linear range. 

Therefore, as the yaw and pitch angle fluctuations become larger, the accuracy of the 

simulation model decreases adversely affecting prediction of the vertical and transverse water 

velocity components using the WVAM method. During the AUV missions, the vehicle speed 

was maintained within the identified limits for the hydrodynamic coefficients dominating the 

forward motion. Therefore, the simulation model was able to provide an accurate prediction of 

the forward speed of the vehicle enabling the WVAM method to accurately determine the water 

velocities in x direction. 

The WVAM method can be improved by upgrading the simulation model to replicate the 

motion response of the vehicle in both the linear and nonlinear ranges. The authors are 

expecting to achieve this by determining the hydrodynamic coefficients of the simulation 

model for a larger range using a comprehensive system identification study. 
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Appendix B: Least squares based system 

identification algorithm to obtain a mathematical 

model of an AUV  

 

Appendix B is based on the conference article ‘Least Squares Optimisation Algorithm Based 

System Identification of an Autonomous Underwater Vehicle’ published in the proceedings of 

the ‘Third Vietnam Conference on Control and Automation’. The citation for the article is: 

Tran, M.Q., Randeni SAT, Nguyen, H.D., Binns, J., Chai, S. and Forrest, A.L., 2016. Least 

Squares Optimisation Algorithm Based System Identification of an Autonomous Underwater 

Vehicle. PROCEEDING of Publishing House for Science and Technology, 1(1). 
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Abstract 

This paper presents an identification technique to determine the mathematical model 

governing dynamics in both vertical and horizontal planes for an axisymmetric, torpedo-shaped 

Gavia class Autonomous Underwater Vehicle (AUV), based on a least squares optimisation 

algorithm. Rather than using the least squares algorithm to roughly estimate the mathematical 

models in a fixed time period, a simulator is developed based on least squares optimisation 

algorithm with the goal of accurately predicting the system response over time starting from 

initial conditions. The general equations for six degrees of freedom motions are decoupled into 

non-interacting longitudinal and lateral subsystems in the form of linear state space models 

with unknown parameters. These unknown parameters are initially determined by applying a 

least squares algorithm for experimental data collected from the AUV’s on-board sensors. The 

previously identified models are then optimised to form the simulator to estimate the system 

response. Numerically simulated data from the simulator show a good agreement with the field 

measured data. The developed simulator is a useful tool to examine the manoeuvrability of 

AUVs. The verification process proved that the least squares algorithm could be utilised as an 

optimisation algorithm in the system identification of AUVs.  
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Introduction 

The recent development in the applications of Autonomous Underwater Vehicles (AUVs) 

require conventional torpedo shaped AUVs to be capable of accomplishing missions of various 

complexity in challenging operational environments; for example, under ice explorations, 

deep-ocean floor surveys and industrial subsea infrastructure inspections (Roberts and Sutton, 

2006, Roberts and Sutton, 2012). Besides emerging modern control system designs, 

configuration modifications and battery life improvements, new propulsion system designs are 

of great interest to facilitate new applications. The National Centre for Maritime Engineering 

and Hydrodynamics at Australian Maritime College (AMC), University of Tasmania has been 

validating a new type of propulsion unit named a Cyclic and Collective Pitch Propeller (CCPP) 

aiming to improve the AUV overall performance for complex mission tasks. The overall 

performance of an AUV equipped with the CCPP propulsion unit compared to that of a 

conventional propulsion system is to be evaluated using a numerical study, choosing the Gavia 

class AUV at AMC as the research platform. With a long term objective of assessing the high-

fidelity simulation of AUV with different propulsion configuration, this work develops a 

system identification (SI) approach in order to accurately and rapidly identify the mathematical 

model of the AUV. 

There are four fundamental approaches to determine a mathematical model of an 

underwater vehicle. The first method is a theoretical approach to calculate the coefficients by 

using empirical equations and component build-up method (Prestero, 2001). The second is 

using Experimental Fluid Dynamic (EFD) methods such as captive model experiments (Ridao 

et al., 2001). The third method is conducting Computational Fluid Dynamic (CFD) simulations 

to replicate the EFD testings (Phillips et al., 2007, Randeni et al., 2015) and the final method 

is System Identification (SI). Using this last method, the hydrodynamic coefficients that 

characterise the vehicle dynamics of an AUV are estimated using data acquired by on-board 

sensors from free running field trials (Avila et al., 2013).  

The theoretical, EFD and CFD approaches are generally used in the preliminary design 

stage to estimate hydrodynamic coefficients of potential AUV. In contrast, an SI method can 

be effectively used to determine the parameters of a fully developed vehicle. This approach 

provides a dynamic model with a high degree of fidelity since the experimental data utilised 

for modelling are acquired under real operational conditions. Also, the variation of the 

hydrodynamic coefficients due to changes in the external configuration of a modular 
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underwater vehicle (for example, in the case of adding an extra payload module to the base 

vehicle configuration of the vehicle) can be quickly and cost effectively determined using SI. 

However, there are some practical concerns associated with performing SI on AUVs. The first 

is that the experimental data were collected in the presence of noise and turbulence. The noise 

could result in an increased variance in the least squares parameter estimation. Therefore the 

SI approach requires the physical system to be sufficiently instrumented in order to accurately 

measure the necessary state variables with minimum noise effects. The second issue is that the 

estimation of the mathematical model relied on the data collected from close-loop feedback 

control system which may cause noise to be correlated to the input (Ljung, 1999).  

A wide range of SI algorithms including Least Squares (LS), Extended Kalman filter 

(EKF), Maximum Likelihood (ML) and Neural Network (NN) have been developed over the 

past years (Ljung, 1999). These methods generally minimise the errors between vehicle state 

variables predicted by the dynamic model and actual measured state variables. Since the 

underwater vehicle dynamic equations of motion can be expressed in state space models 

linearized in the range of the cruising conditions, the LS algorithm becomes a favourable 

approach for practical system identification which can be derived in both the offline condition 

(i.e., Ordinary or Weighted Least Squares) and online condition (i.e., Recursive Least Squares).  

While there has been significant literature on LS technique for open frame Remote 

Operated Vehicles (ROVs) (Avila et al., 2013, Martin and Whitcomb, 2014, Weiss and Du Toit, 

2013), studies for torpedo-shaped AUVs are limited. These AUV based studies are generally 

carried out in the horizontal plane for lateral subsystem (Fauske et al., 2007, Hong et al., 2013) 

or the vertical plane for longitudinal subsystem respectively (Petrich et al., 2007). This study 

utilises the offline LS method to derive an experimentally validated state space model that is 

able to describe the manoeuvring characteristics of a torpedo shaped AUV for both steering 

and diving subsystems. Instead of predicting system response based on given current states as 

in previous works, the simulator resulted from the proposed procedure derives the response 

from specific initial conditions to meet the desired requirements.  

The paper is structured as follows: Section II derives the simplified mathematical model 

for motion of the AUV in both horizontal and vertical planes.  Section III outlines the proposed 

identification procedure and least squares method. Summary of experimental setup and data 

processing is described in Section IV. Section V presents the identification results and 

verification. Finally overall discussion and future works are summarised in Section VI. 
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Mathematical model of the AUV 

Gavia AUV configuration overview 

A Gavia class modular, torpedo-shaped AUV was used for the investigation. The vehicle 

in its tested configuration consisted of a Nose Cone Module, Battery Module, Module, 

Acoustic Doppler Current Profiler (ADCP) Module, Inertial Navigation System (INS) Module, 

Control Module and a Propulsion Module. There are some transducers equipped with AUV 

such as Obstacle avoidance sonar, Acoustic modem transducer and side scan sonar transducer. 

The overall length of the vehicle was 2.7 m and a maximum hull diameter of 0.2 m and the dry 

weight in air was approximately 70 kg. The configuration of Gavia AUV is illustrated in Figure 

B.1. 

