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Abstract

A fault-diagnostic system for unmanned underwater vehicles has been designed and tested in real operating conditions. Actuator
faults have been considered, relying on approximate models of the vehicles’ dynamics. Fault detection and diagnosis is accomplished
by evaluating any significant change in the behaviour of the vehicle. This task is performed by a bank of estimators: a filter is
implemented for each actuator fault type, including the no-fault case. The estimators used are extended Kalman filters (EKF), due to
the presence of nonlinearities in the dynamic models. Experimental results are reported, to demonstrate the effectiveness of the
proposed approach. ( 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The surveying and maintenance of benthic stations
and off-shore platforms, scientific and environmental data
acquisition, and marine warfare have encouraged the
development of unmanned underwater vehicles (UUVs),
which are usually classified as either autonomous under-
water vehicles (AUVs) or remotely operated vehicles
(ROVs). Operational activity requires the vehicles to be
able to detect and recover from subsystem, sensor, and
actuator faults, in order to continue a mission in some
form, even if the human operator cannot intervene to fix
the problem. The low communication bandwidth of the
acoustic channels and/or malfunctions in the commu-
nication devices can reduce the possibilities for human
supervision of the UUVs performance. Recent advances
in fault diagnostics have now made feasible the develop-
ment of automated fault diagnosis and accommodation
in the area of underwater robotics, to increase their
reliability during autonomous missions. In this paper, the
possibility of designing a fault-tolerant UUV is explored,
based on the experience gained on the Roby 2 ROV
(Veruggio et al., 1994), a testbed UUV developed at the

Naval Automation Institute (CNR-IAN), National Re-
search Council, Genova, Italy. More specifically, the fo-
cus is on the problem of detecting and isolating actuator
faults.

Among the various fault-detection approaches a dis-
tinction has arisen between the model-free and model-
based paradigms (Gertler, 1988; Frank, 1990). Model-free
fault diagnosis includes all the techniques that do not rely
upon models of the underlying system, while model-
based methods try to diagnose faults using the redund-
ancy of some mathematical description of the dynamics.
Examples of model-free techniques are the methods
based on spectral analysis, pattern recognition and sta-
tistical classification, and the classical limit and trend
check (Pau, 1981). Model-free techniques are widely em-
ployed whenever no model of the plant is available, and
the cost of developing a model is too high with respect to
the benefits; a typical field of application for this kind of
method includes large-scale systems.

From the beginning of the seventies, there have been
numerous theoretical advancements in fault diagnostics
based on analytical redundancy (Willsky, 1976). Accord-
ing to this approach, all the information on the system
can be used to monitor the behaviour of the plant,
including the knowledge about the dynamics. The
presence of faults is detected by means of the so-called
‘residuals’, i.e., quantities that are over-sensitive to the
malfunctions. Residual generation can be performed in
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different ways: parity equations (Gertler and Singer,
1990), observer-based generation (Frank, 1990), and the
methods based on parameter estimation (Isermann,
1984). The method using parity equations is a direct
implementation of the idea of detecting deviations of the
system due to faults, by imposing a direction on the
residuals as a response to a particular fault. In this way,
a high degree of isolation is guaranteed, although it must
be relaxed for the specifications about causality and
stability.

A less general method corresponds to the so-called
‘structured design of the residuals’, i.e., only a subset of
residuals becomes nonzero in response to a particular
fault. Observer-based techniques belong to this category,
and can be seen as special cases of parity equations
(Chow and Willsky, 1984). The innovation sequence gen-
erated by the filter is considered as residuals (Willsky,
1976); in any event, different schemes can be devised to
enhance isolability, as pointed out in (Frank, 1990). An-
other example of model-based techniques includes the
methods based on parameter estimation. Parameter-
identification-based methods are more practical than
other kinds of techniques, because they try to detect
faults by estimating significant parameters of the plant.
The assumption is that the faults are reflected in the
physical characteristics of the system in terms of para-
meter changes (Isermann, 1984). The mathematical para-
meters of the plant (some of them may have a physical
meaning) can change as a consequence of faults. Para-
meter estimation is performed on-line, and the estimated
parameters are compared with the nominal ones, which
correspond to fault-free conditions. In this way, super-
vision of the system performance is obtained.

