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A hybrid dynamic model for bio-inspired robots with soft appendages -

Application to a bio-inspired flexible flapping-wing micro air vehicle.

Mathieu POREZ, Frédéric BOYER and Ayman BELKHIRI

Abstract— The paper deals with the dynamic modeling of
bio-inspired robots with soft appendages as flying insect-like or
swimming fish-like robots. In order to model such soft systems,
we here propose to exploit the Mobile Multibody System
framework introduced in [1], [2], [3]. In such a framework,
the robot is considered as a tree-like structure of rigid bodies
whose the joint evolution is governed by stress-strain laws or
control torques. Based on the Newton-Euler formulation of
these systems, we propose a new algorithm able to compute
at each step of a time loop both the net and passive joint
accelerations along with the control torques supplied by the
motors. For the purpose of illustration, following our works
begun in [4], the proposed algorithm is applied to the simulation
of the hovering flight of a soft flapping-wing insect-like robot
(see the video at [5]).

I. INTRODUCTION

As revealed by works in biology as those of Alexander

[6], animals have developed soft organs to improve their lo-

comotion performances. As an example, in the case of flying

insects, as sphinx moths, the twisting strain of the wing along

the leading edge generates a phase lag between the stroke

and the pitch which is at the origin of the lift during flight [7].

Another relevant example of the benefits of compliances in

animal locomotion is illustrated by the dead fish in a wake. In

fact, recent experiments [8] and simulations [9] reveal that a

dead trout placed in the wake downstream from obstacles can

extract energy passively from large-scale coherent vortices

and ascend flow. Based on these two examples, it appears

that, soft organs allow animals: 1◦) to add useful degrees

of freedom for locomotion without adding muscles; 2◦) to

cyclically accumulate and restore kinetic energy in order

to minimize the power consumption during the locomotion.

From the roboticist’s view point, the implementation of these

concepts would allow to design simpler, lighter and cheaper

robots. As a result, the reproduction of compliant wings of

flying insects is the key to success of the new generation of

Micro Air Vehicles (MAV) [10], [11]. To help researches

to study soft locomotion, we propose, in this paper, a

Mobile Multibody Systems (MMS) framework devoted to

the dynamic modelling and simulation of locomotion systems

which use soft appendages. The proposed algorithm allows

to solve numerically the three following coupled dynamics:

1◦) the external forward dynamics ruling the net motions

of the MMS produced by locomotion through a model of

the contact forces with environment; 2◦) the internal inverse
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dynamics ruling the control internal torques produced by

the shape variations of the MMS; 3◦) the internal forward

dynamics ruling the strains of the compliant organs. While

being applicable to a wide diversity of systems, the algorithm

is here illustrated on the case of the hovering flight of a

soft MAV inspired of big moths of Sphyngidae family as

Manduca sexta (see the video at [5]). In order to present this

framework, the article is structured as follows. The modelling

of a MMS is first presented in section II. In section III, a

hybrid algorithm dedicated to the computing of the forward

and the inverse dynamics of the MMS is introduced. Then,

the resulting simulator is exploited in section IV, in the

context of the flapping flight. Lastly, the article ends with

section V by some concluding remarks.

II. THE PROBLEM STATEMENT.

A. Parametrisation and notations.
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Fig. 1. Schematic view of a Mobile Multibody System.

In accordance with Fig. 1, let us consider a MMS with a

tree-like structure, in a 3-D space of an unbounded volume

filled of an initially quiescent fluid (e.g. air, water, etc ...).

