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Abstract In this paper, the stability of an umbilical–
ROV system under nonlinear oscillations in heave mo-
tion is analyzed using numerical methods for the un-
controlled and controlled cases comparatively. Mainly
the appearance of the so-called taut–slack phenomenon
on the umbilical cable produced by interactions of
monochromatic waves and an operated ROV is spe-
cially focused. Nonlinear elements were considered as
nonlinear drag damping, bilinear restoring force and
saturation of the actuators. Free-of-taut/slack stability
regions are investigated in a space of physical bifurca-
tion parameters involving a set of both operation and
design parameters. They indicate a wide diversity in
qualitative behaviors, both in the periodicity and possi-
ble routes to chaos from the stability regions to outside.
For detection of periodicity of the nonlinear oscillations
inside and outside the stability regions, a method based
on Cauchy series is developed. The first part of the re-
sults is dedicated to the stability of the uncontrolled
dynamics. These results suggest the design of a con-
trol system that is able to counteract hefty hauls of the
cable during the sinking/lifting operation under pertur-
bation. A combination of a force and cinematic con-
troller based on nonlinear model–reference control is
proposed. Through a comparative study of the stability
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regions for uncontrolled and controlled dynamics, it is
shown that the control system can extend considerably
these regions without appearance of the taut–slack phe-
nomenon despite the presence of wave perturbations.
The limits between the taut and taut–slack zones are
defined by the wave steepness and the available energy
of the actuators.
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1 Introduction

Tethered subsea units such as remote operated under-
water vehicles (ROVs) are widely used in offshore engi-
neering, scientific investigations, and rescue operations
[6, 8, 16]. Due to the inherent nonlinear equations of
motions, ROVs require the design of sophisticated con-
trollers that involve automatic speed control, systems
for dynamic positioning and tracking, as well as autopi-
lot systems for automatic steering of depth and altitude
(for basic details, see [8]).

Also, the dynamics of the umbilical cable interacts
with the body and the environment in a complex way,
mainly at low and middle levels of depths, where waves
and currents are strong. The top end of the cable is
generally subject to motions of the supporting vessel –
usually a surface ship – which, in turn, responds to
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the sea excitation. Additionally, strong currents may
act directly along the cable and cause strumming oscil-
lations due to vortex shedding phenomena. The main
effect on the vehicle is that its forward speed is re-
duced and undesirable rotational motions are induced
[4].

Even when vortex shedding in cables could be not
so important [11], a taut–slack phenomenon of the um-
bilical cable may be significant when a combination of
forces due to strong currents or thrusters and superfi-
cial waves produces acceleration in the port/starboard
direction up to the advent of intermittent slackness and
hauls. Afterwards, eventually, there may occur a lack of
motion predictability, making it difficult for the opera-
tor to take control actions. Commonly, high frequency
and hefty oscillations of the cable are involved in these
transitions.

Also, this effect may occur in a more simple situ-
ation, e.g., in the sinking of the unit up to or lifting
from a working depth. These are usually subject to res-
onance phenomena mainly due to time-varying lengths
of the cable which changes the natural frequency of the
system [2, 9, 10, 19]. If the unit is deployed in a sea
with weak currents, the dynamics can be simplified to
a simple heave motion alone. In such situation, the rate
at which the cable varies its length can affect the dy-
namics of the cable–body system, manifesting quite
qualitatively different behaviors [13, 18].

A special aspect of the operation is that the cable
tension can become null if the ascent of the ROV oc-
curs sufficiently fast. This can also arise for relatively
large frequencies of the wave. Huang [9] analyzed the
dynamics of a cable–body system under taut–slack con-
ditions using a piecewise linear equation of the ca-
ble force. Herein, the cable stiffness is assumed to
have linear elastic traction and null compression, while
the damping is considered constant and the body with
punctual geometry (cf. [21]). Using a dimensionless
differential equation and considering an harmonic mo-
tion of the upper cable extreme, the system behavior is
shown to manifest nonlinear oscillations.

The simplified model of Huang, however, does not
cover the nonlinear effects of damping and added mass.
Hydrodynamic aspects may influence the qualitative
response of the ROV decisively [7, 17]. For instance,
the body can radiate and hydrodynamics memory ef-
fects can influence the damping and the inertia at
lesser depths. Another point which is not considered
in the Huang’s model is the nonlinear drag term in the

equation of the forced oscillator, which depends on the
body shape and Reynolds number.

In order to simplify our analysis of stability and con-
troller design, we examine simple spheric forms of the
ROV with different diameters providing varying drag
resistance and inertia forces. In our contribution, we
aim to provide a more realistic stability study of a ROV
motion under taut–slack phenomenon in the heave mo-
tion through simulations and numeric stability analy-
sis. The fidelity of the results in the simulations will
be backed up by the accuracy of the physical laws that
describe the dynamics more rigorously than previous
models.

Since an analytic solution does not exist for the non-
linear equations of motion, we propose numeric meth-
ods for searching bifurcations of stable solutions based
on temporal series analysis extracted from Poincaré
maps. Regions that characterize stability are also con-
structed in a space of different bifurcation parameters,
namely cable length and stiffness, wave amplitude and
frequency, wet area of the ROV, and magnitudes of
thruster forces. Fundamental information about the dy-
namic behavior of the umbilical–ROV system in taut–
slack condition and vertical operation can be obtained
from them in physical models with different degrees of
knowledge.

A second aim in this paper includes designing a
control system for the sinking/lifting process. Nonlin-
earities that unfavorably affect the performance of the
control will be compensated by nonlinear feedback.
The main control objective will be focused on reject-
ing eventual taut–slack behaviors, employing thrusters
for the purpose of vertical displacements and adjust-
ments in the velocity of the hoisting crane motor unit.
Another control objective will be looked at the control
of the cable tension in order to get it away from critical
values. A basis for the control system analysis will be
stability regions for a set of bifurcation parameters. In
the paper, numerous simulations have been given to il-
lustrate the features of the control system in comparison
with the former uncontrolled umbilical–ROV system.

2 Dynamics

Let us consider the following scenario for our study.
During the sinking/lifting operation of a ROV, har-
monic vertical motion of the hoisting crane due to
the action of a monochromatic wave causes taut–slack
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transitions in the umbilical cord. Usually, the ROV is
being deployed over the aft of the ship. The cable re-
mains on a vertical plane and takes a particular bent
shape given by the action of a current as shown in Fig. 1.
Depending on the ROV operation and the crane jib el-
evation, the wire can be tensed from both upper and
lower extremes (taut condition). Also, when both ex-
tremes move in opposite direction, a looseness of the
wire can take place (slack condition). This particular
motion occurs intermittently, mainly when a periodic
excitation like a wave acts on the system.

In this paper, we analyze the phenomenon in 1 de-
gree of freedom namely vertically, as for example in
the sinking/lifting phase and assume that there exists
a static equilibrium tension of the cable given by the
weight of the vehicle in water (see Fig. 2). Additionally,
we describe the nonlinear hydrodynamics completely
in order to show that complex behaviors can happen
from this simple operation with monochromatic exci-
tation.

For the analysis of the dynamics of the umbilical–
ROV system, following general assumptions are con-
sidered:

(a) motion takes place vertically (heave mode),
(b) mass cable is inappreciable,
(c) ROV has a slight positive buoyancy and its hull is

spherical,
(d) mass of the surface ship is very large in comparison

with ROV mass,
(e) cable has a null stiffness in slack condition,
(f) sea provides a persistent monochromatic vertical

excitation of the pivot at which cable is attached,
(g) ROV thrusters for vertical push and hoisting crane

motor unit are available for control purposes.

The position of the ROV in the sinking/lifting op-
eration is appropriately given by the immersion depth
d with respect to the water line. When the quantity
b − a sin ωt increases for the top end of the cable and
the quantity d (cf. Fig. 2) decreases for the bottom end,
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Fig. 1 Remotely operated vehicle and surface ship
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Fig. 2 Umbilical–ROV system in taut condition (left) and slack condition (right)

Springer



166 Nonlinear Dyn (2007) 49:163–191

the tension of the cable is

Fc = E A0

L
(d − L + b − a sin(ωt)), (1)

where L is the length of the cable, b the crane jib
elevation, a sin(ωt) the oscillation about it due to a
monochromatic wave, E the Young’s modulus of the
cable, and A0 its cross section. On the other side, the
cable remains loose when Fc = 0.

These cable conditions are summarized as

d − L + b − a sin(ωt) > 0 → taut condition Fc > 0

(2)

d − L + b − a sin(ωt) ≤ 0 → slack condition Fc = 0.

(3)

From (1)–(3), it is evident that the characteris-
tic stress–deformation is continuous but broken at
d − L + b = a sin(ωt), i.e., in the transition from slack
to taut states and vice versa. Besides, the cable stiffness
(E A0)/L is inversely proportional to L .

For characterizing the heave motion, a single-
degree-of-freedom model is applied. The dynamics is
approximated by different mathematical approaches,
each one involving a progressive increment of phys-
ical knowledge, starting from a coarse characteriza-
tion with a simple model of the hydrodynamics up to
a more refined model including a velocity-depending
drag coefficient and radiation-potential forces. Each
of these descriptions is analyzed separately and then
comparatively under the same setting of common
parameters.