In the literature, numerous applications of fault diag-
nosis are reported for aeronautical and aerospace sys-
tems, automotive and traffic systems, chemical processes,
electrical and electronic systems, nuclear plants, power
systems, and transportation systems (Isermann and
Ballé, 1997). Only recently, has attention been devoted to
fault diagnostics for marine and underwater systems. As
previously discussed, the first choice that must be made is
between model-free and model-based techniques. Model-
based fault diagnosis seems more suitable for underwater
applications. A model of the vehicle is usually available,
because the physical laws describing the dynamics of
a UUV are well-known and the number of state variables
is small (Fossen, 1994). Past research on fault diagnostics
for underwater robotics applications have focused
mainly on techniques for parameter estimation.

Parameter estimation may be accomplished in differ-
ent ways. If nothing is known about the plant, a black-
box approach is applied: a linear or nonlinear model is
tuned by means of the available data (Söderström and
Stoica, 1989). With respect to the problem of fault detec-
tion for underwater vehicles, an example of this kind of
approach is suggested in (Rae and Dunn, 1994). If there

exist physical laws that are well-suited to describe the
plant, except for some parameters that are yet to be
determined, the unknown parameters can be obtained
from the measured inputs and outputs by means of an
on-line recursive identification, relying on a state-space
model (Söderström and Stoica, 1989). Both state and
unknown parameter vectors are estimated in the pres-
ence of noisy measurements by applying the so-called
‘state-augmentation’, which consists of an enlargement of
the state space. The new state vector is given by the state
of the original system, and by the uncertain parameters.
Thus, the problem becomes one of estimating the state of
the augmented system. According to this view, experience
in fault detection for underwater robotics are reported in
(Healey, 1992, 1993). An observer-based technique is pro-
posed in (Alekseev et al., 1994): reduced-order observers
are used to detect sensor and thruster faults. Moreover,
the importance and the difficulties of developing a model
for a tethered UUV are discussed.

Fault diagnosis and accommodation involve all the
levels of the control architecture of a UUV: residual
generation is a synchronous task to be carried out at the
lowest level, but the detection process determines events
towards the upper levels. Accommodation involves the
reconfiguration of the vehicle or of the mission, and thus
is related to both the intermediate and the top levels of
the control architecture. The problem of the integration
of fault-tolerant capabilities within the frameworks of the
various control architectures for UUVs is still open.
A comprehensive discussion of this topic for general
fault-tolerant systems is reported in (Blanke et al., 1997).

In this paper, the diagnosis of actuator faults in the
UUV Roby 2 is investigated and the design of a fault
detection system is considered, using a model-based ap-
proach. The dynamic models developed for Roby 2 are
illustrated in Section 2. In Section 3, fault models are
considered, to describe the dynamics of the vehicle with
actuator faults. A fault-detection scheme, based on
a bank of EKFs, is proposed in Section 4. The EKFs used
for residual generation rely on the models described in
Sections 2 and 3. The results of the experimental tests on
Roby 2 are reported and discussed in Sections 5 and 6.
Section 5 focuses on the residual generation and filtering.
Section 6 deals with the problem of taking a decision
about the faults, by means of all the available informa-
tion. Finally, Section 7 is devoted to the conclusions and
to the prospects for future work.

2. Dynamic models for unmanned underwater vehicles

In this work, a problem of fault detection for a vehicle
operating on the horizontal plane is considered. The
underwater vehicle is Roby 2, a tethered UUV, which has
been deployed in various missions both in the Mediterra-
nean and in Antarctica (Bono et al., 1994). Roby 2 is
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Fig. 1. Roby 2.

Fig. 2. Picture of a UUV operating on a horizontal plane.

neutrally buoyant in water, structurally stable in pitch
and roll, and is provided with four DC motors. Fig. 1
shows Roby 2 in the operational configuration for sea
tests.

A small UUV can be modelled by a set of hydro-
dynamic equations (Fossen, 1994). In particular, the
horizontal motion can be described by the following
nonlinear equations:

m
u
uR "m

v
vr!k

u
u!k

u@u@
u Du D#F

u
, (1)

m
v
vR"!m

u
ur!k

v
v!k

v @v @
vDv D#F

v
, (2)

