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In the procedure of designing an underwater vehicle or robot, its maneuverability and 

controllability must be simulated and tested, before the product is finalized for 

manufacturing. Since the hydrodynamic forces and moments highly affect the 

dynamic and maneuverability of the system, they must be estimated with a 

reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous 

underwater vehicle (AUV) are identified using velocity and displacement 

measurements, and implementing an Extended Kalman Filter (EKF) estimator. The 

hydrodynamic coefficients are included in the augmented state vector of a six DOF 

nonlinear model. The accuracy and the speed of the convergence of the algorithm are 

improved by selecting a proper covariance matrix using the ARMA process model. 

This algorithm is used to estimate the hydrodynamic coefficients of two different 

sample AUVs: NPS AUV II and ISIMI. The comparison of the outputs of the 

identified models and the outputs of the real simulated models confirms the accuracy 

of the identification algorithm. This identification method can be used as an efficient 

tool for evaluating the hydrodynamic coefficients of underwater vehicles (robots), 

using the experimental data obtained from the test runs. 
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1. Introduction 

In recent years, an extensive research has been conducted 

in the area of underwater robotics and underwater 

vehicles. Advanced estimation and control methods have 

been used in order to improve the capability of AUV 

positioning and path tracking. In [1], an experimental 

method is implemented for a mobile underwater vehicle 

to determine its hydrodynamic coefficients. In [2], EKF is 

used for localization and mapping of autonomous mobile 

robots. The hydrodynamic coefficients of an AUV were 

identified in [3] using an EKF. A six degree-of-freedom 

model of motion was developed in [4] for an underwater 

vehicle, where an autopilot system was designed for 

automatic sliding mode control of the vehicle. 

To examine the maneuverability and performance of the 

control system of an AUV, a mathematical model of the 

vehicle must be identified. The mathematical model 

includes the hydrodynamic forces and moments, 

expressed in terms of hydrodynamic coefficients. 

Therefore, estimating the exact values of these 

coefficients is an important step in modeling of an AUV. 

It has been observed that the linear damping coefficients 

have crucial effects on the maneuverability of an AUV 

[5]. The hydrodynamic coefficients are determined 

through experiments, numerical analysis or using 

empirical formulas. The planar motion mechanism test is 

the most common experimental method for evaluating the 

hydrodynamic coefficients [6], however the results of this 

method are not accurate enough due to the practical 

limitations of the experimental methods. Moreover, the 

experimental methods are costly and time consuming. An 

identification method can be used as an alternative 

method for the evaluation of the hydrodynamic 
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coefficients [7]. The identification of marine vehicle 

dynamic can be performed using the measurements of the 

vehicle motions [8]. In [9], different methods of time-

domain system identification and noise modeling are 

discussed. It uses the autoregressive moving average 

(ARMA) spectrum estimator and artificial neural 

networks. Using an adaptive neuro-fuzzy algoritm, the 

model of an underwater vehicle has been identified in 

[10]. A limitation of this method is the requirement of a 

widespread range of and input/output data. 

Kalman filtering is a method that is used widely in the 

past few decades for the estimation of parameters and 

state variables for various dynamic systems. Kalman 

observer estimates the state variables of a system, 

assuming a linear model for the system. In recent years, 

many studies have used Kalman Filter for the 

identification of AUV dynamic. For instance, [11] used 

the Kalman observer to identify a discrete time linear 

model for an autonomous vehicle, where some of the 

model parameters were estimated. Kalman filter can 

identify hydrodynamic parameters using a linear model of 

the system, by ignoring the couplings between different 

modes of motion. Many investigations have been carried 

out to apply system identification methods to underwater 

robots. Majority of these studies have considered 

decoupled motions in certain directions. 

In this study, using the EKF algorithm, a method is 

presented for identifying the six degree of freedom 

nonlinear model of an AUV. The problem of parameter 

bias in the identification process, which results from the 

complexity of the mathematical model of system and the 

existence of the non-linear parameters, has been 

overcome. Considering a suitable time-variant form for 

the covariance of the process and measurement noise for 

an AUV model, using ARMA process enables us to 

identify the dynamic model of AUV with an acceptable 

accuracy and to eliminate biases in the parameters. The 

method has been applied to two sample AUVs and the 

results of the estimation are compared to the real values 

of the parameters. 