2.1 Equations of motion: Model 1

The equations of motion in vertical z-axis are subject to
the rigid body mechanics and the hydrodynamics given
by Potential Flow Theory and Morison’s law.

Let the hydrodynamics of the umbilical–ROV sys-
tem be uniquely described by the so-called added mass
of the ROV geometry and the drag force with a constant
drag coefficient.

The parameters of the system are the ROV mass m,
the so-called added mass m∞ due to acceleration of the
water particles in the surrounding of the ROV surface,
the gravity acceleration g, the sea water density ρ, the
hydrodynamic drag force coefficient CD, the diameter

of the ROV D, and finally the resultant of the vertical
thruster force Ft.

As the cable characteristic has two linear portions
according to (2) and (3), the equations can be estab-
lished separately for these two states. On the one hand,
the following is valid for the taut condition (2)

(m + m∞) d̈ + πρD2

8
CD ḋ|ḋ| + E A0

L
(d − L + b)

+ πρD3

6
g + Ft = mg + E A0a

L
sin(ωt), (4)

and, on the other hand, the following is accomplished
for the slack condition (3)

(m + m∞) d̈ + πρD2

8
CD ḋ|ḋ| + πρD3

6
g

+ Ft = mg. (5)

Then, a solution d(t) can be composed piecewise from
the solutions of (4) and (5).

The approximation of the hydrodynamics through
the constant coefficient m∞ is sufficiently accurate for
large depths. Practically, this is fulfilled for d � D.
For the spherical surface considered, the added mass is
equal to the half of the fluid displaced by the mass of
the body, i.e., m∞ = (ρπ D3)/12. In the case study, as
the ROV is assumed with a slightly positive buoyancy,
it is valid (m)/(m∞) � 2.

2.2 Equations of motion: Model 2

In addition to the added mass for the ROV geometry, we
can incorporate a velocity-dependent drag coefficient
for the same spherical geometry (see Figs. 3 and 4). This
leads to a better description of the system dynamics.

It is worth noticing that CD depends basically on the
shape of the ROV along the motion direction and will
be consequently classified as a design parameter. How-
ever, as it depends also on Reynolds number, which
changes during operation, it is also an operation pa-
rameter. The Reynolds number is defined as

Re = ρD
ηH2O

ḋ = 1.026 × 106 D ḋ (6)

where ρ = 1.026 × 103 kg/m3 is the density of sea wa-
ter and ηH2O = 10−3 kg/ms the dynamic viscosity of

Springer



Nonlinear Dyn (2007) 49:163–191 167

Fig. 3 Drag coefficient for
a spherical-shape body as
function of Reynolds
number
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Fig. 4 Drag coefficients as function of the ROV velocity for
different diameters

water. Taking into account Fig. 3, CD can be approx-
imately calculated in the range Re ∈ [10−1, 107] by
means of a linear regression like

CD = ϕT
ReθRe, (7)

with

ϕT
Re = [(log10 Re)21, (log10 Re)20, . . . , (log10 Re)2,

(log10 Re), 1] (8)

θRe = [−8.332 × 10−9, 5.389 × 10−7, −1.592

×10−5, 2.841 × 10−4, −3.412 × 10−3,

2.905 × 10−2, −1.798 × 10−1, 8.132 × 10−1,

−2.648, 5.925, −7.871, 2.121, 12.407,

−20.641, 6.411, 17.352, −26.194, 28.856,

−45.340, 62.735, −56.695, 27.193]T

Based on experimental data in steady state, Equation
(7) describes a polynomial approximation of degree 21
of the curve in Fig. 3.

In the new model, equations of motion are given first
for the taut condition (2) as

(m + m∞) d̈+πρD2

8
CD(ḋ) ḋ|ḋ|+ E A0

L
(d − L + b)

+ πρD3

6
g + Ft = mg + E A0a

L
sin(ωt), (9)

and then for slack condition (3)

(m + m∞) d̈ + πρD2

8
CD(ḋ) ḋ|ḋ| + πρD3

6
g

+ Ft = mg. (10)
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Fig. 5 Drag force characteristic for different diameters

Figure 5 describes the drag force characteristic based
on the relation Fv = −[(πρD2)/(8)]CD(ḋ) ḋ|ḋ| is de-
scribed for different volumes.

2.3 Equations of motion: Model 3

A better characterization of the cable-ROV dynamics
will include the radiation capability of the submersed
body in motion. The radiation is significant mainly at
lesser immersion depths. It declines exponentially with
increasing d.

In this situation, the dynamics are affected by a new
force, namely the so-called induced-radiation force
given by

Fr(t) = −m∞ d̈(t)

−
∫ t

−∞
κ(τ ; D, d) ḋ(t − τ ) dτ, (11)

where κ(τ ; D, d) is an impulse-response function ac-
counting for the memory of the fluid response to a
sudden body displacement. It depends on the geom-
etry of the wet part of the submersed body as well as
on the immersion depth. For a sphere, the geometry is
parametrized by D.

A straightforward method to calculate κ is the so-
called damping function

κ(τ ; D, d) = 2

π

∫ ∞

0
γ (ω; D, d) cos(ωt)dω, (12)
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Fig. 6 Potential damping of a submersed spherical body with
D = 2 and d = 15 m

where γ (ω; D, d) is the potential-damping function
parametrized in D and d. It can be calculated numeri-
cally using Strip Theory and Flow Potential Theory (cf.
[14]). For instance, Fig. 6 shows the potential-damping
function of a spherical body for particular values of
D = 2 and d = 15 m. This was obtained with the tool
AQWA� for hydrodynamics computation [1].

The dependency of γ on D and d for d > D/2 can
be approximated by

γ (ω; D, d) = f (D, d) γ (g(d)ω; 2, 15), (13)

with attenuation and contraction functions

f (D, d) = 4.8 × 106 D4.58

(d + 7.05)6
(14)

g(d) = 8.28

(d + 2.51)0.73
, (15)

respectively. Relations (14) and (15) were obtained by
interpolating various curves γ (ω; D, d) for a set of
values of D and d and normalizing with respect to
γ (ω; 2, 15).

Using Fig. 6 and putting Equation (13) into
Equation (12), the impulse-response function is nu-
merically found. Figure 7 shows different impulse-
response functions for a set of values of D and d.
One concludes the importance of the response for low
depths and relatively large diameters. Other feature of
the model is the oscillating evolution of the response
with a resonance frequency that decreases with the
depth.
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Fig. 7 Impulse responses for different diameters D and depths d

After calculating κ(τ ; D, d) for the body diameter
and depth, (11) can be applied so as to evaluate the
induced-radiation force Fr for the sinking/lifting pro-
cess.

As d is a system state, the impulse response becomes
time dependent

κ(τ, t) = κ(τ, d(t)) (16)

Thus, the equations of motion in vertical z-axis become
first for the taut condition

[m + m∞] d̈ + πρD2

8
CD(ḋ) ḋ|ḋ| + E A0

L
(d − L + b)

+ πρD3

6
g + Ft = mg + E A0a

L
sin(ωt)

−
∫ t

−∞
κ(τ, t) ḋ(t − τ ) dτ, (17)

and for the slack condition

[m + m∞] d̈ + πρD2

8
CD(ḋ) ḋ|ḋ| + πρD3

6
g

+ Ft = mg −
∫ t

−∞
κ(τ, t) ḋ(t − τ ) dτ. (18)

Notice that

f0 = −
∫ 0

−∞
κ(τ, 0) ḋ(t − τ ) dτ, (19)

describes the effect of the past evolution of the hy-
drodynamics at t = 0, i.e., the initial condition for the
differential Equations (17) and (18). Fortunately, the
evanescence of κ(τ ) for τ → ∞ and the passivity of
system (17) and (18) indicate that the fact of supposing

f0 = 0 has no effect on the accuracy of the solution d(t)
at steady state (see [12]). So, for the following studies
in steady state, it is assumed null.

3 Stability analysis

An attempt to obtain an analytical solution for the dif-
ferent nonlinear Equations (4), (5), (9), (10), (17), and
(18) generally fails. The motion equations can be put
generically as

d̈ + f (ḋ, d, μi ) = h(u, μ j ), (20)

where u = a sin(ωt) is the input, f is a function con-
taining the nonlinear stiffness and damping, and h is a
nonlinear input function. The coefficients represented
by μi and μ j are free parameters that influence the
features of the behavior and are transcendent for ac-
counting for physical changes in the cable properties
like premature fatigue strength or fracture. For instance,
the existence of conditions for period-1 solutions and
approximated methods of solution are discussed in
Rossenwasser [20] and Guckenheimer and Holmes [5].

Huang [9] established an analytical procedure for
detecting the stability of forced period-1 stable orbits
based on the observation of eigenvalues of a discrete
system that relates cross points through zero of periodic
orbits. The method is complemented with an iterative
algorithm for enhancing the information given by the
eigenvalues about stability. The domain of attraction is
extremely sensitive to bad initial conditions, so that the
result is not always reliable to be extended here.