 

Figure B.1 – Gavia Autonomous Underwater Vehicle (2012) 

The AUV is propelled and manoeuvred with a three-bladed propeller and four 

independent control surfaces in an “X-wing” configuration located aft of the propeller. The 

control surfaces can be commanded separately by independent servo motors and are employed 

simultaneously to generate accurate forces and moments. The whole unit is protected inside a 

Kort nozzle. This propulsion configuration is unique to Teledyne Gavia and provides high 

efficiency for both low speed and high speed manoeuvres. The pictures of propulsion system 

are given in Figure B.2. 
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(a) (b) 

Figure B.2 – Gavia Propulsion system. (a) Side View of the Propulsion Module. (b) The Control 

Surfaces in “X-wing” configuration 

Equations of dynamic motion of the AUV 

The general mathematical model of a marine vehicle was chosen to represent the 

relationship between inputs and outputs of a system. Two reference frames used to describe 

the motion of the Gavia AUV are shown in Figure B.3. 

 

Figure B.3 – Reference frames of Gavia AUV model 

A priori knowledge about the system can be used to select an appropriate model (Zhang 

et al., 2014). The underwater vehicle is regarded as a rigid body in three-dimensional space. 

The six-degree-of-freedom (6-DOF) in an irrotational, inviscid, uniform and constant density 

fluid can be expressed by the differential equation of motion given in Equation (B.1) (Tiano, 

2004, Fossen, 2002). 

 (B.1) 

 

 

, , t , , t , , t tM ν θ ν g ν θ f ν θ τ
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where,   

: the state vector expressed in Body-fixed frame, generally constituted by linear 

and angular velocities, ;   

: the unknown coefficients vector, including hydrodynamic derivatives and inertial 

coefficients; 

: the body inertial matrix including hydrodynamic added masses; 

: the vector of buoyancy, gravitational, hydrostatic forces and moments; 

 : the vector of hydrodynamic forces and moments (damping forces); and, 

: the vector of control forces and moments. 

The vehicle kinematic equations are expressed as: 

 (B.2) 

where    

: an Euler angle transformation matrix; and, 

: position and orientation vector expressed in the Earth-fixed 

frame. 

Assumptions and simplified dynamic model 

There are a large number of linear as well as nonlinear hydrodynamic derivatives 

presented in the 6-DOF mathematical model of the AUV. A widely used approximation can be 

achieved if it is assumed that  consists of linear drag forces only,  consists of 

buoyancy forces only and if the inertia matrix including added mass is time-space invariant 

and diagonal (Tiano et al., 2007). This approximation is proved to be reasonable through 

simulation of identified models. 

The complete 6-DOF can be decomposed into three essentially non-interacting 

subsystems to describe the hydrodynamics of an AUV: (a) the lateral subsystem, (b) the 

longitudinal subsystem and (c) the speed subsystem. This traditional approach is applicable in 

practice for streamlined torpedo-shaped AUVs when the coupling between subsystems is weak 
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and may be reasonably neglected without serious loss of information (Hong et al., 2013, Caccia 

et al., 2000). In this work, the lateral subsystem and longitudinal subsystem are of specific 

interest, the vehicle is controlled at constant forward speed. The speed subsystem considering 

the modelling of propeller by using EFD will be discussed in other study.  

The additional assumptions in the horizontal (x-y plane) and vertical planes (x-z plane) 

for decoupled subsystems are given in Table B.1 (Hong et al., 2013, Jalving, 1994). 

Table B.1 – Assumptions in horizontal and vertical planes 

 

Finally, under the assumption of constant forward speed , a corresponding set of 

linearized time-invariant models are derived in horizontal plane and vertical plane respectively 

are presented as follows  (Fossen, 2011): 

The lateral subsystem: 

 (B.3) 

The longitudinal subsystem: 

 (B.4) 

where,  

: the moment of inertia; 

: the distance between the centre of gravity and the centre of buoyancy; and, 
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: hydrodynamic coefficients. They are the partial derivatives of 

forces and moments with respect to corresponding accelerations, velocities or control 

surface deflection, e.g. .  

Equations (B.3) and (B.4) are presented in state space model for computational 

convenience below: 

 (B.5) 

 

where,   

 . 

 (B.6) 

where,    

; 

; and  

.  

Rewriting Equation (B.5) and (B.6) with the main focus on equations including 

parameters needed to be estimated: 

 (B.7) 

 (B.8) 
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where, 

;  

; 

; and,  

. 

Due to Gavia’s unique control surface configuration, input signals consist of four 

independent values  in degrees respectively. In other works (Hong et al., 2013, Petrich et al., 

2007) , there is only one input signal for each subsystem; i.e., elevator input signal for diving 

subsystem and rudder input signal for steering subsystem. In the state space equations in both 

steering and diving subsystems,  are the model parameters that consist of physical 

parameters and hydrodynamic coefficients, sufficiently describing the system characteristics. 

It is important to note that the hydrodynamic coefficients are not determined specifically but 

this does not impact the applicability of the identified model. The following section describes 

the identification procedure and the least squares algorithm implemented to identify . 

Identification procedure and least squares optimisation algorithm 

Proposed identification procedure 

Figure B.4 outlines the critical stages of the utilised system identification procedure 

based on reference from (Klein and Morelli, 2006). 

Within the previous section, the mathematical model of the AUV was developed using a 

priori model postulation about hydrodynamic characteristics of underwater vehicles. Field 

experiments were then carried out with a Gavia class AUV and the collected data were analysed 

for parameter estimation. In this stage, the least squares algorithm was utilised to identify the 

estimated parameters for the previously developed mathematical model. The goal is to find a 

set of parameter  that minimises the average residual error (Chirarattananon and Wood, 

2013): 

 (B.9) 
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where,    

,  in Equation (B.7); and, 

, in Equation (B.8). 

 

Figure B.4 – Summary of identification procedure 

A model verification stage was also executed for different sets of data to verify the 

identified model. Up to this stage, the identified model was only able to predict the system 

response  from given current measured states  for a certain period of time. As the 

principal goal of the study is the desired simulator, which could capture the accurate response 

of vehicle from simulation, the next optimisation process is considered to figure out an updated 

set of parameter  that minimise the error  between the measured output signal and 

simulated output signal computed by simulating the identified model from specified initial 

condition with similar control input signals: 

 (B.10) 

where,  is obtained by simulating Equations (B.7) and (B.8) with initial set of 

parameter .  
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The final results are updated values of parameter . Both minimisation processes for 

Equations (B.9) and (B.10) are based on the least squares algorithm which is presented in the 

following part. 

Least Squares Optimisation algorithm 

The dynamic Equations (B.7) and (B.8) can be written in the form of Equation (B.11) 

 (B.11) 

where,  

: the measured state and control input vector; 

: the estimated output vector; and, 

The measured output vector of  is defined. 

 (B.12) 

where, : the vector of random measurement errors and assumed to be zero mean and 

uncorrelated with constant variance. 

The Ordinary Least Square (OLS) identification method is based on the Equation Error 

Method. According to this, the identification of parameter vector  is equivalent to the 

minimisation of a scalar cost function (Klein and Morelli, 2006, Ljung, 1998): 

 (B.13) 

Solving equation  for the unknown parameter vector  gives the formula for the 

OLS estimator: 

 (B.14) 

In practical cases, the assumptions of uncorrelated measurement errors and homogeneous 

variance are not valid (Klein and Morelli, 2006). The noise covariance matrix is introduced 

and the formula for Weighted Least Squares (WLS) estimator: 

 (B.15) 

To validate the result of estimator, the Mean Squares Error (MSE)  can be estimated 

(Klein and Morelli, 2006): 
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 (B.16) 

Experiments and data processing 

Trials with Gavia AUV were conducted on May 13, 2015 at Trevallyn Lake, Tasmania, 

Australia (see Figure B.5) in a relatively calm wind and current conditions. Free running tests 

for both longitudinal and lateral subsystem identifications were performed separately to fully 

excite the dynamics of the AUV. It is important to design the missions that covers the total 

operational range. For experiments in the vertical plane, the AUV was continuously changing 

depth in the range of 0-5 m while maintaining constant heading. Experiments in the horizontal 

plane were controlled by performing turning manoeuvres at constant depth. The control surface 

angles varied from -20º to 20º. During all experiments, the vehicle was commanded to track 

predefined waypoints with a constant forward speed at 1.6 m s-1. 