We attach to the ambient geometric space a fixed spatial

orthonormed frame denoted by Fe = (Oe, se, ne, ae), where

ae supports the vertical axis and the plane (Oe, se, ne)
defines the ground. The considered MMS is composed of

a sequence of N + 1 rigid bodies interconnected through N
passive or actuated 1-DoF angular joints. These bodies are

denoted B0,B1, ...,BN , with B0 representing the reference



body. Moreover, the bodies are numbered from B0 toward

the tips of the branches in increasing order. In the following,

we denote by j and i, the indices of the current body and its

antecedent in the branch respectively. Moreover, we defined

by Ja the index set of actuated joints and by Jp the index

set of passive joints. We attach to each body Bj of mass

density ρj a mobile frame Fj = (Oj , sj , nj , aj), where

the center Oj coincides with the center of the joint j, and

aj supports the joint axis. Let us note that sj and nj are

directed as required. At any time t, the robot configuration

is defined by the vector of joint positions r = (r1, ..., rn)T

defining the relative angles around the joint axis between

the bodies, together with the orientation matrix eR0 and

the position vector eP0 of the mobile frame attached to the

reference body F0 = (O0, s0, n0, a0) with respect to Fe. The

time evolution of ( eR0,
eP0) defines the rigid net motion

of the MMS. Finally, throughout this article, we will use

the following notation convention. For any physical variable

modelled by a tensor, the right lower index will represent

the body index (to which it is related) while the left upper

exponent will indicate the index of the projection frame (e.g.
eR0, eP0). When the tensor related to a body is expressed

in the mobile frame of this body, the upper index is omitted.

Moreover, the temporal derivative ∂./∂t will be sometimes

denoted by a ’dot’.

B. Mobile Multibody System model.

To model the MMS presented previously, we chose to

use the Newton-Euler (N-E) framework proposed in [1],

[2], [3]. This general setting is devoted to the modelling of

MMS, i.e. Multibody Systems with a mobile basis (here B0)

whose motion is governed by locomotion. Let us start by

introducing the geometric model of the MMS which relates

the posture of any frame Fj with that of the antecedent frame

Fi, both expressed in the earth frame Fe and represented by

the two (4× 4) matrices egi and egj of SE(3). This model

can be detailed as:

egj = egi
igj(rj) = egi

(

iRj(rj)
iPj

0 1

)

, (1)

where iRj and iPj are the orientation matrix and the

position vector of Fj with respect to Fi.

Regarding the velocity of the body j, it is a (6 × 1)
vector of se(3) denoted ηj and related to the velocity of

the antecedent body i through the recursive relation:

ηj = (V T
j ,ΩT

j )T = Ad jgi
ηi + ṙjAj , (2)

where Vj and Ωj are respectively the linear and angular

Galilean velocities of the considered body, both expressed

in its mobile frame, Aj = (0T
3 , aT

j )T is the (6 × 1) unit

vector supporting the joint axis j, and Ad jgi
is the adjoint

map operator allowing to change a (6× 1) velocity from Fi

to Fj [12]:

Ad jgi
=

(

jRi
jRi

iP̂T
j

0 jRi

)

. (3)

Let us remark that in (3), we introduced the ’hat’ notation

which changes a (3 × 1) vector into its associated (3 × 3)
skew-symmetric tensor. Thus, for any vectors A and B in

R
3, Â is defined such that ÂB = A × B.

Once the Galilean velocities are defined, by time differen-

tiation of (2), the acceleration, denoted by η̇j , of Bj is given

by:

η̇j = Ad jgi
η̇i + ζj + r̈jAj , (4)

where ζj represents the part of accelerations in (4) which

only depends on velocities through the detailed expression:

ζj =

(

( jVi + jPi ×
jΩi) × ṙjaj

ṙj
jΩi × aj

)

. (5)

Finally, by applying to the jth body, the Newton’s law and

the Euler’s theorem, one obtains the dynamic equations of

Bj in the Newton-Euler form:

fj = Mj η̇j + βj + fext,j +
∑

k

AdT
kgj

fk , (6)

where k are the indices of all the successive bodies to Bj .

Moreover, in (6), we introduced the following notations:

• For any j, fj is the (6 × 1) force vector (element of

se(3)∗) exerted by Bi onto Bj .

