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Abstract—Underwater robot manipulators mounted on work 

class ROVs are extensively used in a wide range of subsea 
intervention applications. Unlike the automated stationary robot 
arms used in factories, commercial underwater manipulators are 
tele-operated by human pilot in the loop. In this paper we 
describe investigations, development and adaptation of robot 
manipulator servo control approaches common for light 
assembly tasks in industry and the transfer of these techniques to 
marine robotics. 
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I. INTRODUCTION 

ROV technology has been the workhorse of sub-sea 
operations in offshore oil and gas industry for decades. It also 
plays an important role in marine renewable energy (MRE) and 
marine civil engineering industries as well as in marine 
science, military applications, etc. Intervention operations 
specific for inspection, repair and maintenance (IRM) services 
are performed by manipulators mounted on work class ROVs. 
Compared to stationary robot manipulators common in 
industrial robotics applications, commercial underwater 
manipulators are noticeably less advanced in the sense of 
autonomy. Therefore, our goal is to enhance the subsea 
manipulation capabilities and bring them closer to a 
comparable level with industrial manipulation. Hence, in this 
paper we describe investigations, development and adaptation 
of robot manipulator servo control approaches common for 
light assembly tasks in industry and the transfer of these 
techniques to marine robotics. 

In Section II we describe the capabilities of industrial 
robotics, compare them with state of the art of subsea 
manipulation technology and briefly present work done by 
other authors as well as our goal for this project. Section III 
presents the analysis of the underwater manipulation scenarios 
to be addressed and gives a brief description of recent 
developments in this space. Section IV covers the algorithms 
used for software developed up to date and in Section V we 
conclude and describe future steps which are to be taken. 

II. BACKGROUND 

Industrial robotics makes extensive use of servo controlled 
robot manipulators and control / programming environments 

with full kinematic engines (implementing forward and inverse 
kinematics), enabling automatic motion control to follow 
detailed robot motion control programmes with manipulators 
interacting with target(s). With integration of smart sensor 
systems, such as vision systems and visual servoing 
techniques, industrial robotics can deal with significant 
variability in the target object presentation, position, 
orientation, colour, etc., while addressing these target objects in 
automatic program operation [1]. Light assembly servo 
controlled robots are predominantly electrically powered. 

Robot manipulators are extensively used in work class 
submarine ROVs for a variety of sub-sea tasks in different 
applications within offshore oil and gas, MRE and marine 
civil engineering industries as well as in marine science and 
military applications. As they are being used in a wide range 
of applications, underwater manipulators are designed for 
different purposes. There are manipulators equipped with 
grippers with limited mobility for lifting large, heavy objects, 
manipulators for fixing a detachable gripper to a selected, 
sunken object, manipulators equipped with a gripper or 
vacuum cups for fixing the robot when working on submerged 
structures or near flat walls, manipulators equipped with 
inspection devices, dexterous intervention manipulators for 
maintenance and repair operations on submersed structures, 
etc. Work class ROVs are generally equipped with two 
manipulators. In most cases with one advanced seven function 
manipulator (six DOFs plus the gripper) which performs the 
actual task and one less advanced five function manipulator 
which is used to grab onto the hydro engineering structure on 
which the intervention operation is to be done. However, it is 
not unusual for an ROV to be equipped with two advanced 
seven function manipulators. Some of the tasks which 
underwater manipulators are employed for include pipe 
inspection, salvage of sunken objects, mine disposal, cleaning 
surfaces, opening and closing of valves, drilling, rope cutting, 
cable laying and repair, clearing debris and fishing nets, 
biological and geological sampling, archeological work, etc. 
The robot manipulators employed however on subsea ROVs 
are generally not servo controlled systems supported with 
kinematic engine control approaches. The majority of the 
subsea ROV manipulators are hydraulically driven devices, 
tele-operated with an open loop control system, completely 
reliant on the pilot who is located on the support vessel. The 
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