 

 

Figure B.5 – Experimental site is located at (b) Trevallyn Lake near (a) Launceston city, 

Tasmania, Australia 

The Gavia AUV was instrumented to measure the necessary state variables. It used a 

Doppler Velocity Log (DVL) aided Kearfott T-24 integrated seaborne navigation system. The 

INS provided accurate linear and angular accelerations, the DVL provided velocity (Hiller et 

al., 2011). In previous works, the acceleration data were usually obtained by numerical 

differentiation of gyro data due to lack of the efficient acceleration sensors (Hong et al., 2013, 

Petrich et al., 2007). With direct measurements of acceleration data in this study, the errors 

resulted from differentiation process could be neglected. In addition, the 3DM-GX1 Gyro 

Enhanced Orientation Sensor supplied additional information about the angular velocity and 
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orientation. Since there are no integrated sensors to measure the actual control surface angles, 

the commanded angles sent by the autopilot system were used. 

The measured trial dynamic data obtained by the on-board sensors were filtered and 

stored. Prior to applying in identification procedure, these data from were resampled to form 

an integrated set of data since the sensors had different sampling rates. The final sampling rate 

for the integrated set of data is 0.5 Hz. 

Results and Discussion 

After pre-processing data from AUV, previously described methods were applied to 

identify the model parameters for both lateral and longitudinal subsystems. The initial goal is 

to fit the experimental measured angular acceleration data to predicted data and then the final 

objective is to optimise the identified model by fitting the experimental data to simulated data 

generating from numerical simulator. Four segments of data were used in this stage for lateral 

and longitudinal subsystem identification respectively. 

 Figure B.6 and Figure B.7 illustrate the comparison of predicted results of angular 

acceleration and measured results. As can be seen, the data from predicted models are in good 

fit with the experimental measured data. The mean square errors are  for  (r-

rate) data and  for  (q-rate) data. The residual calculations are also performed 

to examine the fitness between measured and predicted data. There are overshoots and 

undershoots at some points. This might be a consequence of fast response of physical system 

in which angular velocity and acceleration could not be captured accurately by sensors. In 

addition, angular velocity and acceleration data were recorded by two sensors separately (Gyro 

and INS).    

 

 

    

2 4

1 1.92 10 r

2 4

2 1.94 10 q



175 

Appendix B 

 

 

Figure B.6 – (a) Comparison between the predicted (red lines) and measured (blue lines) 

angular accelerations for lateral subsystem and (b) the residuals 

 

 

Figure B.7 – (a) Comparison between the predicted (red lines) and measured (blue lines) 

angular accelerations for the longitudinal subsystem and (b) the residuals 

Another set of experimental data, different from the data used to construct the 

mathematical model, is applied to verify the fidelity of estimated parameter.  From the results 

(a) 

(b) 

(a) 

(b) 
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shown in Figure B.8, it can be concluded that the identified model are able to predict the system 

response from given state’s values. 

From the identified model, a simulator is proposed with the attempt to accurately simulate 

the model from specified initial condition. This initial conditions are selected as the first state 

values in the set of experimental data used for simulation validation. In Figure B.9, numerical 

simulation results of optimised model for angular acceleration are compared to the actual 

measured results for a set of experimental data. The responses from the simulation program 

demonstrate a good agreement with the measured data.   

The parameters obtained from the LS optimised model are summarised in Table B.2. It 

is worth noting that the absolute values of four control surface hydrodynamic parameters  

and  are identical in each subsystem. The sign difference is resulted from the definition of 

rotational direction for each control surface. In addition, from the obtained values of the 

parameters , the stability of yaw and pitch dynamics are able to be analysed based on the 

stability conditions of linear state space model. 

 

 

Figure B.8 – Comparison between the predicted (red lines) and measured (blue lines) angular 

accelerations for (a) the lateral subsystem and (b) the longitudinal subsystems 
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Table B.2 – Identified parameters for longitudinal and diving subsystems 

 

From Equation (B.5) the eigenvalues of the matrix  are 

  and . Since  and the yaw dynamic of AUV is stable. From 

Equation (B.6) the eigenvalues of the matrix  are , 

 and . Since  the pitch dynamic of AUV is stable. 

 

 

Figure B.9 – Comparison between the simulated (red lines) and measured (blue lines) angular 

accelerations resulted from optimisation procedure for (a) the lateral subsystem and (b) the 

longitudinal subsystem 
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Conclusions and future works 

In this study, the simulator describing the manoeuvring characteristics of torpedo-shaped 

underwater vehicle in the vertical and horizontal planes has been developed. Using collected 

trial data, model parameters are identified using a LS approach. The simulator is feasible to 

simulate the longitudinal and lateral subsystems starting from specified initial conditions. The 

obtained results have proved the effectiveness of Least Squares method in system identification 

of hydrodynamic coefficients of a torpedo-shaped underwater vehicle. For future work, this 

study provides a good foundation for further developing simulation study and facilitate the 

advance control design of autonomous underwater vehicle equipped with new developed 

propulsion system. 
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Appendix C: Numerical Investigation of the 

Hydrodynamic Interaction between Two 

Underwater Bodies in Relative Motion – A 

secondary CFD based approach of determining the 

hydrodynamic coefficients of an AUV 

 

Appendix C is based on the journal article ‘Numerical Investigation of the Hydrodynamic 

Interaction between Two Underwater Bodies in Relative Motion’ that is published in the journal 

‘Applied Ocean Research’. The citation for the article is: 

Randeni SAT, Leong Z, Ranmuthugala D, Forrest A, Duffy J. Numerical investigation of the 

hydrodynamic interaction between two underwater bodies in relative motion. Applied Ocean 

Research. 2015;51:14-24. 
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Abstract 

The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) 

manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the 

motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. 

Self-piloted, and comparatively small, an AUV is more susceptible to these interaction effects 

than the larger body. In an aim to predict the manoeuvring performance of an AUV under the 

effects of the interaction, the Australian Maritime College (AMC) has conducted a series of 

computer simulations and captive model experiments. A numerical model was developed to 

simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to 

a larger underwater vehicle using Computational Fluid Dynamics (CFD). The variables 

investigated include the surge force, sway force and the yaw moment coefficients acting on the 

AUV due to interaction effects, which were in turn validated against experimental results. A 

simplified method is presented to obtain the hydrodynamic coefficients of an AUV when 

operating close to a larger underwater body by transforming the single body hydrodynamic 

coefficients of the AUV using the steady-state interaction forces. This method is considerably 

less time consuming than traditional methods. Furthermore, the inverse of this method (i.e., to 

obtain the steady state interaction force) is also presented to obtain the steady-state interaction 

force at multiple lateral separations efficiently. Both the CFD model and the simplified 

methods have been validated against the experimental data and are capable of providing 

adequate interaction predictions. Such methods are critical for accurate prediction of vehicle 

performance under varying conditions present in real life. 
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Introduction 

Autonomous Underwater Vehicles (AUVs) are used in civilian, academic, and military 

applications due to their ability to undertake complicated tasks underwater without real time 

user control. A few examples of such applications include underwater surveillance (Kemna et 

al., 2011) and sampling physical transport processes in lakes (Forrest et al., 2008). AUVs are 

increasingly required to operate close to larger underwater vehicles such as submarines and 

larger Remotely Operated Vehicles (Rodgers et al., 2008), as well as to operate in swarms of 

AUVs of similar size (Osterloh et al., 2012). When operating in close proximity to a larger 

moving vehicle like a submarine, an AUV can experience motions resulting from the 

interaction of the wake and pressure fields generated by the larger body (Hardy and Barlow, 

2008). Being relatively small and self-piloted, the AUV is more susceptible to these interaction 

effects, which can result in mission failure and, in extreme cases collision between the two 

vehicles. For this reason, it is critical to understand the manoeuvring performance of an AUV 

under these interaction effects in order to develop adequate control strategies (Leong et al., 

2013). 