In this paper, we develop numerical procedures in
order to establish stability. These are based on Poincaré
maps, time averaging, and asymptotic measures [5].
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3.1 Periodic solutions

Let us assume that the behavior of the umbilical–ROV
system starts from an initial condition (d(0), ḋ(0)) and
its state trajectory sampled at a rate T = (2π/ω). The
resulting time-discrete dynamics is described by

[
d(k + 1)

ḋ(k + 1)

]
= F

([
d(k)

ḋ(k)

]
, μ

)
. (21)

where k is a positive integer, F a nonlinear vector-
valued function that is smooth in both regions delim-
ited by d − L + b − a sin(ωt) > 0 and d − L + b −
a sin(ωt) ≤ 0, and μ a vector that describes the control
parameters for bifurcation analysis. These parameters
conform a complete space for searching stability re-
gions, i.e., regions that are free of taut–slack motions
for given initial conditions in an attraction domain.

The exact determination of F rests on the analyti-
cal availability of solutions of (4) and (5) (or (9), (10)
or (17), and (18)), which is only possible in the slack
motion in (5) by analytically solving Bernoulli-type
differential equations. For this reason, we attempt to
follow a numerical way instead.

3.2 Identification of periodic solutions

Periodic orbits of the continuous systems (4), (5),
(9), (10), (17), and (18) correspond to a fixed point
of the discrete system (21) described in the Poincaré
map.

So, for a particular valued μ, there exists a solution
d(t) and a state trajectory that starts from an arbitrary
initial condition ζ (0) in an attraction domain and is
asymptotically periodic with period nT = (n2π/ω).

Considering the sampled trajectory conformed as

ζ (k) =
[

ζ1(k)

ζ2(k)

]
=

[
d(t0 + kT )

ḋ(t0 + kT )

]
,

we say the system is asymptotically stable and has a
fixed point when the series {ζ (k)}∞k=0 converges to a
periodic series. Moreover, there exists a sufficiently
large delay q such that {ζ (k) − ζ (k − q)}∞k=0 is a
Cauchy series.

In order to detect the periodicity nT of ζ (k) during
the transient state, one takes two positive test integers

q and n, with q/n � 1 and some small real-valued ε.
Thus, if ζ (k) is nT periodic, then there exists a sample
time k0 from which onward, i.e., up to k ≥ k0, following
relations are fulfilled

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ζ (k) − ζ (k − 1)‖ > ε
...
‖ζ (k) − ζ (k − n + 1)‖ > ε

‖ζ (k) − ζ (k − n)‖ < ε

‖ζ (k) − ζ (k − n − 1)‖ > ε
...
‖ζ (k) − ζ (k − 2n + 1)‖ > ε

‖ζ (k) − ζ (k − 2n)‖ < ε

‖ζ (k) − ζ (k − 2n − 1)‖ > ε
...
‖ζ (k) − ζ (k − q)‖ > ε.

. (22)

and the series of the previous system within the band ε

will also accomplish

lim
k→∞

‖ζ (k) − ζ (k − v n)‖ = 0, (23)

for v = 0, ±1, ±2, . . . . Moreover, (22) and (23) are
independent of t0, except for a set with measure zero
of series that are identically zero or constant.

Equation system (22) is equivalent to the auto-
correlation function ϑ(τ ) = ∑∞

k=0 ζ (k)ζ T (k + τ ) for
τ = 0, 1, . . . . The cadency of peaks of ϑ(τ ) for large
τ will reveal the periodicity of ζ .

The detection method developed above can also be
used to identify a chaotic state. In this case, there does
not exist any finite integer q that satisfies (22). Assum-
ing the system is in stationary state, the chaos condition
means

lim
q→∞‖ζ (k) − ζ (k − j)‖ > 0, with j = 0, . . . , q,

(24)

i.e., no series {ζ (k) − ζ (k − j)}∞k=0 is a Cauchy series.
Moreover, in this case, ϑ(τ ) 
= 0 for all τ except, per-
haps, for a countable set of measure zero.

It is observed that the detection method proposed
above performs well in the transition from the tran-
sitory to the steady state. The application of the
identification method is illustrated in Fig. 9 for a
period-4 behavior of the cable–ROV system with free

Springer



Nonlinear Dyn (2007) 49:163–191 171

440 460 480 500 520 540 560 580

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

t [s]

ζ 1
(t

)

4T

T

Fig. 8 Period-4 behavior of the ROV dynamics

parameter: D = 0.85 m, E A0 = 5 × 106 N, and CD =
0.2, time evolution for which is depicted in Fig. 8.

The detection of this period is performed on the sam-
pled series on ζ1(t) of Fig. 8 at a rate equal to the wave
period T = 6.5 s.

According to the restrictions (22) and for a tolerance
selected as

ε = 10−6 max
t∈[0,∞],τ∈(0,∞]

|ζ (t) − ζ (t − τ )|

= 10−6

(
max

t∈[0,∞]
ζ (t) − min

t∈[0,∞]
ζ (t)

)
, (25)

four series are analyzed, namely the ones for n = 1 up
to n = 4, where period 4 is established through the con-
vergence testing, see Fig. 9. Also, the series for n = 8
produced a Cauchy series during the stability analysis,
but the first series detected by the method was for n = 4.
This concludes the fixed point period 4 for the set of free
parameters.

4 Stability regions

In this paper, a stability region is defined as a zone
in the free-parameter space, in which the behavior
of the umbilical–ROV system is characterized by a
bounded oscillation in steady state subject to the taut
condition Fc > 0. From a practical point of view,
such regions characterize predictable and safe ROV
operations.

The boundary of a stability region depends on
the initial vector (d(0), ḋ(0))T , which is assumed
to be equal to (L(0) − b, 0)T in the set of ex-
periments. For specific values of free parameters,
the dynamics can also bifurcate, showing high pe-
riod oscillations or even chaos. To find stability
regions, the three models stated earlier will be
employed.
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Table 1 Design and operation parameters

Design Operation

D: ROV diameter L: cable length
A0: cable cross section ω: wave frequency
m: ROV mass a: wave amplitude
CD(shape): drag coefficient CD(Re): drag coefficient
m∞: added mass Ft: vertical thruster force
E : Young’s modulus b: crane jib elevation

4.1 Free parameters

First, let us distinguish between design and operation
parameters, i.e., those that are fixed in the ROV design
and those that may vary during the operation. These are
listed in Table 1.

Most of them are suitable for the study of nonlinear
oscillations, i.e., the system behavior changes signifi-
cantly with respect to those parameters. So, we define
the parametric space for stability regions with a set of
them conforming the vector

μ = [D, E A0, CD(shape), CD (Re), L , Ft, a, ω]T .

(26)

The ROV mass m and added mass m∞ are
not directly employed in (26) but through
the relations [(m)/(ρ{π D3/6})] = c1 > 1 and
[(m∞)/(ρ{π D3/6})] = c2 = 0.5, respectively, with c1

and c2 being specified constants.
In order to perform simulations for several kinds of

operations and for a wide class of umbilical–ROVs with
spherical shell, the basic settings are prescribed mostly
in intervals (see Table 2).

Due to the large dimension of the free-parameter
space, stability regions are constructed in subspaces
conformed by pairs of components of μ, while each
of their complement is maintained constant. In order
to identify the kind of oscillation, particular stability
regions are shaded so as to indicate orbits with the

same periodicity. Also, each orbit is depicted with a
symbol that identifies its periodicity. The detection of
periodicity is performed according to the identification
method developed previously on the basis of Cauchy
series for a tolerance given by (25).

4.2 Stability according to model 1

To study the taut–slack phenomenon and its stability
properties, simulations are carried out on the basis of
the models (4) and (5).

Figures 10–16 illustrate the stability region in dif-
ferent subspaces corresponding to an experiment series
for a constant drag coefficient, which is the main par-
ticularity of model 1. Generally speaking, it is seen
that the stability region is composed by definition of
behaviors of periodicity 1, termed P1, with a taut con-
dition fulfilled. Outside the stability region, the diver-
sity of behavior is wide, ranging from P1 up to chaos.
The presence of period doubling is not a characteris-
tic of the stability regions, as, for instance, this oc-
curs in related ODEs like the Mathieu and Duffing
quadratic nonlinear differential equations. The reason
for this is the presence of two actuating nonlineari-
ties, i.e., the bilinear and the quadratic characteristics
for the cable force and the drag, respectively. More-
over, the behavior diversity in the subspace is charac-
terized with both odd- and even-high-period oscilla-
tions. This suggests different scenarios of the routes to
chaos.

Figure 10 shows the role of the monochromatic wave
excitation through its parameters a and ω on the system
stability. It is seen that large wave steepness, i.e., (aω)
leads to the phenomenon taut–slack with chaos as one
of the most common behavior in this subspace. The
band between the stability region and chaos is thin and
composed mostly of oscillations P1 and P2.