Fig.1: Coordinate system definition for marine vehicles [12]. 

 

2. AUV Equations of Motion 

Modeling of an AUV, because of the nature of the 

hydrodynamic forces, involves nonlinearities and 

coupling between different modes. Consider the nonlinear 

state space equation: 

),( uxx f=& ,     (1) 

Where, x  and u  represent respectively the state and the 

input vectors. Using the body coordinate system shown in 

Fig. 1 and Newton-Euler equations, the equations of 

motion of an AUV are obtained as 
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where, u , v  and w  are linear velocities, in the x , y  and 

z  directions, respectively and p , q  and r  are the 

angular velocities around x, y and z axes respectively. The 

variables X , Y and Z are the external force components, 

and K , M and N  are the external moments in the x- y -z 

coordinate. 

3. System Identification 

A detailed physics-based description of a rotating tool in 

this study the hydrodynamic coefficients of an AUV are 

identified. Since the external force and moment 

components are the function of hydrodynamic 

coefficients, these coefficients determine the AUV 

dynamics. The identification method is based on a limited 

number of discrete-time measurements of the system 

output vector ( )}{ N

kkt 1=y  , given the input 

vector ( )}{ N

kkt 1=u . Due to the lack of correspondence 

between the dimension space of the unknown coefficients 

and the dimension space of inputs and outputs, the 

hydrodynamic coefficients cannot be determined directly 

[13]. Estimation problems usually are represented in the 

prediction error form. In [7], it is tried to maximize the 

likelihood function of the vector of unknown parameters, 

which is equivalent to the minimization of a cost function 

defined as [7]: 

( ) ( ) ( )Tk

N

k

k tt
N

J εεθ .
1

det

1

å
=

=    (3) 

Where, ( )ktε  is the prediction error vector in kt , which is 

equal to the difference between the measurement vector 
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( )kty  and prediction of the measurement vector ( )ktŷ  in 

each step: 

( ) ( ) ( )kkk ttt yyε ˆ-= . (4) 

For nonlinear filtering problems, the EKF is one of the 

most appropriate tools [14]. This filter is based on 

linearization of model and measurements, using Taylor’s 

series expansion. Using EKF the unknown parameters can 

be estimated by adding them as the state variables to be 

estimated [15]. Consider a nonlinear system containing 

unknown parameters as: 

( ) kkkk kf wβxx +=+ ,,1  (5) 

( ) kkkk kh vβxy += ,,  (6) 

where, nRÎx  is state vector, 
mRÎy  is measurement 

vector, 
pRÎβ  is the unknown parameters vector, w  is 

process noise, and v  is sensor noise. In order to estimate 

the unknown parameters, they are added in the state 

vector x  and the augmented state vector *
kx  is defined. 

Therefore, system equations (5) and (6) take a new form 

as: 
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kkk kh vxy += ),( *
 (8) 

where, nRÎw , pRÎη and mRÎv  are Gaussian white 

noise sequences, and pnR +Î*
x  is the augmented state 

vector. The discrete-time extended Kalman filter step for 

the above system, using uniform sampling time 

1--= kk ttT , can be represented as [3]: 

Time Update:  
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Measurement Update: 
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and Qww =))()(( TttE , 0w =))(( tE , Rvv =))()(( TttE , 

0v =))(( tE , P  is the estimation error covariance and Q  

is the process noise covariance. The gain matrix K  will 

be determined from Ricatti equation and measurement 

error covariance R , can be determined from Lyapanov 

equation. Measurement update ((Eqs. (11)-(13)) reflects 

measurement process through the gain matrix K [16]. 

When we add the hydrodynamic coefficients to the state 

vector, the augmented state vector dimension increases, 

so that we face computational complexities like 

singularity in calculations of the Jacobian matrix in EKF 

[17]. In this study, for ISIMI model [18], we use the 

ARMA process model and consider kQ  and kR  as time 

variable covariance matrices. The ARMA model is 

appropriate when a system is a function of a series of 

unobserved shocks. Given a time series of data, the 

ARMA model is a tool for understanding and predicting 

the future values in this series. In this method, the 

covariance matrix is calculated as [19]: 
T

kkkk ωωQQ
2

1 )1( glg +-=+  (16) 

T
kkkk ννRR

2
1 )1( glg +-=+  (17) 

)ˆˆ(
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ˆ
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where, g  is forgetting factor that determines the effect of 

error vectors kω  and kν  on the covariance of errors. 