While there have been considerable studies on hydrodynamic interactions between 

surface ships (Duffy and Renilson, 2011, Lataire et al., 2012, Vantorre et al., 2002) there is 

currently very little information on the interaction between submerged vessels in the public 

domain. Mawby et al. (2006) developed a high level architecture model to simulate the 

interaction between a moving submarine and a rescue submersible manoeuvring to the escape 

hatch of the submarine. This earlier model utilised pre-processed hydrodynamic interaction 

data obtained by solving the Laplace’s equation using a boundary element method for the 

inviscid, irrotational flow past the vehicles’ surfaces. The limitation of the utilised potential 

flow approach is that it does not account for fluid viscosity or wake field effects of the vehicles 

and will potentially oversimplify the interaction effects. 

Previous numerical and experimental studies by Leong et al. (2013) have investigated 

the interaction effects on an AUV operating close to a larger vehicle for diameter ratios between 

the vehicles ranging from 2.237:1 up to 13.425:1 (i.e., displacement ratio from 10.419:1 to 

139.878:1 respectively). The influence of different lateral and longitudinal distances between 

the two bodies over a range of speeds were investigated through Computational Fluid Dynamic 

(CFD) simulations and validated with captive model experiments. Leong (2013) also carried 
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out dynamic CFD simulations, modelling the pure sway motion of a smaller AUV model in 

close proximity to a larger AUV at one relative longitudinal position. 

The work presented in this paper complements this previous work by considering a larger 

range of longitudinal positions and sway motion frequencies, with the information presented 

for a diameter ratio of 2.237:1 (i.e., displacement ratio of 10.419:1). The authors have also 

extended the capabilities of the CFD numerical model to simulate pure yaw motion of the AUV 

in close proximity to a larger body; however, will not be presented in this work. The numerical 

model was developed in ANSYS-CFX, utilising re-meshing techniques and was validated 

against experimental work conducted in the Towing Tank of the Australian Maritime College 

(AMC) at the University of Tasmania. Once validated, this numerical model can be extended 

to investigate the interaction between vehicles of larger diameter ratios, thus better representing 

the interaction between typical submarines and AUVs. A simplified method is presented to 

obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater 

body by transforming the single body hydrodynamic coefficients, using the steady state 

interaction forces. Using this method, the variation of hydrodynamic coefficients due to a 

second body could be estimated by conducting a less time consuming steady-state simulation, 

rather than time intensive dynamic pure sway motion simulations.  Furthermore, the inverse of 

this method (i.e., to obtain the steady state interaction force) is also presented and validated. 

Inverse method is an efficient way of obtaining the steady-state interaction force at multiple 

lateral separations.  

Methodology 

Geometric models 

The hydrodynamic characteristics of an AUV operating close to a larger underwater body 

were investigated through CFD and Experimental Fluid Dynamics (EFD) using two 

axisymmetric barehull underwater vehicle geometries. The research utilised a 1:2.801 scaled 

model of the SUBOFF submarine hullform developed by the Defence Advanced Research 

Projects Agency (DARPA) (Groves et al., 1989) as the smaller AUV, and a larger torpedo-

shape body designated as NP01, with the principal dimensions of the models are shown in 

Figure C.1(a) and Table C.1. The diameter ratio of the NP01 model to the SUBOFF model is 

2.237:1. The model scales were selected to ensure that they were sufficiently small to fit within 
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AMC’s towing tank without causing blockage effects, but large enough to provide magnitudes 

of interaction forces that are larger than the experimental error levels.  

 

Figure C.1 – (a) The SUBOFF model alongside the larger NP01 model indicating the model 

dimensions and test rig arrangement along with (b) the assumed coordinate system 

 

Table C.1 – Principal particulars of the two models 

 SUBOFF Model NP01 Model 

Length (L) 1.438 m 2.850 m 

Diameter (D) 0.181 m 0.410 m 

Displacement (Δ) 0.031 m3 0.323 m3 

 

Test parameters 

The test runs consisted of straight-line and pure sway motions of the SUBOFF at different 

relative longitudinal and lateral positions to the larger NP01, with the investigated variables 

consisting of the surge force, sway force and the yaw moment experienced by the SUBOFF 

model. The lateral distance between centrelines of the two bodies was assumed to be the lateral 

separation distance, while the longitudinal separation distance was measured from the nose tip 

of the larger NP01 vehicle to that of the smaller SUBOFF vehicle; a ‘positive’ distance 

signifying that the SUBOFF model is located in front of the larger vehicle as shown in Figure 

C.1a. The longitudinal and lateral distances were non-dimensionalised as given in Equations 

C.1 and C.2. The coordinate system was selected according to ITTC (2011a) as shown in Figure 

C.1b. 

 

Longitudinal Separation Ratio 

(Rlong) 

= Distance SUBOFF nose tip to NP01 nose tip (C.1) 

 Length of NP01 
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Lateral Separation Ratio (Rlat) = Lateral Separation Distance (C.2) 

 Diameter of NP01 

 

In order to isolate the interaction forces due to the larger second body, single body 

testings of the SUBOFF were conducted to provide baseline data. A summary of the single-

body and two-body test parameters is outlined in Table C.2. The estimated Reynolds number 

(𝑅𝑒𝐿𝑆
) is based on the length of the SUBOFF model, which is 1.438m. 

Table C.2 – Test programme 

Investigated 

parameters 

Straight-line Motion Pure Sway Motion 

Forward Speed (m s-1) 1.2 

Reynolds number (Length) 19.39 x105 

Forces measured Surge Force, Sway Force, and Yaw moment  

Single body tests 

Sway amplitudes (m) - 0.145 

Sway frequency (Hz) - 0.2, 0.15, and 0.05 

Two body tests 

Sway amplitudes (m) - 0.145 

Sway frequency (Hz) - 0.2, 0.15, and 0.05 

Longitudinal separation 

ratios  

0.737, 0.491, 0.246, 0, -0.246, -

0.491,    -0.737  

0.737, 0.491, 0.246, 0, -

0.246,  -0.491, -0.737  

Lateral separation ratio 1.829 1.829 

 

Definition of test motions 

Straight-line motion 

In the straight-line motion experiments, the bodies were moved in an equal forward 

velocity with a zero angle of attack. The aim of these tests was to obtain the sway and drag 

forces on the smaller SUBOFF body due to the forward motion when it is alongside the larger 

body.  The obtained forces are referred to as the forces due to ‘steady state straight-line motion’. 
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Pure sway motion 

 In the pure sway motion experiments, the SUBOFF model was moved forward at a 

constant velocity while undergoing sinusoidal oscillations in the y direction around its centre 

line (see Figure C.2) in order to obtain the surge force, sway force and the yaw moment due to 

sway velocity and sway acceleration. The angle of attack was maintained at zero. In pure sway 

motion, the sway displacement (y) is 90° out-of-phase with the sway velocity (v). The sway 

acceleration (𝑣̇) is in-phase with the sway displacement, while being 90° out-of-phase with the 

sway velocity. The forces and moments acting on the SUBOFF model due to sway motion is 

composed of both inertial and damping components, with the former is dependent on the 

acceleration while the latter is dependent on the velocity. The acceleration dependent 

component of the sway force becomes zero when the force is 90° out-of-phase with the 

displacement (i.e., when the velocity is at its peak and the acceleration is zero). This is termed 

as the ‘sway force due to sway velocity (Fyout)’, with its hydrodynamic coefficient obtained by 

differentiating Fyout with respect to sway velocity (Lewis, 1988) as shown in Equation (C.3). 

Similarly, the acceleration component dominates when the sway force is in-phase with the 

displacement (Fyin; i.e., when the acceleration is at its peak and the velocity is zero), with the 

coefficient (referred to as the added mass coefficient) obtained by differentiating Fyin with 

respect to sway acceleration (Lewis, 1988) as shown in Equation (C.4). 