Figure 11 demonstrates the balance between the
ROV mass through D and cable stiffness for a mid-
dle cable length. Accordingly, one sees that the

Table 2 Basic simulation
parameters Design parameters Span Operation parameters Span

D = 1 m [0.5:2] L = 50 m [1:102]
E A0 = 106 N [105 : 107] ω = 1 rad/s [10−1 : 5]

m
ρ π D3

6

= 1.1 – a = 1 m [0:3]

CD (shape) = 0.2 – CD (Re) See Fig. 3
b = 3 m – Ft = 0 N [−600:600]

Springer



Nonlinear Dyn (2007) 49:163–191 173

0.1 1 5 
0

0.5

1

1.5

2

2.5

3

ω [rad/s] (log)

a
[m

]

P1

taut
P1

t/s
P2 P3 P7P4 P6 Chaos
t/s t/s t/s t/s t/s t/s

Fig. 10 Stability region: wave amplitude vs. frequency for CD =
0.2, E A0 = 106 N, and L = 50 m

10
5

106 1070.5

1

1.5

2

EAo [N] (log)

D
[m

]

P1

taut
P1

t/s t/s t/s t/s t/s t/s t/s t/s t/s
P2 P3 P8P4 P6 P10 ChaosP12

5x105 5x106

Fig. 11 Stability region: ROV diameter vs. cable stiffness con-
stant for CD = 0.2, a = 1 m, ω = 1 rad/s, and L = 50 m

larger the diameter of the ROV, the more elastic
the cable has to be in order to avoid the taut–slack
condition.

Figure 12 shows a marked insensitivity of the os-
cillation with depth. This occurs inside and outside the
stability region, except for superficial depths, for which
the stiffness is high, i.e., where L is small. Generally, if
L is smaller and the stiffness larger, it is more feasible
that the ROV can follow the harmonic motion of the
jib. Conversely, the behavior shows a great sensibility
to wave frequency.

A similar insensitivity, yet not so pronounced as in
the case before, is encountered in the relation of the
depth with the wave amplitude, see Fig. 13. It is noticed
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Fig. 12 Stability region: ROV depth vs. frequency for CD = 0.2,
a = 1 m, and E A0 = 106 N
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Fig. 13 Stability regions: ROV depth vs. wave amplitude for
CD = 0.2, ω = 1 rad/s, and E A0 = 106 N

that a second portion of the stability region emerges at
the right side of the picture for large a and small L .
This suggests a disconnection of both stable portions
in the subspace considered.

Figure 14 shows the effect of the ROV thrust and the
wave excitation on the system behavior about a fixed
depth. Clearly, when Ft > 0 (i.e., the ROV is pulled
down), it is valid that the larger the thruster power, the
larger would be the stability region, even for increasing
wave amplitudes. Conversely, for the thrusters actuat-
ing in the other direction (see at Ft < 0), the ROV is
pulled to the surface and the slack condition arises for
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large Ft. This indicates unstable orbit but unbounded
behavior.

Figure 15 illustrates the effect of the thruster force
on the stability at different depths. It is seen that sta-
ble oscillations occur when the actuators can maintain
sufficiently large cable tension. The same as before is
said for the portion shaded as slack.

The last figure, Fig. 16, depicts similar results as
Fig. 14, i.e., the stability region enlarges for increas-
ing ω and Ft. In general, both figures indicate the fact
that with increasing wave energy in the system (e.g.,
increasing wave steepness) the only way to circumvent
the taut–slack phenomenon is to strengthen the cable
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Fig. 16 Stability region: wave frequency vs. thruster force for
CD = 0.2, a = 1 m, E A0 = 106 N, and L = 50 m

by investing more power in the actuators. Later, we
will illustrate an application of a control system that
can accomplish this goal in which thruster and hoisting
crane will play an important role as actuators to ensure
stability.

4.3 Stability according to model 2

In this section, model (9) and (10) are considered with
the same setup for simulations as in model 1. The main
improvement of model 2 in comparison to model 1 is
the incorporation of a variable drag coefficient with
motion dependence. The experiments are illustrated in
Figs. 17–23.

In general, it is noticed, that the diversity of orbits is
qualitatively broader than in the cases handled before.
This feature was expected due to the complexity of the
nonlinear drag characteristic. Additionally, it is worth
noticing that the limits of the stability regions remain
almost the same as in the earlier case. Particular dif-
ferences will be exalted comparatively with respect to
homologous pictures of model 1.

Figure 17 shows similitudes in the behavior diver-
sity with respect to the homologous case in Fig. 10,
above all, in the zone of small steepness (aω), just
where the motion is not too significant, and accord-
ingly the drag coefficient does not vary too much. This
coincidence is also observed outside the stability region
at many points in which (aω) is considered relatively
small.
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Fig. 18 Stability region: ROV diameter vs. cable stiffness con-
stant for CD variable, a = 1 m, ω = 1 rad/s, and L = 50 m

Similar conclusions are worked out from Fig. 18
with respect to Fig. 11. An obvious difference is the
enlargement of the stability region for small D and
large stiffness.

Figure 19 illustrates a marked insensitivity of the
oscillation with respect to the length. The difference
here with respect to the homologous case in Fig. 12 is
that the diversity in the frequency is higher.

Similar conclusions are deduced from Fig. 20 with
respect to Fig. 13. The variant here is that the chaotic
zone is broader, and periodic solutions of odd periodic-
ity are more common, whereas in the previous homol-
ogous case, the solutions were mostly of even period.
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Fig. 19 Stability region: ROV depth vs. frequency for CD vari-
able, a = 1 m, ω = 1 rad/s, and E A0 = 106 N
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Figure 21 and the related homologous Fig. 14 are
similar. In addition to a qualitatively more varied scene,
it worth mentioning that the stability region and its
adjacent band of P1 solutions are wider than in the
homologous case mentioned earlier.

The two next figures, Figs. 22 and 23, illustrate the
influence of the thruster force on the stability in re-
lation to L and a, respectively. The stability regions
are slightly different in comparison to those of their
homologous cases in Figs. 15 and 16. However, the
differences are significant outside the regions. Never-
theless, the order of the diversity in homologous cases
is not too different.
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4.4 Stability according to model 3

Finally, model (17) and (18) is simulated under the
same scheduling as the former models. Apart from hav-
ing a motion-dependent drag coefficient like model 2,
the improvement provided by this model is the con-
sideration of the potential radiation force Fr. As this
force is significant mainly for shallow waters, the ex-
periments are focused on lesser depths varied stepwise
from 1 up to 5 m. The stability region is investigated in
the subspace a versus ω only. The pictures of model 3
and its homologous from model 2, both are put in the
same frame for direct comparison.
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Fig. 24 Stability regions: wave amplitude vs. wave frequency
for CD variable, E A0 = 106 N, and L = 4 m. (Top) Simulation
without radiation force. (Bottom) Simulation with radiation force

Figure 24 considers the oscillatory behaviors at a
depth of 1 m. The stability region enlarges compara-
tively slightly with consideration of Fr, but the diversity
outside this region is different in the periodicity. How-
ever, the chaotic behaviors remain in the same positions
in the space.

Figure 25 depicts a scenario at a depth d = 2 m.
This is characterized by equal stability regions with
and without Fr and almost identical variations in the
periodicity in both the cases. The chaotic region is com-
paratively slightly different.

Figure 26 illustrates the periodicity at a depth d =
5 m comparatively. The stability regions are slightly
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Fig. 25 Stability regions: wave amplitude vs. wave frequency
for CD variable, E A0 = 106 N, and L = 5 m. (Top) Simulation
without radiation force. (Bottom) Simulation with radiation force

different. Also, the regions with presence of chaos are
very similar. The periodicity changes at some specific
points only; however, it is not so abrupt when consid-
ering Fr.

We can conclude that radiation forces have an in-
significant influence in the system dynamics for depths
d ≥ 5 m. As the usual depths of the ROV in the op-
eration are much larger than this limit, it is inferred
that model 2 is sufficiently accurate for the analysis
intended in this paper.

5 Taut/slack control

In the sinking/lifting operation, the taut state of the
cable describes actually the less stressed condition
from the viewpoint of magnitude of strength and fa-
tigue. This can be inferred from a case study in Fig. 27,
where the evolution of the cable force is shown to travel
from the taut through the taut–slack state. This qualita-
tive change occurs during the transient behavior and is
typically characterized by abrupt and hefty increments
of the force magnitude due to accelerations of the up-
per extreme of the cable during the slack condition fol-
lowed by violent yanks when the cable tows the ROV
again. This scenario takes place at higher frequencies,
depending of the natural frequency of the mass–spring
system constituted by ROV and cable. The shorter the
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Fig. 26 Stability regions: wave amplitude vs. wave frequency
for CD variable, E A0 = 106 N, and L = 8 m. (Top) Simulation
without radiation force. (Bottom) Simulation with radiation force

cable length, the larger will be the frequency of the taut–
slack state evolution. Also, the maximal magnitude of
the force in the taut–slack condition depends directly
on the magnitude of the wave steepness (aω).