• Mj is the (6 × 6) inertia tensor of Bj (element of

se(3)∗ ⊗ se(3)), which can be detailed as:

Mj =

(

Mj −MSj

MSj Ij

)

(7)

= ρj

∫

VBj

(

13 − ˆOjQ
ˆOjQ − ˆOjQ ˆOjQ

)

dVBj
,

where Q is a point of Bj , 13 is the 3 × 3 unit matrix,

while Mj , MSj and Ij are the tensor of body mass

(spherical in the rigid body case), the tensor of first

inertia moments (skew-symmetric in the rigid body

case) and the tensor of angular inertia of the link j
respectively.

• The (6 × 1) vector of Coriolis and centrifugal forces:

βj =

(

−Ωj × (MSjΩj) + Ωj × (MjVj)
Ωj × (IjΩj) + MSj(Ωj × Vj)

)

. (8)

• The (6 × 1) vector of external forces denoted by

fext,j whose the model depends on the considered

locomotion problem.

Let us note that, for j = 0, (6) describes the time evolution

of the MMS net motion and is named the external forward

dynamic model.

III. THE HYBRID ALGORITHM.

A. Algorithm working

In accordance with the assumptions of section II, we now

address the following dynamic problem: knowing at each

time t, the state of the MMS ( eg0,
eη0, r, ṙ), the accelera-

tions r̈j (for j ∈ Ja) applied to the actuated joints through
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Fig. 2. Flow chart of the proposed hybrid algorithm.

motion control laws and the torques τj (for j ∈ Jp) applied

to the passive joints through stress-strain material laws or

control torque; the dynamic problem consists in calculating

the accelerations of the reference body η̇0 (describing the net

motion of the MMS with respect to the Galilean frame Fe),

the torques τj (for j ∈ Ja) applied on the actuated joints

and the accelerations r̈j (for j ∈ Jp) of the passive joints.

This dynamic problem is named mixed dynamic problem

since it involves the forward and the inverse forms of the

dynamic of a multi-body system [1]. To resolve such a

problem, we here propose to extend to the MMS of tree-

like structure, the inverse algorithm of Luh et al. [13] and

the forward algorithm of Featherstone [14] both dedicated to

the manipulators. Due to its mixed (inverse, forward) nature,

the resulting algorithm will be named "hybrid algorithm" and

its flow chart is described on Fig. 2. From a computational

point of view, this algorithm, resolves, at each time step

of a time loop, three recursive sets of equations on the

bodies index. The first loop is a forward recursive loop

(from the reference body to the tips of the branches of

the considered tree-like structure), which compute all the

state dependent variables related to subsequent computing

as the transformation matries, velocities, inertia tensors, etc

... . It is followed by a backward loop (from the tips of

the branches to the reference body) which computes η̇0,

i.e. solves the external forward dynamic model. To do this,

the recursive process computes the (6 × 6) inertia matrix

of the whole MMS: M∗
0, and β∗

0 the (6 × 1) vector of all

external and inertia forces applied on the MMS. Finally, once

these amounts known, they allow to compute the current

acceleration of the reference body as follows:

η̇0 = − (M∗

0)
−1

β∗

0 , (9)

which is used to initialize the last forward recursive loop

(see the flow chart on Fig. 2) dedicated to the internal

dynamics. This loop computes the accelerations of the

passive joints and the torque applied on the actuated joints,

which are the expected outputs allowing to update (after a

time integration) the external state (i.e. ( eg0,
eη0) and the

internal state (rj , ṙj for j ∈ Jp) of the MMS before to

increment the time and to begin the next iteration.

Before detailing the three loops previously presented, let

us introduce the following Boolean variable defining the type

of the jth joint, i.e. for "actuated" or "passive" type:

∀j, bj =

{

1 if r̈j(t) is imposed and τj(t) is unknown;
0 if τj(t) is imposed and r̈j(t) is unknown.