 

 
𝑌𝑣  =

𝜕𝑌

𝜕𝑣
 =

𝐹𝑦𝑜𝑢𝑡

−𝑎0𝜔
 

(C.3) 

𝑌𝑣̇ =
𝜕𝑌

𝜕𝑣̇
 =

𝐹𝑦𝑖𝑛

−𝑎0𝜔2
+ 𝑚 

(C.4) 

 

where, 𝑌𝑣  is the sway force coefficient due to sway velocity; 𝑌𝑣̇  is the sway force 

coefficient due to sway acceleration (i.e., added mass coefficient); 𝑎0 is the sway amplitude; 

  is the sway frequency; and, 𝑚 is the mass of the model. 

 

Figure C.2 – SUBOFF model undergoing the pure sway motion close to the larger NP01 
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Experimental setup  

The captive model experiments were conducted in AMC’s Towing Tank with the 

dynamic motion of the SUBOFF obtained using a Horizontal Planer Motion Mechanism 

(HPMM). The SUBOFF model was mounted to the HPMM using a ‘sting’, which connects to 

the model through the aft end as shown in Figure  C.3a. The forces acting on the SUBOFF 

model were recorded using two 6-Degree of Freedom (6-DOF) load cells positioned in-line 

with the force balance located inside the model. The force balance is an extension of the sting 

that connects to the model via the load cells as shown in Figure C.3a.  The SUBOFF model is 

not watertight, with vent holes allowing it to fill with water during testing. A gap in between 

the aft end of the model casing and the sting avoids contact between them eliminating friction 

and pre-tensioning effects. A Hama boundary layer transition strip device (Hama, 1957) was 

attached at 5% of the overall hull length aft of the model’s leading edge to trip the laminar 

boundary layer into a turbulent one. The forces on the larger model were not recorded as 

modelling the larger vehicle was not an objective of this work. Figure C.3b shows the two 

models, with the NP01 attached to the towing tank carriage at an Rlat of 1.829. The NP01 had 

a 1m gap from its longitudinal centreline to the nearest side wall and was shifted longitudinally 

to achieve the desired Rlong between the bodies. The Rlat was obtained by moving the SUBOFF 

laterally using the HPMM.  

 

The variation of forces acting on the SUBOFF model due to the free surface was 

investigated by Steel (2010), concluding that the surface interference is negligible for non-

dimensional depths of H/D greater than 3.3 (where H is the submerged depth from the surface 

waterline to the centreline of the vehicle as shown in Figure C.3a, and D is the model diameter). 

For this reason, the vehicles were positioned 0.75m below the waterline at mid-depth of the 

tank in order to minimise free surface effects as well as tank floor effects (i.e., the SUBOFF 

and the NP01 at non-dimensional depths of 4.147 and 1.852 respectively). The distance from 

the tank floor to the SUBOFF’s and the NP01’s bottom surface edges were 0.66m and 0.55m 

respectively. Further information with regard to the experimental setup is given in Barneveld 

(2013). 
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Figure C.3 – Experimental set up of (a) the SUBOFF model and (b) both the SUBOFF and 

NP01 model together 

Numerical simulations 

To assist with the validation of CFD results against EFD, the width and depth of the 

AMC towing tank were replicated in the numerical fluid domain. The numerical domain length 

was reduced to 20m from the towing tank length of 100m to reduce the computational effort 

while still capturing the wake field generated by the vehicles at the stern (see Figure C.4). Thus, 

it is assumed that reducing the modelled length of the towing tank has a negligible effect on 

the results.  

 

Figure C.4 – Numerical fluid domain subdivided to represent the tank domain, SUBOFF 

subdomain and NP01 subdomain 

In simulating the fluid flow around the submerged bodies, the Reynolds Averaged Navier 

Stokes (RANS) equations were utilised. Leong et al. (2012a) evaluated the performance of two 

RANS-based turbulence models (i.e., Baseline Reynolds Stress Model (BSLRSM) and Shear 

Stress Transport with Curvature Correction (SSTCC)) in predicting the flow around the 

SUBOFF model and obtaining hydrodynamic coefficients under translation and rotational flow 
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conditions. Leong et al. (2012a) showed that the BSLRSM solution was the closest in 

comparison to the experimental results and was thus utilised in this investigation. This low 

Reynolds wall treatment model is recommended only when accurate prediction of separation 

wall-bounded flows are desired and y+ < 1 (where y+ is the non-dimensional value of the 

distance from the surface of the body to the first node of the mesh) is utilised, conditions that 

were adhered to in all simulations.  

The ANSYS Meshing Platform (AMP) re-meshing method was used to simulate the 

relative motion between the two bodies. The essential aspect of this method is that the mesh in 

the fluid domain deforms locally around the moving object as it moves, and re-meshes when 

the mesh quality is deemed compromised in terms of accuracy and stability (Leong et al., 

2012b). This overcomes the limited motions imposed by using a pure mesh deformation 

approach and allows rotation of the bodies to be compared to other re-meshing methods. 

Although mesh deformation is fully supported in ANSYS CFX, currently the re-meshing 

requires the use of a user-defined script. The latter, triggered by the mesh quality criterion, 

interrupts the simulation and transfers the positional state of the SUBOFF into ANSYS 

Workbench in order to update the geometry and the mesh. The script then transfers the new 

mesh into the solver where the simulation information from the previous mesh is interpolated 

into the new mesh and the simulation is resumed. The mesh quality criterion was defined as 

the orthogonality angle in the mesh cells of no less than 10° (Leong, 2013). The fluid domain 

of the study was formed from three sub-domains (see Figure C.4): the SUBOFF sub-domain, 

the NP01 sub-domain and the tank domain. In order to reduce the re-mesh time, the vehicle 

sub-domains were pre-meshed and were kept rigid during the solver process, while the tank 

domain underwent mesh deformation and re-meshing. 

Meshing 

To aid the validation, the experimental setup was identically replicated by the CFD mesh 

model. The mounting arrangement of the SUBOFF model to the HPMM (i.e., the sting) can 

cause pressure field variations and generate an additional wake field. Thus, the sting 

arrangement was modelled in the CFD simulations. During the experiments, the internal hollow 

section of the SUBOFF shell was filled with water and, as the tests involved accelerative 

motions, the inertial effects produced by the water inside the SUBOFF model were proven to 

be significant. Therefore, the internal water was meshed and interfaced with the surrounding 

water as shown in Figure C.5 (inset). The inertial effects due to the mass of the SUBOFF’s 
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shell was modelled by defining the density of the shell material (i.e., fibreglass plastic) to the 

mesh within the shell. Predictions of the inertial forces may vary from exact physical values as 

the internal water volume and the mass of the SUBOFF shell cannot be accurately modelled 

due to the complexity of the force balance arrangement inside the shell and due to the uneven 

shell density.  

 

Figure C.5 – Mesh model around the sting and two submerged model bodies and the internal 

water of the SUBOFF (Inset) to closely replicate the EFD. The mesh of the SUBOFF shell is 

removed in the inset to provide a detail illustration of the interface gap. 

It is well documented that the total thickness of the inflation prism layers should be at 

least the thickness of the boundary layer (White, 2011), where the inflation prism layer is a 

layer with very small mesh elements in the direction normal to the wall that resolves the wall 

region to aid the turbulent model to capture the boundary layer (Tu et al., 2012).  If the thickness 

of the inflation prism layers is under-prescribed, this will ‘squash’ the predicted boundary layer 

in the simulation and correspondingly affect the forces acting on the vehicle. Overprescribing 

the thickness does not affect the force predictions; however, it will increase the number of mesh 

elements. Thus, the total thickness of the inflation layers around the SUBOFF was matched to 

Prandtl’s theoretical estimate of the turbulent boundary layer thickness over a flat plate (White, 

2011) using 0.16LS/ 𝑅𝑒𝐿𝑆
1/7

, where LS is the surface length of the vehicle and 𝑅𝑒𝐿𝑆
 has 

previously been defined.  