Another advantage of preserving the taut state in
the operation is the more predictable evolution of the
ROV trajectory than under the taut–slack state. From
Figs. 10–23, it is clearly seen that the system behavior
is always periodic P1 in the taut condition and that
generally this periodic evolution turns unstable with
high periods inclusive of chaos under the presence of
the taut–slack phenomenon.

Bearing in mind the mentioned advantages, an ap-
propriate control law for the sinking/lifting process is
consequently given to care for the limit cable stress
and simultaneously to maintain the taut condition. Ad-
ditionally, a practical requirement by the descent or
ascent of the unit is to minimize the times required for
these operations.

Springer



178 Nonlinear Dyn (2007) 49:163–191

t [s]

F
c

[N
] 

0

2000

4000

6000

0 100 200 300 400 500 600

1000

3000

5000

taut taut /slack

Fig. 27 Evolution of the cable force for a wave amplitude
a = 0.1 m, frequency ω = 1.87 rad/s, stiffness constant E A0 =
106 N, and cable length L = 50 m

To achieve these control objectives, the hoisting
crane system and the ROV thrusters are involved in a
controller design. They must properly be synchronized
in a simultaneous, optimal, and secure form for reach-
ing the desired depth in short times. In return, it would
be expected that the benefit of any controlled operation
be a significant extension of the stability regions with
respect to the uncontrolled system.

To this end, the control system can be conceived
as a dynamic system with two inputs, namely the set
points dref and Fcref for depth and a suitable cable
strength, respectively, and an unavoidable wave per-
turbation a sin(ωt). However, it would have three mea-
surable outputs, namely the ROV velocity ḋ , the cable
length L , and the cable tension Fc (see Fig. 28).

So, the control strategy can be achieved with the help
of two mechanisms. First, the cable tension is regulated
from both extremes using controllers on the crane mo-
tor and the ROV thrusters, respectively. Second, in or-
der to track the desired trajectories for ascent/descent
fast and accurately, the ROV velocity is controlled sep-
arately. All controllers are nonlinearly coupled through
multiple feedbacks, as seen from the proposed structure
in Fig. 28.

Notice that the main cause of the taut–slack phe-
nomenon is the wave perturbation. Higher the energy
of the wave, the more accentuated is the phenomenon.
For monochromatic waves, the mean energy is pro-
portional to (ωa)2. Since the actuators can produced a
limited energy for reaching levels of thrust and veloc-
ity, the effectiveness of any control system will be obvi-
ously restrained by a specified maximal wave steepness
(ωa).

5.1 Nonlinear control law

To achieve the control goal, a 2-degree-of-freedom con-
trol law is proposed with a control action vector

u(t) = [ut(t), ucr(t)]T, (27)

where ut is the thruster voltage and ucr the crane motor
voltage (see Fig. 28).

The set point for cable stress Fcref is defined as a
fraction of the fracture tension. The cable force has to be
dynamically regulated around this set point, avoiding
the slack of the cable.

Considering model 2, the nonlinearities of the dy-
namics in the terms of Equations (9) and (10) are in-
cluded in the forces and moments, namely

Fv = −πρD2

8
CD(ḋ) ḋ|ḋ| (28)

Fc =
{

− E A0

L
z, for z ≥ 0

0, otherwise
, with

z = d − L + b − a sin(ωt) (29)

Ft =

⎧⎪⎪⎨⎪⎪⎩
Kt

s2+γ1s+γ0
ut|ut|, for ut ∈ [ut min, ut max]

Ft min, for ut ≤ ut min

Ft max, for ut ≥ ut max

(30)

Mcr =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k1s
La J
k1k2

s2 + Ra J
k1k2

s + 1
ucr, for ucr ∈ [ucr min,

ucr max]

Mcr min, for ucr ≤ ucr min

Mcr max, for ucr ≥ ucr max

,

(31)

where γ0 and γ1 are coefficients of the thruster motor
dynamics, Kt is its gain, Mcr the moment of the crane
drum, La and Ra the armature inductance and resistance
of the crane motor, respectively, J the moment of iner-
tia, r the radius of the wrapping drum, k1 the transfer
gain between the armature current and the drum an-
gular acceleration, and k2 the transfer gain between
the drum angular speed and the back emf. The coeffi-
cients, ut min, ut max, ucr min, and ucr max are the limiting
saturation values of the thrusters and crane motor, re-
spectively.
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The nonlinearity (28) is nonconvex over an interval
that depends on the ROV diameter (see Fig. 5). Addi-
tionally, it is only two times derivable with respect to
ḋ because of the singularity at ḋ = 0. Similarly, it oc-
curs with the nonlinearities (29) and (30), whose high
derivatives do not exist at z = ut = 0 with respect to
z and ut, respectively. Because of the lack of smooth-
ness, nonlinear controls based on differential geome-
try cannot be applied to achieve the control objectives.
However, a great part of such nonlinear dynamics can
be cancelled using nonlinear feedback, as shown next.

To regulate the cable tension, two controllers are
employed, one for each extreme (see Fig. 28). The
cable force controllers are driven by the force error
ef = Fcref − Fc and generate corrections termed as δ L̇
and δḋ for the crane system and the ROV thrusters,
respectively.

For these specific tasks, the equilibrium stress point
of the cable given by the restriction

ḋ − L̇ − aω cos(ωt) = 0, (32)

is modified to

ḋ − L̇ − aω cos(ωt) = δḋ, (33)

with the property∫ ∞

0
|δḋ|dt = c1 (34)

and c1 > 0 being a constant for a bounded response.
In this way, the lower point of the cable is then tensed
conveniently by selecting the function δḋ(t). Similarly,
for the upper extreme, it is valid

ḋ − L̇ − aω cos(ωt) = δ L̇, (35)

with∫ ∞

0
|δ L̇|dt = c2 (36)

and c2 > 0 being another constant for a bounded re-
sponse. In the same way, the upper extreme of the
cable is then tensed conveniently by selecting the
function δ L̇(t). Thus, the energy deployed by the ca-
ble force controllers for damping down a spurious is
finite.

However, since forces (28) and (30) are involved
in the ROV dynamics, the ROV velocity controller
can compensate these nonlinearities in order to accom-
plish high-quality performance, mainly in the noncon-
vex zone of (28).

Finally, measurement of Fc, L , and ḋ is necessary
for the implementation of the control law (27). Addi-
tionally, the motion of the crane jib, i.e., a sin(ωt), must
also be known, at least roughly. Another general req-
uisite in the design is that the use of high derivatives
in the control law design would be avoided as far as
possible.
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5.2 Design of a ROV velocity controller

In order to reach a high-quality control of the ROV
kinematics, we focus the design of a reference con-
troller with a tunable reference dynamics. A realizable
control law is proposed which is able to force the ROV
velocity ḋ to track an auxiliary velocity ḋm , which is
the output of a reference dynamics given by

ḋm = β0

�(s)
ḋref, (37)

where ḋref is a piecewise continuous and bounded
reference signal of the control system, β0 a gain,
and �(s) a Hurwitz polynomial, whose order will be
determined next.

Denoting υ = ut|ut| as the auxiliary control action
of the thrusters and taking (9), (10), and (30) into ac-
count, one gets a basic equation of the system dynamics
for controller design

υ = m + m∞
Kt

(s2 + γ1s + γ0) d̈

+ πρD2

8Kt
(s2 + γ1s + γ0)CD(ḋ)ḋ|ḋ|

− (s2 + γ1s + γ0)
1

Kt
Fc − γ0

m − πρD3

6

Kt
g.

(38)

The last equation manifests a differential relation of
third order with a high degree of nonlinearity between
ḋ and υ. So, the order of �(s) has to be 3 in order for
the reference dynamics to have a relative degree equal
to the order of the system dynamics. Thus,

�(s) = s3 + α2s2 + α1s + α0, (39)

where the coefficients of αi determine the desired be-
havior of the reference dynamics.

In order to achieve the model-following objective
(37) according to the structure in Fig. 28, a suitable
control law must combine similar linear and nonlinear
terms in (38) according to

υ = θ1

� f
υ + θ2

� f
ḋ + θ3

� f
Fv + θ4

� f
Fc + θ5

� f
d̈

+ θ6

� f
Ḟv + θ7

� f
Ḟc + θ8

� f
F̈v + θ9

� f
F̈c + θ10 ḋ

+θ11 Fv + θ12 Fc + θ13 d̈ + θ14 Ḟv + θ15 Ḟc

+ θ16 F̈v + θ17 F̈c + θ18 + θ19 ḋref, (40)

where θi are the controller coefficients, Fv =
−CD(ḋ) ḋ|ḋ|, and � f is an adjustable Hurwitz poly-
nomial, for instance, of the simple form

� f = s + a0, (41)

whose minimal order helps to minimize the number of
θi necessary to achieve the objective.