B. The first forward recursion on the kinematics

As the current robot’s state ( eg0,
eη0, r, ṙ) is known, the

algorithm starts by the following forward recursion:

For j = 0, 1, ..., N , computes:

•
iRj , iPj and the body transformations egj from (1);

• the body velocities ηj from (2);

• the terms ζj of (4) from (5);

• the body inertia matrices Mj from (7);

• the body Coriolis and centrifugal forces βj from (8);

• the external forces fext,j whose the model depends on

the studied problem;

and initializes:

• the generalized inertia matrix M∗
j from :

M∗

j = Mj ; (10)

• the generalized forces β∗
j from :

β∗

j = βj + fext,j . (11)

End for.

C. The backward recursion on the external forward dynam-

ics

Once all the state-dependent variables are known, the next

step of the computational algorithm consists in executing

the following recursion:

For j = N, N − 1, ..., 1, computes:

• If bj = 1 :

M∗

i = M∗

i + AdT
gj,i

M∗

jAdgj,i
;

β∗

i = β∗

i + AdT
gj,i

(M∗

j (Aj r̈j + ζj) + β∗

j ) .



• Else (if bj = 0) :

Hj = AT
j M

∗

jAj ;

K = M∗

j −M∗

j (AjH
−1
j AT

j )M∗

j ;

α = Kζj + M∗

jAjH
−1
j (τj − AT

j β∗

j ) + β∗

j ;

M∗

i = M∗

i + AdT
gj,i

KAdgj,i
;

β∗

i = β∗

i + AdT
gj,i

α .

• End if.

End for.

Once this recursion loop is carried out, the accelerations

η̇0 of B0 are computed from (9).

D. The second forward recursion loop on the internal (in-

verse and forward) dynamics

Finally, the algorithm ends with a second forward

recursion initialised by the current state and η̇0:

For j = 1, 2, ..., N , computes:

η̇j = Adgj,i
η̇i ;

• If bj = 1 :

η̇j = η̇j + Aj r̈j + νj ;

τj = Aj(M
∗

j η̇j + β∗

j ) .

• Else (if bj = 0) :

r̈j = H−1
j (τj − AT

j (M∗

j (η̇j + νj) + β∗

j )) ;

η̇j = η̇j + Aj r̈j + νj .

• End if.

End for.

Lastly, in order to update the external state of the MMS,

for the next iteration of the time loop, η̇0 is numerically

integrated with a numerical integrator based on quaternions.

As regards the internal state, i.e. ṙj and rj , they are updated

by time integration of r̈j .

IV. APPLICATION TO THE FLAPPING FLIGHT.

In this section, we propose to apply the algorithm, intro-

duced in section III, to the simulation of the hovering flight

of a flapping-wing insect-like robot bio-inspired from the

sphinx moth Manduca sexta (see the video at [5]).

A. The robot parametrisation.

The considered robot is composed of a rigid thorax and

two soft wings whose the deformations are concentrated

along the leading edge (see Fig. 3). For this numerical

example, only the twisting around the leading edge and the

bending in the plan perpendicular to the wing have been

taken into account. In order to model such a soft system

with the above general framework (see section III), we
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Fig. 3. Schematic view of the soft MAV.

propose to discretize each wing of the robot into a serial

assembly of rigid bodies. The discretization of each of the

wings of span S consists in dividing them into M sections

with a length of l = S/M . Each section is composed of

the following serial assembly: 1◦) a 1-DoF angular joint

aligned with the leading edge (modeling the twisting); 2◦)

a fictitious rigid body with no inertia; 3◦) a 1-DoF angular

joint whose the axis is in the wing plan and orthogonal to

the leading edge (modeling the bending); 4◦) a rigid body

or "blade" whose the size and the inertia are the same as

those of the considered section. Once so discretized, the

virtual robot has N = 4M + 1 bodies and 4M angular

joints. To illustrate this, Fig. 4 shows a virtual robot with

M = 2 sections and N = 9 bodies.
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Fig. 4. Front and top views of a virtual robot at N = 9 bodies and M = 2

sections per wing.