Mesh independence study 

The mesh independence studies were conducted to select the optimum mesh size that 

provides sufficiently accurate results while maintaining a low computational effort. The studies 

were first conducted for the pure sway manoeuvres to investigate the effects of the vehicles’ 

surface and the surrounding mesh sizes on the interaction prediction. This research work 

utilised an unstructured mesh type and it is not possible to make completely systematic mesh 
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refinements in unstructured meshes since the size of individual cells cannot be controlled 

directly (Simonsen et al., 2012). Therefore, it is difficult to estimate the mesh uncertainty. 

However, four meshes (i.e., S1, S2, S3 and S4, where the S1 is the finest mesh and S4 is the 

coarsest) were generated by carrying out mesh refinements with an approximate refinement 

ratio of √2 and, the surge force, sway force and yaw moment solutions were obtained from 

each mesh. The finest mesh contained 4.86 million elements, while the coarsest mesh contained 

1.49 million elements. Figure C.6 illustrates the maximum percentage difference of the force 

predictions from each mesh size compared to the results from the finest mesh. The 

computational time taken for each mesh size simulation is also provided. The mesh 

convergence and the mesh uncertainty were investigated according to the procedure 

recommended by Stern et al. (2001) and Wilson et al. (2001). The mesh convergence ratios 

(i.e., RG) for the surge force, sway force and yaw moment calculated from the finest three (i.e., 

S1, S2 and S3) and the coarsest three (i.e., S2, S3 and S4), out of the four meshes were within 

the range of 0.56 and 0.67. The convergence is deemed to be achieved since the convergence 

ratios were within 0<RG<1 (Stern et al., 2001). Therefore, the Richardson extrapolation 

(Simonsen et al., 2012, Stern et al., 2001) was used to estimate the mesh uncertainty. The 

estimated mesh uncertainties for the surge force, sway force and yaw moment were less than 

1.6% of the S1 mesh solutions (i.e., the solutions from the finest mesh) and were less than 2.4% 

of the solutions from the S2 mesh. The S2 mesh (i.e., the 2.8 million element mesh) was 

selected as the optimum mesh since both the surge and sway force predictions were within 1% 

of the finest mesh force predictions (see Figure C.6) and within 2.4% of the corrected solutions. 

The selected mesh maintained around 53% less computational time compared to the finest 

mesh; i.e., run time reduced from 9.5 days to 4.5 days. 

The mesh independence studies for the steady-state straight-line simulations were 

conducted by carrying out mesh refinements on the vehicle surfaces and the pressure 

interaction region between the vehicles. The finest mesh contained 6 million elements, while 

the coarsest mesh contained 1.2 million elements. The mesh convergences for the surge force, 

sway force and yaw moment were calculated similar to the pure sway simulations and were 

found to be within the converging range (i.e., 0<RG<1). The estimated mesh uncertainties were 

less than 2% of the solutions from the selected three million element mesh.   
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Figure C.6 – Percentage uncertainty of the sway force and surge force with respect to the finest 

mesh 

To ensure numerical accuracy and stability, all simulations were performed using a high 

order advection and second order backwards Euler transient scheme. Convergence was deemed 

achieved when solution residuals reduced to below 10-4 and reduced by more than three orders 

of magnitude using a maximum of 10 inner iteration loops per time-step. 

Time-step independence study 

The dynamic simulations tend to fail if the utilised time-step was too large, since moving 

wall particles may cross more than one element per time-step and will pass their node solutions 

into an unknown element (Leong et al., 2012b). The largest possible time-step that could 

successfully carry-out the simulation for the selected mesh size was estimated to be 0.01s. The 

influence of the simulation time-step was investigated by comparing the sway force responses 

for three time-steps (i.e., 0.01s, 0.008s, and 0.006s) with the predictions found to be relatively 

consistent with respect to the different time-steps (see Figure C.7).  

 

Figure C.7 – Sway force responses for simulation time-steps of: 0.01s, 0.008s & 0.006 (note that 

the sway forces from the three time-steps coincide each other). 

The maximum percentage difference between the sway force predictions for the time-

steps 0.01s and 0.006s was 0.4%. Therefore, a 0.01s time-step was utilised for the simulations 
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to reduce the simulation time. The spikes observed in force responses seen in Figure C.7 are 

due to the simulation initiations at re-mesh events, and are filtered out using a low pass filter. 

Validation of numerical results 

For validation purposes, the force responses obtained from CFD simulations were 

compared against those obtained from EFD. Figure C.8 shows the CFD and EFD sway force 

responses obtained from a two body pure sway motion test. It is seen that CFD and EFD 

responses vary in both magnitude and phase. The maximum magnitude deviation was below 

5.58% for all validated cases.  

Phase difference between CFD and EFD sway force responses 

A phase shift between the CFD and EFD force responses obtained from such Planner 

Motion Mechanism (PMM) tests and other similar tests is usually observed (Carrica et al., 2013, 

Górnicz and Kulczyk, 2011, ITTC, 2011b, Sakamoto et al., 2012). Whilst some predict that it 

is due to inaccurate initial conditions (Sakamoto et al., 2012), others consider these to be 

possible experimental errors.  However, this is an area of ongoing research. The minimum 

phase difference of 0.4% was seen at the lowest sway frequency (i.e., 0.05 Hz) and the 

maximum difference of 4.8% was observed at the highest sway frequency (i.e., 0.2 Hz). The 

phase difference between the CFD and EFD sway forces was directly proportional to the sway 

frequency. The effects of modelling uncertainties of the internal hollow section and the shell 

density of the SUBOFF are more significant at higher sway frequencies due to the higher 

acceleration. Thus, the phase uncertainty of CFD results could be partly due to the modelling 

uncertainties of the internal hollow region and internal free flood water section of the SUBOFF 

model. The other possible reasons for the difference could be an over prediction of the added 

mass within CFD and/or due to experimental errors. As the phase difference of the results are 

less than 5% for all the sampled frequencies and is within the experimental uncertainty, it was 

considered to have minimal effect to the main findings of the paper. 

Validation of hydrodynamic coefficients between CFD and EFD results 

In this section, the hydrodynamic coefficients derived through CFD results are compared 

against those obtained through EFD. The sway force coefficient due to sway acceleration (𝑌𝑣̇) 

is derived using Equation (C.4) from the sway forces recorded in-phase with displacement (i.e., 

Fyin as shown in Figure C.8). A positive (+) displacement indicates that the lateral separation 
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between the SUBOFF model and NP01 is less than that at the starting position and a negative 

(-) displacement indicates that the lateral separation between the models is larger than that at 

the starting position (for single body tests, this represents the SUBOFF model at the starboard 

and the port sides from the starting position respectively). The non-dimensionalised CFD & 

EFD force coefficients, recorded in-phase with displacement, are presented in Table C.3. The 

forces were non-dimensionalised using Equation (C.5), 

 

 Non-dimensional sway force (Fy')  =  
𝟐𝑭

𝝆𝑳𝟐𝒖𝟐
 (C.5) 

where, F is the force, 𝜌 is the specific density of fresh water, L is the length of the model, and 

u is the surge velocity component. 

 
Figure C.8 – CFD and EFD sway force responses for pure sway motion at 0.2 Hz 

 

Table C.3 – Variation of F'yin with sway frequency 

Frequency  CFD 

Fy'in(+) 

EFD 

Fy'in(+) 

Difference CFD 

Fy'in(-) 

EFD 

Fy'in(-) 

Difference 

0.2 Hz 0.0081 0.0077 5.4% -0.0081 -0.0079 2.7% 

0.15 Hz 0.0046 0.0048 3.2% -0.0047 -0.0048 2.0% 

0.05 Hz 0.0005 0.0006 18.0% -0.0005 -0.0007 19.4% 

 

It is seen that the CFD Fy'in are in good agreement with EFD (with the greatest percentage 

difference of 5.4%) for sway frequencies of 0.2 Hz and 0.15 Hz. Even though the difference 

for 0.05 Hz is around 20%, the actual difference in forces predicted using CFD and those 

measured from EFD is smaller due to the lower frequency and is within the experimental bias 
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error of +/- 0.2 N. For this reason, it is proposed that the numerical models can be used to obtain 

𝑌𝑣̇. 