Hence, the control action is obtained through the
inverse relation

ut = sign(υ)
√

|υ|, (42)

which is subject to saturation according to (30).
From (40) and using � f ḋref = (� f �ḋ)/β0, one

gets

(� f − θ1)υ = θ2ḋ + θ3 Fv + θ4 Fc + θ5d̈ + θ6 Ḟv

+ θ7 Ḟc + θ8 F̈v + θ9 F̈c + θ10� f ḋ

+ θ11� f Fv + θ12� f Fc + θ13� f d̈

+ θ14� f Ḟv + θ15� f Ḟc + θ16� f F̈v

+ θ17� f F̈c + θ18a0 + θ19� f � ḋ/β0,

(43)

and with (38) one achieves

(� f − θ1)υ = m + m∞
Kt

(� f − θ1)(s3+ γ1s2 + γ0s) ḋ

+ πρD2

8Kt
(� f − θ1)(s2 + γ1s + γ0)Fv

− (� f − θ1)

(
1

Kt
s2 + γ1

Kt
s + γ0

Kt

)
Fc

− γ0
m − πρD3

6

Kt
g(a0 − θ1). (44)

Equaling both the last expressions, one obtains a
set of four equations to determine the controller coef-
ficients of θi , namely:
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(1) a relation associated with a polynomial in ḋ

⎡⎢⎢⎢⎢⎢⎢⎣

m+m∞
Kt

m+m∞
Kt

(γ1 + a0)
m+m∞

Kt
(γ0 + a0γ1)

m+m∞
Kt

a0γ0

0

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
β0

m+m∞
Kt

0 0 0 0 α2+a0
β0

(m+m∞)γ1

Kt
0 0 0 1 α1+a0α2

β0
(m+m∞)γ0

Kt
0 1 1 a0

α0+a0α1
β0

0 1 0 a0 0 a0α0
β0

⎤⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1

θ2

θ5

θ10

θ13

θ19

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (45)

(2) a relation associated with a polynomial in Fv

⎡⎢⎢⎢⎢⎢⎣
πρD2

8Kt

πρD2

8Kt
(γ1 + a0)

πρD2

8Kt
(γ0 + a0γ1)

πρD2

8Kt
a0γ0

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 0 0 0 0 0 1

πρD2

8Kt
0 0 1 0 1 a0

πρD2

8Kt
γ1 0 1 0 1 a0 0

πρD2

8Kt
γ0 1 0 0 a0 0 0

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1

θ3

θ6

θ8

θ11

θ14

θ16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (46)

(3) a relation associated to a polynomial in Fc⎡⎢⎢⎢⎢⎣
− 1

Kt

− (γ1+a0)
Kt

− γ0+a0γ1

Kt

− a0γ0

Kt

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 0 0 0 0 0 1

− 1
Kt

0 0 1 0 1 a0

− γ1

Kt
0 1 0 1 a0 0

− γ0

Kt
1 0 0 a0 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1

θ4

θ7

θ9

θ12

θ15

θ17

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (47)

(4) a relation associated with the independent term

[
−γ0

m− πρD3

6
Kt

ga0

]
=

[
−γ0

m− πρD3

6
Kt

g a0

] [
θ1

θ18

]
. (48)

As seen in (45)–(48), there exist more unknowns
than equations for the identification of the coefficients
of θi . Equation (45) describes an overparametrized sys-
tem with one free parameter and five unknown parame-
ters. Similarly, (46) and (47) have three free parameters
and four unknowns each, and (48) has one free param-
eter and one unknown. The problem now is to decide
which coefficients would be free and which one would
be unknown.

An analysis carried out in (45) reveals that either
θ1 or θ13 or θ19 should not be fixed, since the problem
would become singular. However, choosing θ2 or θ5 or
θ10, the determination of the rest should be viable. As
θ1 is calculated by (45), then (46) and (47) will con-
tain only two free parameters each. It is observed that
θ16 and θ17 are irremovable in (46) and (47), respec-
tively, and that the pairs {θ8, θ14} and {θ15, θ9} cannot
be eliminated due to singularity.

However, only those parameters that are involved in
terms with high derivatives are to be potentially elim-
inated. Under this criterion, for instance, θ5, θ6, θ7, θ8,
and θ9 can be eliminated. This, basically, leads to a
minimal and optimal configuration of the controller co-
efficients.
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Besides, there exists a last requirement of damp-
ing down transients when the controller starts from an
equilibrium point at t = 0. For instance, this can be
achieved by imposing ν(0) = 0. From (40), it is seen
that for all derivatives and filtered variables equal to
zero at t = 0, another condition emerges between θ12

and θ18, e.g.,

υ(0) = θ12 Fc(0) + θ18

= 0
(49)

So, from the set of redundant parameters {θ5, θ6, θ7,

θ8, θ9}, one chooses the parameter that is able to ac-
complish minimal-set design and long-term transient
elimination simultaneously. A glance at (40) reveals
that θ7 is the more suitable parameter because it in-
volves a filtered first derivative of Fc, while the others
are embedded in terms involving higher derivatives of
variables. In this way, υ(0) = 0.

Bearing in mind this reason, one concludes that the
minimal-set selection yielding

υ = θ1

� f
υ + θ2

� f
ḋ + θ3

� f
Fv + θ4

� f
Fc + θ7

� f
Ḟc

+ θ10ḋ + θ11 Fv + θ12 Fc + θ13d̈ + θ14 Ḟv + θ15 Ḟc

+ θ16 F̈v + θ17 F̈c + θ18 + θ19ḋref (50)

is quite suitable. Then, the control action results from
(42), with (50) and saturations given in (30).

It is worth noticing that the employment of an ob-
server is necessary to obtain high derivatives of ḋ , Fv,
and Fc, since these are commonly not measurable. For
this purpose, a nonlinear observer is described in [15].

5.3 Force controllers

The cable strength is controlled from the upper and
lower extremes of the cable according to the structure
proposed in Fig. 28. From (33), one sees that the lower
extreme of the cable can be tensed by defining a per-
turbation δḋ(t) about the equilibrium point of the cable
force defined by (32). Taking the nonlinearity (29) also
into account, a PD controller will be able to generate
δḋ. However, its gain has to be variable to compensate
the cable length changes. Thus,

δḋ(t) = (d(t) + b)
(
K P1 + K D1 s

)(
Fcref − Fc

)
. (51)

Similarly, using (35) and (29) for the upper extreme
of the cable, the crane motor will be perturbed by act-
ing directly on its voltage by means of another PD con-
troller, which generates

δ L̇(t) = (d(t) + b)
(
K P2 + sK D2

)(
Fcref − Fc

)
. (52)

In both the cases, the PD controller parameters are
set constant for a desired behavior of the cable ten-
sion. The tuning of these four coefficients is performed
simultaneously by numerically optimizing a quadratic
cost functional of the force error. To this end, the model
reference (37) is employed directly instead of the cin-
ematic control system described in the previous sec-
tion, i.e., one assumes ḋ = ḋm . Moreover, the parame-
ter tuning is performed for a monochromatic perturba-
tion of the wave with amplitude a = 1 m and frequency
ω = 0.55 rad/s. The well-known robustness of the PD
controllers is taken as an argument to achieve a good
control performance for other settings of the wave in
the real control system.

Finally, a fixed PD controller is applied for the hoist-
ing crane (see Fig. 28) with equation

ucr(t) = (
K P3 + sK D3

)
(L ref − L). (53)

The controller coefficients are tuned in the control
loop of the hoisting system separately from the control
loop of the umbilical–ROV system. For this purpose,
the model in (31) with saturations is taken into account.

5.4 Summary of control components

The components of the controlled umbilical–ROV sys-
tem are summarized in Table 3.

In order to simulate the controlled umbilical–ROV
system in a wide range of heave operations, the con-
trollers and actuators are selected with design param-
eters given according to Table 4. Other settings are
indicated in the figures that illustrate the results.

The dynamic model used in the numerical simula-
tions is model 2.

6 Control stability

The taut–slack control system described in the previous
section is simulated and its steady-state dynamics are
compared with the uncontrolled dynamics for identical
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Table 3 Control system
components Control components Input (s) Output (s) Equation

Umbilical–ROV

{
L
ut

{
Fc

ḋ

⎧⎨⎩
(4), (5)
(9), (10)
(17), (18)

Propulsion system ut Ft (30)
Crane ucr L (31)

Cinematic controller

⎧⎨⎩
ḋref

ḋ
Fc

ut (42), (50)

Reference model ḋref ḋm (37), (39)
Force controller 1 Fcref − Fc δ L̇ (52)
Force controller 2 Fcref − Fc δḋ (51)
Crane controller L ref − L ucr (53)

Table 4 Parameter settings for simulations

System component Coefficient set Values in S.I. units

Reference model {Km , α2, α1, α0} {6.498, 4.80, 9.01, 6.498}
Kinematic controller {θ1, θ2, θ3, θ4, θ7, θ10, θ11, θ12, {−3.80, −767.78, 359.89, −1.96 × 10−13, 0.89, 111.32, 94.70,

θ13, θ14, θ15, θ16, θ17, θ18, θ19} −1.12, −708.17, 227.30, −0.56, 47.35, −0.11, −594.42, 656.45}
Hoisting crane motor

{
k1,

La J
k1k2

, Ra J
k1k2

}
{0.015, 0, 5}

Force controller 1 {K P1 , K D1 } {0.0016, 4.5 × 10−14}
Force controller 2 {K P2 , K D2 } {0.0021, 0.0034}
Crane controller {K P3 , K D3 } {1700.0, 1320.0}
Propulsion system {Kt, γ1, γ0} {8.5, 1, 2}
Thruster voltage saturation {ut min, ut min} {−12, 12}
Crane voltage saturation {ucr min, ucr min} {−110, 110}
Umbilical cable {E A0, b} {106, 3}
ROV dynamics {D, m} {1, 590.36}
Hydrodynamics {m∞, ρ, CD(Re)} {268.35, 1025, Equation (7)}

values of their common parameters. As given in Sec-
tion 4, most of these parameters are suitable for a bifur-
cation study and to establish stability regions free of the
taut–slack phenomenon. Similarly, here, the parametric
space for determining stability regions is defined as

μ = [a, ω, D, E A0, L]T, (54)

where Ft is not longer available as free parameter,
since it is regulated by the ROV cinematic and force
controllers.