Therefore, kQ  and kR  enter the error information into 

the model. The forgetting factor can be defined as an 

exponential function: 

tg
T

e
-

-=1 , (20) 

where, T  the sampling time and t  is the system time 

constant. 

The variable l  another system noise modeling parameters 

[20]. In [21], a value of 10 << l  is recommended. The 

parameter l  removes the mathematical expectation of 

error during the identification process [19]. Here, 
3102 -´=l  is selected. 

4. Implementation and Results 

The ultimate goal of haptic rendering is to provide 

smooth In order to examine the identification method 

presented in this work, two nonlinear sample models of 

AUV’s ISIMI [18] and NPS-AUV II [12] are used. The 

motions of the AUVs are simulated and the 

hydrodynamic coefficients of the system are identified 

using the input/output data of these simulation. The input 

vector that is used for AUV attitude control is defined as: 

],,,,,[ nbsbpbsr ddddd=u  (21) 

which respectively are rudder, stern plane, top and bottom 

bow plane, starboard bow plane, port bow plane, and 

propeller shaft speed. The first five elements are the angle 

values that enable the AUV maneuverability, and n  is the 

propeller shaft speed. The values of bd , bpd  and bsd for 

ISIMI model are assumed to be zero. Different functions 

can be considered as the actuator input for the control 

surfaces. We considered the input angles as zigzag and 
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step functions with variable amplitudes to produce three-

dimensional motions for the AUVs. 

Because of the physical limitations, the rudder angle is 

limited to [ ]20,20-Îd . In this study, the input data from 

[10] is used for rd  and sd . The propeller speed n  is 

considered at constant speed of 500
 
rpm. The time step 

for the simulation is 05.0=T seconds. 

The augmented state vector is defined as: 

 

[ ]βx ,,,,,,,,,,,,* yqjzyxrqpwvu=  (22) 

 

Where, β  contains SZd , qZ , wZ , SMd  and vK  for NPS-

AUV II. For ISIMI model, β contains wM , rYd , vY , wZ . 

The output vector, which consists of speed and position 

data, is considered as: 

 

[ ]yqj ,,,,,,,,,,, zyxrqpwvu=y  (23) 

 

The hydrodynamic coefficients that identified using the 

algorithm of section III for NPS-AUV II are shown in 

Fig. 2. The results are compared with the real coefficients 

that are available from [12]. 

 

As it can be seen from Fig. 2 and Table 1, the estimation 

algorithm has converged to true data with appropriate 

accuracy. The only exception is vK . The main reason for 

this discrepancy can be related to lack of excitation of the 

roll motion by the inputs. vK  is defined as vK ¶¶ . 

Because of inadequate excitation of the roll motion by the 

sway movement, a relatively less accurate estimation has 

been obtained. 
 

 

Table 1. Hydrodynamic coefficients for NPS AUV II 

Hydrodynamic 

coefficients 

Real values 

[12] 

Estimated 

values 
Error (%) 

sZd
 0.073 -0.07275 <1 

wZ  -0.3 -0.2990 1 

vK  0.0031 0.0035 13 

qZ  -0.14 -0.139 <1 

sM d
 -0.041 -0.04132 <1 
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Fig.2: The identified coefficients for NPS-AUV II in comparison 

with the real coefficients from [12]. 
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Fig.3: Identified coefficients for ISIMI using ARMA noise model in 

comparison with the real coefficients from [18]. 
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The results of iterative identification of the hydrodynamic 

coefficients of ISIMI AUV [18] are shown in Fig. 3. The 

identified values shown in Table 2 are derived using an 

ARMA model for the process noise. It can be seen that 

using the ARMA noise model, provides precise results in 

the estimation of coefficients. 