Results and discussion 

The sway force response due to the pure sway motion of the SUBOFF model tested alone 

(termed as Fy (SUBOFF) in the following discussion) is a symmetric sinusoidal response along the 

time axis. Thus, the hydrodynamic coefficients (i.e.,  𝑌𝑣  and  𝑌𝑣̇ ) derived from positive or 

negative displacement cycles of motion (i.e., when the SUBOFF model is on the starboard or 

port sides from its starting position respectively) are equal in magnitude (see Figure C.9). 

However, when the SUBOFF model is operating in proximity of the larger NP01 body, the 

sway force response is influenced by the interaction with the pressure field of the latter. Figure 

C.9 shows that the two body response is shifted towards the positive y-direction as compared 

to the single body response. The shift is not uniform (i.e., the interaction force is higher when 

the SUBOFF is closer to NP01). This is due to the increasing influence of the pressure field 

generated by the NP01 as the SUBOFF draws nearer, compared to that when the SUBOFF is 

further away. Due to the asymmetry of the two body sway force response; the hydrodynamic 

coefficients obtained from positive and negative displacement cycles are not equal in 

magnitude. Thus, the hydrodynamic coefficients of the SUBOFF, when moving towards and 

away from the NP01 are different.  

 

Figure C.9 – Sway force responses for single and two body simulations (at Rlong of 0 and Rlat of 

1.829) 

Interaction forces and moments 

With the aim of quantifying the interaction forces (i.e., Fy (interaction)) acting on the 

SUBOFF model due to the pressure of the larger body, the interaction forces are defined as, 

 Fy (two body)  = Fy (SUBOFF) + Fy (interaction) (C.6) 



196 

Appendix C 

 

The interaction sway force was non-dimensionalised to obtain the interaction sway force 

coefficient using Equation (C.5) by substituting Fy (two body) as the force. 

 

Interaction sway force against lateral separation 

The variation of the isolated interaction force coefficient when the SUBOFF model is 

moving towards and away from the larger body is plotted against the sway displacement in 

Figure C.10. For all the analysed cases, the interaction force when the SUBOFF is moving 

away from the larger body was observed to be higher than when it is moving towards it. Figure 

C.11 shows that a low pressure field is generated throughout the span of the larger body, which 

becomes significant in the regions with longitudinally curved surfaces (i.e., just after the bow 

and just before the stern). When the SUBOFF model sways while moving forward, a low 

pressure region is generated at the opposite side to the SUBOFF’s sway direction. In Figure 

C.11a when the SUBOFF model moves towards the larger body, the low pressure fields due to 

the larger body and the SUBOFF’s sway motion are at opposite sides of the SUBOFF. Thus, 

the interaction sway force due to resultant pressure field is lower, as the SUBOFF’s pressure 

field due to the sway motion is opposing the interaction force of the NP01. However, when the 

model moves away from the larger body as seen in Figure C.11b, the low pressure fields due 

to the larger body and the SUBOFF’s sway motion are both in between the two bodies. Thus, 

the SUBOFF’s own pressure field complements the interaction sway force, resulting in a higher 

attraction force. 

 

Figure C.10 – Interaction sway force coefficient against sway displacement (at Rlong of 0) 
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Figure C.11 – Visualisation of the predicted two-body pressure interaction field with (a) the 

SUBOFF moving towards NP01 and (b) the SUBOFF moving away from NP01 (at Rlong of 0 and 

Rlat of 1.829) 

Interaction sway force and yaw moment against longitudinal separation 

The variation of the interaction sway force and yaw moment coefficients against the 

longitudinal separation of the two bodies are shown in Figure C.12 and Figure C.13 

respectively. The forces and moments were recorded at positive peaks of the sway 

displacement (i.e., when the SUBOFF is closest to the NP01 model during each cycle).  The 

sway forces were quantified for three sway frequencies of 0.2 Hz, 0.15 Hz and 0.05 Hz. The 

yaw moment was calculated at a reference point where the single body yaw moment reached 

zero (i.e., 0.701 m aft of the SUBOFF nose tip). Therefore, the yaw moment shown in Figure 

C.13 is purely due to the interaction with the larger body. The positive yaw moment represents 

the SUBOFF bow attempting to yaw towards the NP01 as shown in Figure C.1a. The yaw 

moment was non-dimensionalised using Equation (C.7). 

 Non-dimensional yaw moment (N') = 
2𝑁

𝜌𝐿3𝑢2  (C.7) 

where, N is the yaw moment, 𝜌 is the specific density of fresh water, L is the length of the 

model, and u is the surge velocity component. 
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Figure C.12 – Interaction sway force coefficient due to sway acceleration vs Rlong (at Rlat of 1.475, 

sway amplitude of 0.145m and sway frequency of 0.2 Hz) 

Figure C.14 illustrates the pressure visualisation with longitudinal separation. When Rlong 

is -0.737, the SUBOFF nose tip reaches the low pressure region around the aft section of the 

NP01 model. Furthermore, the confined area between the SUBOFF bow and the NP01 causes 

an increase in the flow velocity between the two bodies, resulting in the intensification of the 

low pressure field (in accordance with Bernoulli’s theorem).  The low pressure field between 

the two bodies attracts the SUBOFF towards the NP01 (i.e., a positive interaction force as 

shown in Figure C.12). However, the stern of the SUBOFF is still within the relatively higher 

pressure region aft of the NP01. Thus, the combination of the high and low pressure fields 

acting on the stern and forward regions of the SUBOFF respectively results a positive yaw 

moment as shown in Figure C. 13 (i.e., a moment acting on the SUBOFF yawing its bow 

towards the larger body). 

 

Figure C.13 – Interaction yaw moment coefficient vs. Rlong (at Rlat of 1.475, sway amplitude of 

0.145m and sway frequency of 0.2 Hz) 

When Rlong is -0.491, the entire SUBOFF model is within the low pressure interaction 

field created by the aft section of the NP01. Furthermore, the restricted space between the two 
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bodies creates a second low pressure field along the length of the SUBOFF. These two low 

pressure fields attract the SUBOFF towards the NP01, causing the highest attraction force. 

However, the yaw moment is relatively small as both the bow and the stern of the SUBOFF 

are attracted towards the NP01 model. 

 

Figure C.14 – Pressure visualisation for different Rlong (at Rlat of 1.829) 

When Rlong is -0.246, the SUBOFF is located within the mid-body region of the larger 

NP01 model. The intensity of the low pressure field due to the NP01 reduces in this region due 

the parallel mid-body section. However, the low pressure created due to the accelerated flow 

field between the two bodies attracts the SUBOFF towards the NP01, producing the lowest 

interaction force. The SUBOFF bow is attracted towards the NP01 due to the low pressure field 

created at the bow of the NP01, resulting in a positive yaw moment. 

The attraction force again increases when the Rlong is 0, due to the increase in the low 

pressure field located just aft of the bow of the larger body. The SUBOFF bow is pushed away 

from the NP01 by the high pressure field around the stagnation point of the latter, while the 

SUBOFF stern is attracted towards the NP01, resulting in a negative yaw moment. 

As the SUBOFF moves further along the length of NP01 to a Rlong of 0.246, the bow of 

the SUBOFF model moves into the high pressure region around the stagnation point of the 

NP01, which pushes the bow of the SUBOFF further away from the larger body, The stern of 

the SUBOFF is pulled towards the NP01 by the low pressure field located just after the bow of 

the latter. This results in an overall negative sway force and a yaw moment. 
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 When Rlong is +0.491, the entire SUBOFF is within the forward high pressure region, 

causing the highest repulsive interaction force. The stern of the SUBOFF is pushed away from 

the NP01 due to the high pressure region at the stagnation point of the NP01 causing a slightly 

positive yaw moment. When Rlong is 0.737 the smaller body moves further away from the high 

pressure region, progressively reducing the repulsive interaction sway force as well as the 

positive yaw moment.  