The detection of high periods is carried out in the
same way as done in Section 3. Similarly as shown
earlier, the zone drawn in shades corresponds to regions
where the cable remains taut, at least in steady state,
for a monochromatic perturbation.

Figure 29 depicts the qualitative diversity of be-
havior that can be produced in the heave operation
under the control system with respect to the wave

amplitude. In this sense, it is noticed that the variety
of periodic solutions has been increased inside and
decreased outside the stability region in comparison
with homologous case without control. Additionally,
one observes that the control imposes a tendency to
chaos, however, with damped energy. A significant in-
crement of the stable region L versus a is observed.
One important property of the results shown in Section
3 is that the stability region is exclusively represented
by period-1 solutions. Now in the controlled case, the
appearance of high-period orbits and even chaos are
common.

Figure 30 shows also a significative extension of the
stability region d versus ω with the same characteristic
as before. The tendency to chaotic behaviors is found
out inside and outside the stability region mainly for
small and middle cable lengths.

Figure 31 illustrates the stability in the region a ver-
sus ω at a mean depth. The increment of the stability
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Fig. 29 Comparison of stability regions: ROV depth vs. wave
amplitude for E A0 = 106 N and ω = 1 rad/s. (Top) Without con-
trol. (Bottom) With control

region is registered mainly for small wave amplitudes
and large frequencies. The reason for the control not
being so effective is pointed out in the previous sec-
tion about the limited energy of the thrusters and
crane motor, which are able to cope with a restrained
wave steepness (ωa). The behavior diversity has not
changed too much comparatively inside the stability
region.

Figure 32 shows the region D versus E A0 for a given
wave and depth. It reflects the dependence between
ROV weight and volume, and cable stiffness. Also, in
this case, it was possible to obtain an extension of the
stability region. It is inferred that a great volume with
a relatively small cable stiffness is easy to control than
is otherwise possible.
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Fig. 30 Comparison of stability regions: ROV depth vs. wave
frequency for E A0 = 106 N and a = 1 m. (Top) Without control.
(Bottom) With control

The appearance of chaotic behaviors is very com-
mon in the controlled case even in the stability region.
One strange attractor is depicted in Fig. 33 with a cross
section of its volume for d̈ = −10 m/s2. The attractor
shape is very common for other points considered in
the study.

7 Control performance

In this section, an investigation of the overall control
performance of the system in the sinking/lifting opera-
tion is presented. The first experiments consist of pre-
scribing a profile of the desired depth to be followed
in the shortest possible time, explaining the maximal
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cable strength and avoiding the entry into the taut–slack
region as far as possible.

In Figs. 34–37, the profiles of the reference L ref are
the same and are built up as ramps for sinking up to
100 m from a starting depth L = 15 m (i.e., d = 12 m),
pausing and lifting again to the same depth as in the
beginning. The dynamics are subject to different per-
turbations explained in the next.

In Fig. 34, the wave steepness amounts to (aω) =
0.275 m rad/s. The cable force is regulated about the
value Fref = 526 N. It is seen that the force controllers
are able to maintain the oscillations that are quite
small about this reference point. The cable tension
fluctuates mainly about singular points of the profile,
i.e., when L̇(t) is discontinuous, otherwise it behaves
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Fig. 32 Comparison of stability regions: ROV diameter vs. stiff-
ness constant for L = 50 m, ω = 1 rad/s, and a = 1 m. (Top)
Without control. (Bottom) With control

smoothly. The ROV velocity ḋ is underdamped during
the changes. Notice that ḋ has a similar path as the ref-
erence velocity ḋref, except during a short period with
high-frequency oscillations caused by transients of the
equivalent mass–spring system. Figure 35 shows the
evolution of the control actions on the ROV thrusters
and crane motor, respectively. The first one shows an
increment of the energy of ut with even a saturation for
a short time. On the other side, the control action for
the crane motor shows a continuous oscillatory behav-
ior with steps at the break points of L ref. The frequency
of these oscillations correspond to the wave frequency,
indicating that during the sinking/lifting of the ROV, the
crane motor attempts to follow the wave perturbation in
order to care for the cable strength and simultaneously
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Fig. 33 Construction of a strange attractor for the control system
behavior with a = 0.45 m, ω = 4.11 rad/s, E A0 = 106, and L =
50 m. Cross section for d̈ = −10 m/s2

Fig. 34 Evolution of the ROV cable length, cable force, and
ROV velocity for a = 0.5 m, ω = 0.55 rad/s, and E A0 = 106 N

diminish the error (dref − d). In summary, the over-
all achievable performance in this operation is of high
quality.

The next experiment, illustrated in Figs. 36 and
37, exemplifies the control behavior under a larger
wave steepness than in the previous case. It amounts
(aω) = 0.4125 m rad/s. The cable force is regulated as
before about the value Fref = 526 N. In this case, the
oscillation of the force in the transient phase is stronger
than in the earlier case but less than 20% of the refer-
ence value. The ROV velocity ḋ behaves more irregu-
lar than in the former case, but the overall performance
of the operation is nevertheless very good. The evolu-
tion of the thruster excitation ν saturates during the as-
cent and descent, and turns off in the pause. However,

Fig. 35 Evolution of the cable length, square tension of the
thrusters, and tension of the crane motor for a = 0.5 m, ω =
0.55 rad/s, and E A0 = 106 N

Fig. 36 Evolution of the cable length, cable force, and ROV
velocity for a = 0.75 m, ω = 0.55 rad/s, and E A0 = 106 N

the control action for the crane motor saturates from
time to time, sometimes recovering the low-frequency
oscillation with a wave-shaped appearance. The error
(L ref − L) is mainly perceived in the starting phase,
after an ascent or descent; however, it amounts a max-
imal value less than 5% of the total change of the
length.

The next couple of Figs. 38–41 show the control
performance for the regulation operation about a fixed
depth dref = L ref − b = 47 m under wave perturba-
tions.

In the first case, the control variables L , Fc, and
ḋ show relatively small variations along the time for
a wave steepness (aω) = 0.387 m rad/s. Also, here,
the effect of the wave perturbation can be seen in
the steady-state oscillation. The control action for the
thrusters has a fundamental component in the wave
frequency and a small high-frequency oscillation pro-
duced by the elongation of the cable. This effect does
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Fig. 37 Evolution of the cable length, square tension of the
thrusters, and tension of the crane motor for a = 0.75 m, ω =
0.55 rad/s, and E A0 = 106 N

Fig. 38 Evolution of the cable length, cable force, and ROV
velocity for a wave amplitude a = 0.45 m, frequency ω =
0.86 rad/s, and E A0 = 106 N

not appear by the control action for the crane motor,
whose behavior is sine-shaped.

Figures 40 and 41 depict the control performance
for a significative larger wave steepness (aω) than the
case before, equal to 0.645 m rad/s. In this case, the be-
havior becomes chaotic for all variables; however, the
control goal of maintaining the cable tense is achieved.
Despite the almost permanent saturation of the control
action for the thrusters, the depth and length errors are
less than 2% of the reference values and the taut–slack
phenomenon is quite afar.

8 Cable tension

The presence of the taut–slack phenomenon during the
sinking/lifting operation of the ROV demands a sig-
nificant stress resistance from the umbilical cable. The
rampant rising and large strengths may not only be the

Fig. 39 Evolution of the cable, length, square tension of the
thrusters, and tension crane motor for a wave amplitude a =
0.45 m, frequency ω = 0.86 rad/s, and E A0 = 106 N

Fig. 40 Evolution of the cable length, cable force, and ROV
velocity for a wave amplitude a = 0.75 m, frequency ω =
0.86 rad/s, and E A0 = 106 N

cause of premature fatigue but also of overcoming the
cut resistance of the cable. In this section, the cable
tension is analyzed in qualitatively different stationary
behaviors of the ROV operation. To this end, some se-
lected scenarios of the Figs. 29–32 are picked up and
their corresponding comparative force evolution is de-
picted. The comparison involves the uncontrolled and
the controlled systems in a common figure.