In accordance with Fig. 5, the thorax, which is defined

as the reference body, is denoted by B0 while the rigid

bodies constituting the right and the left wing are denoted

B1,B2, ...,B2M and B2M+1,B2M+2, ...,B4M respectively.

The body B0 of mass density ρt, is an ellipsoid whose the
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half-axes are a, b et c along the vectors s0, n0, et a0 of the

frame F0 = (O0, s0, n0, a0) attached to the geometric center

of B0. The wings are attached to B0 at αc from O0 along s0.

The blades, i.e. the bodies j ∈ {2, 4, ..., 4M}, have a length

of l = S/M (along aj), a cord of cj (along nj), a thickness

of e (along sj) and a mass density of ρw. The wing having

an elliptical shape, the cord cj of Bj is a function of the

position Xj of the section along the leading edge (from the

root to the tip) which is defined as follow:

cj = C
√

1 − X2
j /S2 ,

where C is the cord of the wing at its roots. As far as the

joints linking the wings to the thorax (i.e. j ∈ {1, 2M + 1})

are concerned, they actuated to generate the typical stroke

observed in the sphinx moth [15] according to the following

time law:

r̈j =

{

−Aω2 cos(ωt) , if j = 1 ,

Aω2 cos(ωt) , if j = 2M + 1 ,

where A and ω are the amplitude and the frequency of

the stroke respectively. As regards the other joints of the

robot, they are all passive. Thus, the strain accelerations r̈j

of these joints are unknown while the strain torques τj are

imposed through strain-stress law function of the strain state,

i.e. (rj , ṙj). More precisely, the strain torques applied to the

joints numbered j ∈ {3, 5, ..., 2M − 1} ∪ {2M + 3, 2M +
5, ..., 4M − 1}, modeling the twist of the wings, are ruled

by the following viscous-elastic model:

τj = −kt,jrj − µṙj , (12)

while the strain torques assigned to the joints numbered j ∈
{2, 4, ..., 2M} ∪ {2M + 2, 2M + 4, ..., 4M}, which model

the bending, are governed by:

τj = −kb,jrj − µṙj . (13)

In (12)-(13), we introduced µ the structural damping together

with kt,j and kb,j the stiffness of twisting and bending

respectively defined along the leading edge by the following

linear functions:

kt,j = k1
t +

Xj

S
(k2

t − k1
t ) , kb,j = k1

b +
Xj

S
(k2

b − k1
b ) ,

with k1
t and k2

t (k1
b and k2

b ) the stiffness of twisting (of

bending) at the root and the tip respectively.

B. Model of the external forces.

Let us now specify the model of the external forces chosen

for this dynamic problem. It is the following:

fext,j = fg,j + faero,j , (14)

where fg,j is the (6 × 1) vector of gravity forces applied

on Bj and faero,j is the (6 × 1) vector of the aerodynamic

forces (6= 0, only for the blade bodies of the wing). In this

numerical example, on the basis of the quasi-steady model

of Dickinson & al [7], [16], we distinguish two types of

aerodynamic forces: 1◦) the added mass forces due to the

fluid inertia; 2◦) the quasi-steady forces of lift and drag

whose time dependancy is due to the body kinematics and

not to the fluid flow history. Based on these considerations,

faero,j is defined as:

faero,j = fa,j + fs,j ,

where fa,j and fs,j are the (6×1) vector of the added mass

forces and the (6 × 1) vector of the quasi-steady forces



respectively.

In order to establish a model of aerodynamic forces, let

us consider the wing blade Bj . We define by ξ the abscissa

of the cross-sections of Bj along the leading edge. On each

cross-section, along the cord, at a distance of 0.4cj from

the leading edge, we fixe the center of pressure Cp where

the quasi-steady forces (i.e. the lift and drag) are applied.