I
z
t® "!(m

v
!m

u
) uv!ktQ DtQ D tQ DtQ D#M

z
, (3)

where m
u
, m

v
, and I

z
are the masses along the longitudi-

nal and transverse axes and the inertia around the verti-
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hydrodynamic added inertial terms); u and v are the
vehicle surge and sway speeds of the vehicle-fixed refer-
ence frame with respect to the universal reference frame,
and t is the vehicle heading; F
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actuators. The parameters k

u
and k
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quadratic drag coefficients for the surge motion, while
k
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and k
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are those for the sway motion; finally, ktQ and

ktQ DtQ D describe the effects of the drag in the yaw dynamics.
Since Roby 2 is equipped with two horizontal

thrusters, the vehicle is not fully controllable in the hori-
zontal plane (see Fig. 2 for a pictorial representation).
The two vertical thrusters enable it to keep a constant
depth, so that the motion of the vehicle remains on the
plane. If the sway force F

v
is assumed to be zero, since no

transverse thruster is mounted on the vehicle (i.e., there is
no thrust in the sway direction, see Fig. 2), the dynamic
equations can be approximated by the following two
decoupled equations:
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Each propeller thrust can be expressed by (Fossen, 1994):
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where n is the propeller revolution rate, a and b are real
positive constants, and v

a
the advance speed of the pro-

peller (Fossen, 1994). The input/output relationships of
the propellers have been identified at bollard conditions
(i.e., v

a
"0) in thrust tunnel tests. This approximation is

reasonable because Roby 2’s operational speed is very
low (less than 30 cm/s when high motion precision is
required). Moreover, the propeller revolution is propor-
tional to the propulsor applied voltage: the voltage-to-
thrust coefficients have been identified by tests carried
out in a thrust tunnel (Bruzzone and Spirandelli, 1995)
and the relationships are ¹
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"0.4501 »
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are the
voltages applied to the left and right motors, respectively.

Two separate identification procedures were applied
for the estimation of the coefficients of Eqs. (4) and (5),
respectively. The results are as follows: k

u
"20.4 N/(m/s),

k
u@u @

"272.9 N/(m/s)2, m
u
"454.5 kg for Eq. (4); kt0 "

11.4 Nm/(rad/s), ktQ DtQ D"66.3 Nm/(rad/s)2, I
z
"66.7 kgm2

for Eq. (5). Further details about this topic are reported
in Alessandri et al. (1997a, c).
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Fig. 3. Roby 2’s control loop.

3. Actuator fault modelling

In order to describe the fault models of the vehicle, it is
necessary to give a brief account of the design of the
control system. Apart from the guidance (which involves
issues beyond the scope of this paper), the control is
based on an open-loop selection of the surge thrust, and
on a closed-loop steering controller. On the basis of the
model described by Eq. (5), a simple PID controller has
been designed to perform autoheading. Clearly, an inter-
play is established between the thrust required for
steering and the thrust chosen for the surge motion
(Alessandri et al., 1997b).
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In this way, the PID regulator computes the desired
torque M*

z
. In Fig. 3 all the components of the control

loop are depicted. More specifically, there is an anti-
windup PID regulator with gains equal to 300.0, 2000.0,
and 0.1, for the proportional, derivative, and integral
actions, respectively. The closed-loop system requires the
introduction of a Kalman filter to reduce the noise in the
measurements of the yaw. The Kalman filter has been
designed on the basis of a simple kinematic model. The
PID regulator generates the desired torque M*

z
.
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Similarly, when the horizontal right thruster breaks
down, the equations become
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Eqs. (11) and (12) shows that the fault acts on the dynam-
ics of the vehicle as a virtual disturbance, for which the
controller tries to compensate. At steady state after the
occurrence of the fault, the desired yaw torque equals
the opposite of the disturbance. On the basis of this
model, a horizontal thruster fault causes a drop in the
speed, but no change in the tracked orientation.

4. A fault-detection scheme for underwater vehicles

In a general fault-detection framework, there exist
three types of models: a model of the normal process,
a model of the observed process, a set of fault models
(Isermann, 1984). All the fault-detection methods are
based on the idea of determining a change in the normal
behaviour of the system by comparing the state, the
parameters, and other related quantities of the observed
process with those of the normal and faulty processes. An
assessment of the change in these variables is given by the
so-called ‘residuals’, which are indices of model matching.
Ideally, the residuals are zero in the case of perfect match-
ing without noise; otherwise, the residuals can be evalu-
ated in different ways, and this is the subject of Section 6.
A decision scheme based on the results of these evalu-
ations may be quite complex, depending on the dimen-
sion of the plant and on the desired performance,
robustness, and real-time operating capabilities (Frank,
1990). Using the different methods, fault diagnostics can
be attained by a bank of estimators. Each estimator is
able to generate an estimate of the state and of the
relevant parameters for a particular fault hypothesis. The
residuals corresponding to a fault hypothesis measure the
discrepancies between the predicted behaviour of the
system and what stems from the available measurements.
This scheme guarantees effective isolation, at the cost of
greater computational burden. Typical fields of applica-
tion of observer-based residual generation are aircraft
applications (Eide and Maybeck, 1996).