Figure 42 reproduces the evolution of the forces for
a relatively small wave steepness equal to 0.28 m rad/s.
After a transient period, the uncontrolled system enters
the taut–slack zone with evidence of hefty hauls of the
cable. In contrast, the controlled system can success-
fully regulate the force about the reference in the taut
zone.

The next four figures illustrate the force evolution
for a relatively large wave amplitude equal to 0.75 m
and high frequencies, ranging from 0.86 to 1.27 rad/s,
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Fig. 41 Evolution of the cable, length, square tension of the
thrusters, and tension crane motor for a wave amplitude a =
0.75 m, frequency ω = 0.86 rad/s, and E A0 = 106 N
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Fig. 42 Cable force comparison for a = 0.15 m, ω =
1, 87 rad/s, and L = 50 m. (Top) Without control. (Bottom) with
control

and lengths in the span starting at L = 4.12 up to 50 m.
Figure 43 represents the force progressing under a
wave steepness of (aω) = 0.645 m rad/s. Similarly as
before, in the control system, the cable remains tense
and the force regulated within a relatively narrow
band, while the uncontrolled dynamics of the system
produces large and stark increments of the tension circa
10 times larger than in the controlled case. Figures 44
and 45 characterize a similar situation for an increment
of the wave steepness to (aω) = 0.75 m rad/s and
two different lengths. Notice that the control of the
cable tension becomes more difficult with increasing
lengths; however, despite the increment in the error
energy, the tension remains within a band without the
appearance of the taut–slack phenomenon. Figure 46
shows the wave steepness (aω) = 0.9527 m rad/s. This
seems to be too large with respect to energy available
in the actuators to achieve the control goal. Thus,
the taut–slack phenomenon cannot be avoided in the
uncontrolled system as well. Additionally, one notices
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Fig. 43 Cable force comparison for a = 0.75 m, ω =
0, 86 rad/s, and L = 50 m. (Top) Without control. (Bottom) With
control
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Fig. 44 Cable force comparison for a = 0.75 m, ω = 1 rad/s,
and L = 4.12 m. (Top) Without control. (Bottom) With control
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Fig. 45 Cable force comparison for a = 0.75 m, ω = 1 rad/s,
and L = 47, 66 m. (Top) Without control. (Bottom) With control

much more hefty oscillations in the controlled case
than in the uncontrolled case.

The next three figures, Figs. 47–49, illustrate the
force evolution for a greater wave amplitude than in the
previous cases but with smaller wave frequencies. The
wave energy remains constant in all the cases. They ex-
emplify the same experiments as earlier but with three
different lengths of L = 14.22, 47.66, and 73.80 m. In
these runs, the control system can regulate the force
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and L = 50 m. (Top) Without control. (Bottom) With control

F
c

[N
]

t [s] 

F
c

[N
] 

0

5000

10000

15000

20000

25000

50 100 150 200 250 300 350 4000

t [s] 
50 100 150 200 250 300 350 400

0
200
400
600
800

1000
1200

0

Fig. 47 Cable force comparison for a = 1 m, ω = 0.85 rad/s,
and L = 14.22 m. (Top) Without control. (Bottom) With control

F
c

[N
] 

F
c

[N
] 

t [s] 

0
2000
4000
6000
8000

10000
12000

50 100 150 200 250 300 350 4000
t [s]

50 100 150 200 250 300 350 400
0

200

400

600

800

1000

0

Fig. 48 Cable force comparison for a = 1 m, ω = 0.85 rad/s,
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satisfactorily; however, one notices that by increasing
of the length, the limit for cable slackness will be closer.

Figure 50 displays an extreme situation where the
wave steepness amounts a relatively large value of
(aω) = 0.903 m rad/s for a middle length. Here, the
control system works successfully; however, the op-
eration stays within the limit of the cable slackness.

Summarizing, in the majority of the experiments,
the control system had success in reaching the control
goals. In contrast with the operation of the free system,
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Fig. 49 Cable force comparison for a = 1 m, ω = 0.85 rad/s,
and L = 73.80 m. (Top) Without control. (Bottom) With control
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Fig. 50 Cable force comparison for a = 1.05 m, ω =
0, 86 rad/s, and L = 50 m. (Top) Without control. (Bottom) With
control

whose dynamics enters usually the taut–slack zone pro-
ducing violent hauls of the cable, the control system can
accomplish length path-following and regulation quite
satisfactory with bounded cable force.

9 Conclusions

In this paper, the stability of an umbilical–ROV sys-
tem under nonlinear oscillations in heave motion was
analyzed using numerical methods for the uncontrolled
and controlled cases comparatively. The focus is mainly
on the appearance of the taut–slack phenomenon on
the umbilical cable produced by the interaction of
monochromatic waves with the ROV. Nonlinear ele-
ments were considered in the dynamics in three models
with different degrees of physical knowledge. These
encompass nonlinear drag damping, bilinear restor-
ing force, radiation potential forces, and saturation of
the actuators. It is concluded that the most complex
model including all nonlinear elements produces the
widest qualitatively diverse behavior in steady state,
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even when the integration of radiation forces only con-
tributes with improvements at superficial depths. In or-
der to simplify the analysis, a ROV with spherical shape
was selected and a nonlinear drag characteristic for this
shape was introduced in the model. This characteris-
tic varies with the Reynolds number and presents a
nonconvex zone just in the span of the operating ROV
velocities.

The sinking/lifting operation in a wide interval of
the cable length is characterized by the appearance
of the taut–slack phenomenon, which is described by
hefty hauls of the cable with tension magnitudes close
to the tolerable limits. This unpredictable behavior
was observed in simulations of the uncontrolled ROV
dynamics, mainly for significant wave steepness and
great depths of operation. In the paper, a solution via
control to avoid this phenomenon and in consequence
its negative effects on the cable strength. The control
system design is based on the composition of two crite-
ria. First, the cable strength is regulated about a desired
secure tension by pulling the extremes of the cable by
means of the crane motor and ROV thrusters interac-
tively and independently of the sinking/lifting profile.
The second criterion is to design a velocity controller
for the ROV that can compensate the nonlinearities
of the drag coefficients and restoring force. This was
achieved by means of a reference-model controller that
specifies the desired reference behavior by means of a
dynamic model of third order. The features of diverse
operations in steady state by means of the controlled
system and the free system are comparatively investi-
gated under equal perturbations and parameter settings.

The comparative stability study is performed using
physical bifurcation parameters and detection methods
of high periods based on Poincaré maps and analysis
of Cauchy series. The bifurcation parameters are di-
vided into two sets, namely operation parameters (cable
length, wave amplitude and frequency, thruster force)
and design parameters (ROV shape, mass, and cable
stiffness). One of the main results is the construction
of stability regions that are free of these phenomenon
on the free parameter space. They indicate a qualitative
diversity in the behavior and possible routes to chaos
from the stability regions to outside.

From the results, it was clear that stability regions
can be extended considerably with the use of control,
e.g., the control system can avoid the slackness of the
cable in a heave operation despite the presence of wave
perturbations. A uniqueness of the system is that sta-

bility regions can exhibit not only period-1 behaviors
but also chaotic dynamics. The reason for this is the
dominance of the restoring force of the cable against
the hydrodynamic drag force. The limits between the
taut and taut–slack zones are significantly influenced
by the wave steepness, whose square value represents
the energy of the perturbation. From a practical point of
view, the effectiveness of the control system proposed
here begins to fall off when the energy of the actuators
is not sufficient to counteract the amount of the energy
of the perturbation.

Future work is dedicated to the analysis of the phe-
nomenon “taut–slack” in 3 degree of freedom in the
operation of ROVs in estuaries, where the umbilical
cable exerts harmonic tugs due to combined effects
of steep waves with strong currents. The study of this
dynamics is important in the design of vision control
systems in order for the vehicle to maintain specified
courses with constant attitude and pitch angle. After-
wards, this analysis will be complemented with exper-
imental research in flow canal.
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censo/descenso. In: Proceedings of the III Jornadas Argenti-
nas de Robótica, San Juan, June 3–4 (2004)

16. Kijima, K., Fossen, T.I. (eds.): Control Applications in Ma-
rine Systems. Pergamon Press, UK (2000)

17. Kleczka, W., Kreuzer, E.: On the systematic analytic-
numeric bifurcation analysis. Nonlinear Dyn. 7, 149–163
(1995)

18. Papazoglou, V.J., Mavrakos, A., Triantaffilou, M.S.:
Nonlinear cable response and model testing in water. J.
Sound Vib. 140(1), 103–115 (1990)

19. Plaut, R.H., Farmer, A.L., Holland, M.M.: Bouncing-ball
model of ‘dry’ motions of a tethered buoy. J. Vib. Acoustics
123(3), 333–339 (2001)

20. Rosenwasser, E.N.: Oscillations of Non-Linear Systems.
Nauka, Moscow (1969)

21. Smith, R.J: Taut–slack dynamics of a vertically suspended
subsea unit. In: Proceedings of the International Conference
on Offshore Mechanics and Arctic Engineering (OMAE),
Vol. 1, pp. 873–884 (2001)

Springer