Although the trends of interaction force variations for the three frequencies shown in 

Figure C.12 are similar, their magnitudes do vary as much as 24%, especially when the two 

bodies are alongside. This shows that the interaction force is frequency dependent.  

Interaction surge force  

A similar analysis was carried out for the interaction surge force (Fx (interaction)), which 

varies with the sway displacement and the direction of sway (i.e., whether towards or away 

from the larger body). However, unlike the interaction sway force, the interaction surge force 

is higher when Rlong is below 0.246 and the SUBOFF model is moving away from the larger 

body than when moving towards it, but opposite when Rlong is above 0.246 (see Figure C.15).  

 
Figure C.15 – Interaction surge force coefficient vs. Rlong (at Rlat of 1.475, sway amplitude of 

0.145m and sway frequency of 0.2 Hz) 

According to the pressure visualisations shown in Figure C.14, at Rlong of -0.737 and -

0.491, a low pressure region is located ahead the SUBOFF, effectively reducing the drag force.  

Thus, when Rlong is lower than -0.491, the drag force acting on the SUBOFF model due to the 

interaction with the larger body is lower than the drag force for the single body (see Figure 

C.15). When the Rlong is higher than -0.246, the high pressure region located forward of the 

SUBOFF model increases the drag force, resulting in it being greater than the single body drag 

force. Leong et al. (2013) investigated the steady state surge force acting on the SUBOFF 

model when operating in close proximity to the NP01, and concluded that it is unaffected by 

the larger body when the Rlong is above 1.02 and below -1.19. 
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 The above results indicate that the hydrodynamic coefficients of an AUV vary with the 

influence of interactions caused by third party objects; in this case a larger moving body. 

However, similar outcomes could be expected for other types of boundaries such as jetty walls, 

seabed, and surface ice layers (Ananthakrishnan, 1998, Ananthakrishnan and Zhang, 1998).  

Proposed simplified method to predict interaction sway force 

A simplified method was developed to obtain the two body hydrodynamic coefficients 

using single body hydrodynamic coefficients and steady-state interaction force due to straight-

line motion. The inverse of this approach was also validated, i.e., obtaining the steady-state 

interaction force from two body hydrodynamic coefficients. The following section introduces 

the method, its validation and limitations 

Simplified method: obtaining the two body hydrodynamic sway forces 

A new term called the ‘quasi-static’ sway force is defined by adding the steady-state 

interaction force due to straight-line motion to the single body pure sway force as shown in 

Equation C.8. 

 Fy(quasi-static) = Fy(two body, steady state) + Fy(single body, dynamic) (C.8) 

 

where, Fy(two body, steady state)  is the steady state sway force on the smaller body due to straight-

line forward motion of the two bodies together; and Fy(single body, dynamic) is the sway force on the 

smaller body obtained from single body pure sway motion. The lateral separation ratio of the 

tests should be maintained at the ratio at which the quasi-static sway force is required. 

The quasi-static sway forces are compared against the sway forces obtained from two 

body pure sway motion tests (i.e., Fy(two body, dynamic)) in Figure C.16. The sway forces were 

recorded in phase with displacement (i.e., the sway force due to sway acceleration). The 

positive (+) and negative (-) signs indicate that the forces were measured when the SUBOFF 

model is closer or further away from the centreline of motion to the larger NP01 body 

respectively. The maximum percentage difference between Fy(quasi-static) and Fy(dynamic) is below 

14% for all the test cases. Therefore, it could be deduced that the quasi-static sway force 

(Fy(quasi-static)) is a good indicator of the two body dynamic sway force acting on the smaller 

body (Fy(two body, dynamic)). 
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Figure C.16 – Comparison of quasi-static and dynamic Fy(in)'   

Using this method, the hydrodynamic coefficients of an AUV when operating close to a 

larger body could be estimated by simply adding the steady-state interaction force coefficients 

(obtained from Equations (C.3) and (C.4) by substituting 𝐹𝑦𝑜𝑢𝑡  and 𝐹𝑦𝑖𝑛 with the steady-state 

force) into the single body hydrodynamic coefficients (i.e., 𝑌𝑣̇ and 𝑌𝑣). Therefore, the variation 

of hydrodynamic coefficients due to a second body could be estimated by conducting a cost 

effective steady-state simulation, rather than time intensive dynamic pure sway motion 

simulations. This method might also be valid for when the AUV is manoeuvring near other 

types of stationary boundaries such as sea-bed, wall boundaries, and under ice layers, and is 

worth investigating since the method will save time.  However, the proposed method has the 

following limitations: 

 the sway frequency and amplitude of the single body pure sway motion tests should 

be the same as the sway frequency and amplitude of the required Fy(quasi-static); 

 the lateral body separations of the measured Fy(steady state) and  Fy(single body, dynamic) 

should be equal to the lateral body separation of the required Fy(quasi-static); and 

 the proposed quasi-static approach is validated only for the range shown in Table C.2.  

 

Inverse of the simplified method: obtaining the steady-state interaction sway force 

Inverse of the above simplified method is to obtain the two body steady-state interaction 

force due to straight-line motion using the sway forces obtained from two body pure sway 

motion tests. The second order polynomial extrapolation of Fy(two body, dynamic) meets the steady-

state interaction force at the sway frequency of 0 Hz (see Figure C.16), with a percentage 

variation of less than 8%. Similar patterns were observed in all the analysed cases. Therefore, 

this method could be used to obtain the steady-state interaction sway force due to forward 
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motion at any lateral separation (within the sway amplitudes) using a set of pure sway motion 

tests and this method is an efficient way of obtaining the steady-state interaction force at 

multiple lateral separations. The limitations of this method are as follows: 

 validations is limited to the range shown in Table C.2; and  

 the steady-state interaction forces obtained from the current study are relatively small 

due to the small body diameter ratio between the two models, thus, the accuracy of the 

proposed method needs to be further validated by replicating the study for models 

having a larger body diameter ratio. 

Conclusions 

An investigation into the hydrodynamic interaction between an AUV operating in close 

proximity to a larger moving vehicle such as a submarine was conducted, with the development 

of a CFD model to replicate the pure sway motion of the AUV under these conditions. The 

model was validated through physical experimental work conducted using an AUV model 

fitted to an HPMM and a larger adjacent body moving along the axial direction in AMC’s 

Towing Tank. The percentage difference between the CFD and EFD sway forces were 

generally below 6% and within the experimental error margins.  

The maximum hydrodynamic interaction sway force acting on the smaller body due to 

the presence of the larger NP01 body was found to be an attraction force when the former is 

located behind the nose of the latter (i.e., when the longitudinal separation ratio is below zero) 

and vice versa.  This was due to the low pressure field created around the span and the high 

pressure field created around the nose region of the larger body. The lowest interaction between 

the two bodies occurred when the smaller body is located around the midship section of the 

larger body. Furthermore, the interaction sway force coefficient when the SUBOFF is moving 

towards the NP01 was found to be lower than that when it is moving further apart due to the 

low pressure field created around the span of the larger body.  

The proposed simplified method is able to estimate the hydrodynamic coefficients of an 

AUV when operating close to a larger underwater body by simply adding the steady-state 

interaction force coefficient to the single body hydrodynamic coefficient, with a maximum 

percentage variation of 14%. Therefore, the variation of hydrodynamic coefficients due to a 
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second body could be estimated by conducting a cost effective steady-state simulation, rather 

than time intensive dynamic pure sway motion simulations. The inverse of this method is able 

to provide an approximation of the steady-state interaction force at any lateral separation 

(within the amplitudes of the pure sway motion tests) using the two body sway force due to 

pure sway motion with a maximum percentage variation of 8%. This method is an efficient 

way of obtaining the steady-state interaction force at multiple lateral separations. 
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