On the basis of the healthy and fault models described
in Section 2, a bank of estimators has been considered for
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Fig. 4. An observer-based fault-diagnostic scheme.

Fig. 5. Measurements of the yaw (right fault).

the nominal plant, the left actuator fault, and the right
actuator fault. These estimators rely on the state Eq. (5),
which is nonlinear due to the presence of quadratic terms.
The first EKF monitors the behaviour of the vehicle
when there is no fault, and uses Eq. (10). The second EKF
enables one to generate residuals when a fault of the left
actuator occurs and uses Eq. (11). Finally, the last one is
devoted to the residuals for the fault of the right propel-
ler, and relies on Eq. (12). In Fig. 4, a sketch of the
fault-detection and isolation scheme is shown. The next
few paragraphs will consider the problem of residual
generation and evaluation.

5. Residual generation and filtering

The fault-detection scheme proposed here has been
tested on experimental data collected during pool tests
with Roby 2: artificial single failures of the propulsors
were caused by acting on the horizontal thrusters while
the autopilot is operating as described in Section 3. The
only available sensor was a KVH DGC 100 compass.
Obviously, a more efficient design of the fault-diagnostic
system would require the integration of other instrumen-
tation, such as rate gyros, Doppler velocimeter, sonar,
short and long baseline positioning systems, and echo-
sounder.

The residuals are the difference between the measured
and the estimated value of the same variable at each time
instant (the sample time is 0.1 s). In order to improve the
isolation capabilities, the residuals are filtered with
low-pass filters against the effects of noise. Low-pass
filtering enables one to extract the steady-state value
and to reduce the variance of the residual. As a conse-
quence, the threshold can be chosen less conservatively,
and the performance of the diagnostics system is
improved.

Low-pass filters can be applied for residual filtering,
with particular care in the case of directional residuals
because of the geometric properties. In this case, the
filters must be identical for each type of filter. If the

residuals are structured (as here), the filters can be de-
signed independently from one another (Gertler et al.,
1995). Many low-pass filtering techniques are available in
the literature. Simple second-order Butterworth filters
with cut-off frequencies at 0.2 Hz have been used here to
process all the residuals.

The tests presented in this section refer to cases where
the vehicle is advancing ahead at a constant speed of
almost 0.2 m/s. In the case of Figs. 5—8, after almost 15 s,
a right thruster fault is forced by switching off the right
propeller. The fault causes a change in the behaviour of
the vehicle, due to the prevalence of the left thrust. The
fault induces a disturbance, which is compensated for by
the steering controller, as shown in Fig. 5. As one can
notice in Fig. 6, the residuals of the EKF based on the
model of the nominal plant increase after the occurrence
of the fault, as well as those of the estimator with the
model of the left propeller fault (see Fig. 7). Indeed, the
residuals of the EKF based on the model of the right
propeller fault become smaller, as depicted in Fig. 8.
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Fig. 6. Nominal plant model residual (right fault).

Fig. 7. Left fault model residual (right fault).

Fig. 8. Right fault model residual (right fault).

Fig. 9. Measurements of the yaw (left fault).

In the next section the residuals are used to decide about
the faults.

The effects of a partial left fault at t"25 s are depicted
in Figs. 9—12. As in the previous case, the fault is compen-
sated for by the controller; however, the residual gener-
ators perform worse since there is no exact matching
between the models of the observers and the real mal-
function.

6. Residual evaluation and decision

The fault detection and isolation scheme is completed
by a module that is responsible for residual evaluation
and for making decisions. On the basis of the residual

generation, the decision scheme could be designed in
various different ways (Basseville, 1988; Leonhardt and
Ayoubi, 1997). The basic steps are: (i) to collect the
residuals, (ii) to compute the required quantities as func-
tions of the residuals, and (iii) choose the thresholds for
each filter. These points will be addressed below.

Consider the fault detection scheme presented in Sec-
tion 4 : basically there exist three kinds of residual, corre-
sponding to the no-fault case, a left fault, and a right
fault. A classification can be made on a single fault by
a simple threshold comparison. More specifically, an
indication equal to 1 is given if the absolute value of the
residual is under the threshold (these indications are
denoted by nom—res—low, left—fault—res—low, and
right—fault—res—low); otherwise the indication is

362 A. Alessandri et al./Control Engineering Practice 7 (1999) 357—368



Fig. 10. Nominal plant model residual (left model).