Moreover, on Cp, we attach two unit vectors t and w. t
belongs to the blade plan and oriented from the trailing edge

to the leading edge while w is orthogonal to the blade plan

and oriented from the intrados to the extrados. Based on

these definitions, the model of the quasi-steady forces can

be detailed as:

fs,j =

∫ l

0

(

1 0
ˆOjCp 1

) (

L + D
0

)

dξ ,

where L et D are the lift and the drag forces respectively

defined by:

L =
1

2
ρaircjCL||VCp(ξ)||

2v , D =
1

2
ρaircjCD||VCp(ξ)||

2u ,

where VCp(ξ) is the linear velocity of Cp, v =
VCp(ξ)/||VCp(ξ)||, u = v× (t×v) , ρair is the density of the

air while CL and CD are the coefficients of the lift and the

drag respectively obtained from experiments [7]:

CL = 1.8 sin 2β , and CD = 1.92 − 1.55 cos 2β ,

with β = atan2(−wT .v,−tT .v) the incidence angle of the

ξ-cross-section and the air flow speed.

As regards the vector of the added mass forces fa,j , it

can be simply derived by a kinetic momenta balance applied

to the fluid which laterally bounds Bj . Assuming that the

fluid is perfect (inviscid and incompressible) and irrotational,

we can apply here the impulse-momentum theory of fluid

dynamics due to Kelvin and Kirchhoff [17]. Moreover,

considering the aspect ratio of wings, we obtain the kinetic

momenta balance:

fa,j = Ma,j η̇j + βa,j ,

where we introduced the following definitions:

• Ma,j is the (6× 6) tensor of added inertia of the fluid

accelerated by Bj :

Ma,j =

(

Ma,j −MSa,j

MSa,j Ia,j

)

=

∫ l

0

(

ma −ma
ˆOjCp

ma
ˆOjCp −ma

ˆOjCp
ˆOjCp

)

dξ ,

which only depends on the cross sectional added inertia

tensors ma = ρairπc2
jw.wT ;

• βa,j is the (6 × 1) vector of the added mass forces

produced by the volume of fluid accelerated by the

Coriolis and centrifugal accelerations of Bj :

βa,j =

(

−Ωj × (MSa,jΩj) + Ωj × (Ma,jVj)
Ωj × (Ia,jΩj) + MSa,j(Ωj × Vj)

)

+

(

0
Vj × (Ma,jVj)

)

.

Finally, (14) can be written as follows:

fext,j = fg,j + Ma,j η̇j + βa,j + fs,j . (15)

Let us note that in (15), fext,j is a function of η̇j which is still

unknown when (15) is evaluated by the hybrid algorithm. To

overcome this problem, we replace (10) and (11) by:

M∗

j = Mj + Ma,j and β∗

j = βj + fg,j + βa,j + fs,j ,

respectively.

C. Results and Discussions

Parameter Value Parameter Value

M 4 ρt 800 Kg/m3

N 17 ρw 1400 Kg/m3

S 70 × 10
−3 m ρair 1.22 Kg/m3

C 31.5 × 10
−3 m A 41.3π/180 rad

e 0.1 × 10
−3 m ω 50π rad/s

a 8.5 × 10
−3 m k1

t
3 × 10

−3 Nm/rad

b 8.5 × 10
−3m k2

t
9 × 10

−3 Nm/rad

c 28 × 10
−3 m k1

b
36 × 10

−3 Nm/rad

α 0.65 k2

b
9 × 10

−3 Nm/rad

l 1.75 × 10
−3 m µ 1 × 10

−5 Nm.s/rad

TABLE I

SIMULATION PARAMETERS.

In order to illustrate the hybrid algorithm of section III,

we realised a flapping flight simulator using the description

of section IV-A and the numerical parameters of Table I. For

this simulation, the hybrid algorithm has been programmed

under MATLAB R©. The developed simulator uses the

predictor-corrector method (with a fourth-order explicit

method for the prediction step and a fifth-order implicit

method for the correction step) for the time integration

(with a time step of 1× 10−4 s) together with the Gaussian

quadrature method (at 6 points) for the spatial integration

of the external force model defined in section IV-B. With

this model, these parameters and these numerical tools, we

can simulate the dynamics of a flapping-wing insect-like

robot during one period of stroke, i.e. for T = 2π/ω = 0.04
s, in 17 s on a laptop (CPU Intel R© Core I7 @2.66GHz).