Table 2. Hydrodynamic coefficients for ISIMI AUV  

Hydrodynamic 

coefficients 

Real 

Values [18] 

Estimated  

values 

Error (%) 

wM   0.030853 0.032 4 

vY  -0.062586 -0.065 4 

rYd  -0.043008 -0.045 5 

wZ  -0.062586 -0.063 1 

 

Having the real values for hydrodynamic coefficients, the 

identified values can easily be compared with the real 

values. But, the validity of the identified model should be 

examined by simulating the AUV motion and comparing 

it with the real trajectory. The identified coefficients for 

NPS AUV II are used for simulation, where step inputs 

are considered for the rudders angles and process noise is 

added to the model. Figure 4 shows the performance of 

the identified model in producing the simulated path. The 

figure contains the position and the orientation of the 

AUV during simulation time. 
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Fig.4: Simulation of the movements of ISIMI with the true and 

identified coefficients. 

Fig. 5 shows estimated speed using the identified 

coefficients in comparison with the true speed. The true 

speed is obtained using the true coefficients for the 

simulation. Figs. 4 and 5 show a good compatibility for 

the speeds and positions of the models which simulated 

with the true and identified values of the hydrodynamic 

coefficients. 
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Fig.5: Estimated surge, roll and yaw speed versus real speed using 

real coefficients 

5. Conclusion 

In this study, a recursive method is proposed for the 

identification of dynamic models of AUVs. The 

comparison of the simulation results of the identified and 

true models shows the accuracy of the identification 

algorithm. It is shown that using an ARMA process noise 

model leads to accurate values of the identified 

coefficients and prevents the bias of the coefficients from 

their true values. Results showed that the method is able 

to identify dynamic model of AUVs with an acceptable 

accuracy. Thence, the resulting identified models can 

suitably be used for the simulation and control purposes. 

Some preliminary results of this work were presented in 

[23]. 



International Journal of Robotics, Vol. 4, No. 1, 22-28 (2015) / M. Zare Ernani et al. 

 

27 

 

Acknowledgment 

The authors would like to express their gratitude to Dr. 

Kihun Kim from Department of Naval Architecture and 

Ocean Engineering, Seoul National University, Seoul, 

Korea for providing the simulation data. 

 

References 

[1] P. Kodati, Xinyan, d. Experimental Studies on the 

Hydrodynamics of a Robotic Ostraciiform Tail Fin. 

IEEE Conference on Intelligent Robots and 

Systems, (2006), 5418 - 5423.  

[2] Bonato, V., Marques, E. and Constantinides, G. A., 

A Floating-point Extended Kalman Filter 

Implementation for Autonomous Mobile Robots, 

IEEE J. Signal Processing Systems, 56 (1), (2009), 

41-50.  

[3] Kim, J., Kim, K., Choi, H. S., Seong, W. and Lee, 

K. Y., Estimation of hydrodynamic coefficients for 

an AUV using nonlinear observers, IEEE J. 

Oceanic Eng., 27 (4), (2002), 830-840.  

[4] Healey, A. J., and Lienard, D., Multivariable 

sliding mode control for autonomous diving and 

steering of unmanned underwater vehicles, IEEE J. 

Oceanic Eng, 18, (1993), 327–339.  

[5] Yuh, J., Modeling and control of underwater 

robotic vehicles, IEEE Trans. Syst, Man, Cybern., 

20, (1990), 1475–1483.  

[6] Pereira, J., and Duncan, A., System identification 

of underwater vehicles, Proceedings of the 

International Symposium on Underwater 

Technology, Tokyo, (2000), 419-424.  

[7] Ljung, L., System Identification: Theory for the 

User, Prentice-Hall, London, (1987).  

[8] Abkowitz, M.A., System identification techniques 

for ship maneuvering trial. Proceedings of 

Symposium on Control Theory and Navy 

Application, Monterey, USA, (1975), 337-393.  

[9] Feng, X. and Schulteis, J., Identification of high 

noise time series signals using hybrid ARMA 

modeling and neural network approach. IEEE 

Conference on Neural Networks, 3, (1993), 1780-

1785.  

[10] Bossley, K. M., Brown, M. and Harris, C. J., 

“Neurofuzzy identification of an autonomous 

underwater vehicle”, International Journal of 

Systems Science, 30 (9), (1999), 901- 913.  

[11] Tiano, A., Sutton, R., Lozowicki, A., and Naeem, 

W., “Observer Kalman filter identification of an 

autonomous underwater vehicle”, Control 

Engineering Practice, 15, (2007), 727-739.  

[12] Fossen, T.I., Guidance and Control of Ocean 

Vehicles, John Wiley & Sons Ltd, (1994).  