Fig. 11. Left fault model residual (left fault).

Fig. 12. Right fault model residual (left fault).

equal to 0. If NOT denotes the Boolean negation and
AND the ‘and’ boolean operation, simple diagnostic
rules can be expressed as follows:

left—fault"NOT(nom—res—low) AND
left—fault—res— low AND NOT (right—fault—
res—low) (13)

right—fault"NOT(nom—res—low) ANDNOT(left—
fault—res—low) AND right—fault—res—low (14)

The results obtained with a threshold equal to 0.458°,
with the compass residuals presented in Section 5, are
depicted in Figs. 13 and 14 (right actuator fault) and
Figs. 15 and 16 (left actuator fault). As expected in the

case of Figs. 15 and 16, the proposed decision method
performs worse.

In order to assess the evaluation capabilities of the
proposed decision rule, a test without faults is con-
sidered, as shown in Fig. 17 (surge force), Fig. 18 (esti-
mated speed), and Fig. 19 (measurements of the yaw). The
vehicle is moving along a straight line, and the reference
set-point is at almost 22° (see Fig. 19). The value of the
surge force is changed manually according to the profile
depicted in Fig. 17. The advance speed of Fig. 18 has been
estimated using an EKF and Eq. (4) with sonar measure-
ments (Alessandri et al., 1997a). The compass residuals
are shown in Figs. 20—22. Note that the manoeuvres
cause variations of the residuals because of the coupled
dynamics of Eqs. (1)— (3).

The application of the diagnostic rules (13) and (14)
gives the results summarized in Figs. 23 and 24.

As can be noticed in Figs. 13, 14, 15, 16, and 23, 24, the
residual filtering improves the performance of the fault-
diagnosis system, since the unprocessed residuals applied
to the same decision rules determine higher false alarm
and misdetection rates.

The evaluation of the residuals can be improved by
integrating all the available information, such as, in the
case of an underwater system, the external conditions of
the environment or information related to the dynamics
but not included in the model of the residual generator.
This important subject has been addressed only recently
(see, for instance, Zhuang and Frank (1997) and Thilliol
et al. (1997)). For instance, the revolution rate and the
current absorption of the propulsors are useful in
monitoring the performance of the vehicle in cases of
thruster malfunctions. If a leakage occurs in the canister
containing one of the DC motors, an abnormal increase
in the current is measured.
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Fig. 13. Unprocessed residuals decision (right fault).

Fig. 14. Filtered residuals decision (right fault).
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Fig. 15. Unprocessed residuals decision (left fault).

Fig. 16. Filtered residuals decision (left fault).
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Fig. 17. Surge force (no fault).

Fig. 18. Estimate of the surge speed (no fault).

Fig. 19. Measurements of the yaw (no fault).

Fig. 20. Nominal plant model residual (no fault).

Fig. 21. Left fault model residual (no fault).

Fig. 22. Right fault model residual (no fault).
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Fig. 23. Unprocessed residuals decision (no fault).

Fig. 24. Filtered residuals decision (no fault).
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7. Conclusions

The enhanced autonomous capabilities required in the
most recent prototypes of UUVs make fault diagnostics
and fault accommodation the subject of considerable
attention. The present work considers the problem of
diagnosing actuator faults on UUVs, and the results of
the tests obtained with the Roby 2 UUV are presented.
First, the importance of developing accurate models for
the vehicles, without and with faults, must be stressed.
The residuals are strongly affected by noise and by model
uncertainty: the marine environment is a source of noises
with unknown distribution, and a very simple decoupled
model has been used. As far as this is concerned, im-
provements can be attained by modelling the environ-
ment (for instance, the presence of waves), and by using
coupled models of the vehicle. Secondly, it appears to be
fundamental task, to generate and evaluate residuals
robust enough with respect to uncertainties in the models
and in the measurements, by integrating all the available
information on the vehicle status. All these improve-
ments in the diagnostics for underwater vehicles will be
crucial to the development of new UUVs with increased
autonomous capabilities.

Future work will be devoted to the extension of the
proposed fault detection scheme, with the target of
attaining complete supervision of the performance
of the vehicle, using other kinds of sensors and informa-
tion on the vehicle subsystems. Another challenge for the
future is the design of a fault-tolerant reconfigurable
architecture, using redundant components, so as to re-
place the functionality of broken sensors, actuators, and
electronic packages.
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