Finally, the initial conditions have been chosen to obtain the

periodicity of the hovering flight.

Fig. 6 shows, under a set of snapshots taken at regular

time steps along the motion of the simulated robot during

one stroke cycle (see the video at [5]). On the snapshots

numbered 0-1 and 5-6, we observe that during the transition

between the downstroke and the upstroke (and vice-versa),

thanks to their flexibility, the wings twist around the leading

edge and bend in the opposite direction of the stroke.

These twisting and bending deformations are characteristic

of the flapping flight and are similar to those observed in
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Fig. 6. Sagittal view and coronal view of the flapping-wing insect-like
robot for one stroke cycle.

the sphinx moth Manduca sexta (see [15] and the video

attached with [18]). As regards the net motion of the robot,

the linear motions of the thorax along the vectors ne and

ae have amplitudes of ±2 mm and ±0.5 mm respectively

while the angular pitch motion has an amplitude of ±7 deg.

Moreover, we have plotted on Fig. 7 the linear and angular

speeds of B0 in the sagittal plan of the robot.

As far as the wing deformations are concerned, Fig. 8

shows them. We observe that the maximum twisting strain

appears (in the middle of Fig. 8) when the stroke angle

is equal to zero (i.e. when the wings are aligned with the

thorax) while the maximum bending arises (on top of Fig.

8) after the stroke reversals (when the wings rotate and

change direction). By adding all the relative stain angles, the

twisting rotation of each wing tip has ±79 deg in amplitude
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Fig. 7. The time evolution of the linear and angular speeds of B0 in the
sagittal plan of the robot for one stroke cycle.
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Fig. 8. For one stroke cycle, the time evolution of: on the top, the bending
strain; in the middle, the twisting strain; at the bottom, the stroke torque.

and a phase lag with respect to the stroke of 58 deg. For



the bending strain, each wing tip rotates at ±68 deg in

amplitude with a phase lag of 36 deg. These numerical

results are closed to the observations from experimental

biology [15]. From the view point of the actuation, as

illustrated at the bottom in Fig. 8, the proposed hybrid

algorithm allows to compute the torques required to ensure

the desired stroke motion. For a stroke cycle, the maximal

torque is 12.1 mNm and this peak appears after the stroke

reversals. The mean power, during one stroke cycle, is

equal to 0.42 W per wing and the total specific mechanical

power is closed to 120 W/Kg which is less than the value

measured for the sphinx moth Manduca sexta by [19].
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Fig. 9. The time evolution, for one stroke cycle, of the axial (on top) and
the vertical (at the bottom) components of the external forces.

Finally, Fig. 9 shows the linear components of the external

forces in the sagittal plan. The vertical component of the

external force, image of the lift, is maximal when the wings

are aligned with the thorax and minimal when the wings

change of direction. These observations are in agreement

with the literature.

V. CONCLUSIONS

In this paper, we have presented a hybrid algorithm dedi-

cated to the modeling of a Mobile Multibody Mystem with

a tree-like structure having both active and passive joints.

Based on the Newton-Euler approach of robots dynamics

[1], [2], [3], the proposed approach can solve the forward

and inverse problems through a unique hybrid algorithm.

Moreover, in the context of the soft robots locomotion bio-

inspired from animals, this algorithm allows to compute,

through a model of the contact forces with the environment:

1◦) the net motion; 2◦) the torques produced by the muscles

or the actuators; 3◦) the body shape, i.e. the deformations

of soft appendages after then discretisation into serially con-

nected rigid bodies. As illustrated in section IV-C, on the case

of the flapping flight, the given solution is computationally

efficient with observations of experimental biology [7], [15],

[18]. In particular, we have been able to numerically recover

the characteristic wing deformations of the sphinx moth

Manduca sexta when the stroke reversals.
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