[13] Saout, O., “Computation of hydrodynamic 

coefficients and determination of dynamic stability 

characteristic of an underwater vehicle including 

free surface effects”. MS Thesis, Florida Atlantic 

University, Dept. Mech. Eng., Boca Raton, Florida, 

(2003).  

[14] Mysorewala, M.F., Cheded, L. and Qureshi, A., 

"Comparison of nonlinear filters for the estimation 

of parameterized spatial field by robotic sampling". 

IEEE Conference on Industrial Electronics and 

Applications, Beijing, (2011), 2005-2010.  

[15] Simon, D., Optimal State Estimation: Kalman, H-

infinity, and Nonlinear Approaches, John Wiley & 

Sons Ltd., (2006).  

[16] Chui, C. K., and Chen, G., Kalman filtering with 

real time applications, Springer, New York, (1998).  

[17] Hyeon, K, Y., and Rhee, K. P., Identification of 

hydrodynamic coefficients in ship maneuvering 

equations of motion by Estimation-Before-

Modeling technique, Ocean Engineering, 30, 

(2003), 2379-2404.  

[18] Jun, B. H., Park, J. Y., Lee, F. Y., “Development of 

the AUV ‘ISIMI’ and a free running test in an 

ocean engineering basin”, Oceanic Eng., 36, 

(2009), 2-14.  

[19] Best, M. C., Identifying tyre models directly from 

vehicle test data using an extended Kalman filter, 

Journal of Vehicle System Dynamics, 48, (2010), 

171-187.  

[20]  Barbounis, T. G. and Theocharis, J. B., Recurrent 

neural networks for long-term wind speed and 

power prediction, Neuro computing, 69, (2006), 

466-496.  

[21]  Best, M. C., Gordon, T. J. and Dixon, P. J., An 

extended adaptive Kalman filter for real-time state 

estimation of vehicle handling dynamics, Journal of 

Vehicle System Dynamics, 34 (1), (2000), 57-75.  

[22] Roberts, G. N and Sutton, R., Advances in 

Unmanned Marine Vehicles, Institution of 

Engineering and Technology Publications, London, 

(2008).  

[23] Zare Ernani, M., Bozorg, M., and Ebrahimi, S., 

Identification of an AUV Dynamic Using Extended 

Kalman Filter, Proceeding of 18th Int. Conf. of 

Iranian Society of Mechanical Engineers, Tehran, 

Iran, (2010).  

 

 

 



International Journal of Robotics, Vol. 4, No. 1, 22-28 (2015) / M. Zare Ernani et al. 

 

28 

 

Mehdi Zare has received B.Sc. degree in 

mechanical engineering from Isfahan 

University of Technology in 2007. He 

continued his master course in the major of 

applied-design of mechanical engineering 

and graduated in 2010 from Yazd 

University. In his master thesis, he worked 

on the identification of autonomous underwater vehicles 

(AUV) dynamic with a research group. He began his 

career in industry as a design engineer, working on 

various mechanical systems at petrochemical industries.  

 

Saeed Ebrahimi has received his PhD 

in Mechanical Engineering from 

Stuttgart University, Germany in 2007. 

He is currently Assistant Professor at 

the Department of Mechanical 

Engineering, Yazd University, Yazd, 

Iran. His current research interest 

includes Dynamic Modelling of Multibody Systems, 

Robotics, Mechanisms Design and Vibration Analysis of 

Mechanical Systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mohammad Bozorg received B.S. and 

M.S. and Ph.D. degrees, all in 

Mechanical Engineering, from Shahid 

Chamran University of Ahvaz, Ahvaz, 

Iran, Sharif University of Technology, 

Tehran, Iran, and The University of 

Sydney, Sydney, Australia, in 1989, 

1991 and 1997, respectively. Since Nov. 1997, he has 

been a faculty member at the Department of Mechanical 

Engineering, Yazd University, Yazd, Iran, where he is 

now an associate professor. He had a sabbatical visit at 

Systems Control Group, Department of Electrical and 

Computer Engineering, University of Toronto, Toronto, 

Canada in 2002-2003. He is a member of IFAC Technical 

Committee on "Control Design". His research interests 

include control of systems with parameter uncertainty, 

time-delay systems, Kalman filtering and mobile robot 

navigation. 

View publication stats

https://www.researchgate.net/publication/303486974

