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Abstract— In this paper, techniques from geometric mechanics
and geometric nonlinear control theory are applied to modeling
and construction of trajectory tracking algorithms for a free-
swimming underwater vehicle that locomotes and maneuvers
using a two-link actuated “tail” and independently actuated
“pectoral fin” bow planes. Restricting consideration of fluid forces
to the simple effects of added mass and quasisteady lift and drag,
the resulting system model can be expressed in a control-affine
structure. With particular choices of oscillatory actuation of the
four system joints, maneuvers such as swimming forward, in and
out of plane turning, surfacing, and diving can be constructed.
Further, the vehicle and model can generate agile maneuvers such
as snap turns. Trajectory tracking can then be produced using
state error feedback. The methods are demonstrated both in
simulation and in experiment using the University of Washington
prototype fin-actuated underwater vehicle.

Index Terms— Biorobotics, underwater vehicle control, nonlin-
ear systems, periodic control, locomotion.

I. I NTRODUCTION

Underwater locomotion has long been a subject of interest
to the biological community [1], [2], [3], and the robotics and
engineering communities have been inspired by this research
to construct biologically derived mechanisms that mimic the
behavior of individual and groups of swimming lifeforms. The
motivation for this work comes from the high maneuverability,
low drag and low hydrodynamic noise that fish demonstrate
over conventional propeller-driven underwater vehicles.In
order to realize a transfer of aquatic biological capabilities
to engineered systems, a greater understanding is needed
of the interaction of submersed shape-actuated vehicles, the
surrounding fluid, and effective means of controlling those
vehicles. The work presented here is focused on these tasks.

A. Methodology and Contributions

During the past decade, a variety of mechanical fin-actuated
devices have been proposed, built, and studied for purposes
of agile autonomous operation. A number of challenges are
present in achieving the goal of integrated device and con-
trol design that demonstrate the desired agility of dynamic
motion in fluids. High fidelity models of dynamic fluid-
body interactions are not generally amenable to analytical
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Fig. 1. The UW autonomous fin-actuated underwater vehicle.

control theoretic methods, and kinematics-based models are
limited in the types of motion that can be produced as well
as in robustness to modeling and design variations. Lower
fidelity dynamics models have shown promise for validation
of simple system motions, but they have not generally been
used for full exploration of system capabilities, particularly
for full 3D motion, nor have they been thoroughly validated
in hardware implementation. The contributions of this paper,
outlined below, were developed with this latter approach in
mind: analytical geometric methods for modeling, motion
planning and control of shape-actuated mechanical systems
operating in a fluid. The specific contributions made here are:

• Expression of the 3D equations of motion of a body
with two independently actuated rigid pectoral fins and
a tail with arbitrary number of independently actuated
rigid links in a form amenable to analysis with tools from
geometric control theory;

• Use of geometric control theory to determine open loop
controls for motion generation and to determine closed
loop feedback stabilization;

• Validation of the model’s suitability for capturing agile
motions such as snap turns;

• Evaluation of results in both simulation and experiment
to validate the methodology.

These results build on prior work of the authors and their
colleagues [4], [5], [6], [7], [8]. Except for the results in[6]
(a precursor to this paper), the earlier results were restricted
to planar systems both in theory and in experiment.

To admit the application of analytical methods, fluid effects
are restricted here to a highly simplified quasi-static liftand
drag model of the forces on the body and fins. While this
quasi-static lift and drag model does not capture every detail of
the fluid-body interaction and cannot lead to true performance
optimization, it does serve several useful purposes. Primarily,
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it allows a description of the system in a control affine form
in which the control inputs enter linearly. Existing methods
to analyze control performance can then be applied. These
methods have been used in prior and related work [4], [5],
[7] to consider controllability of the system model and to
generate maneuvers that would be difficult to find by intuition
and would be unlikely to occur in nature. Further, capturing
all fluid flow detail is not always necessary for the purposes
of control design, because control feedback can compensate
for reasonable modeling errors.

B. Prior Work

The existing results and methodology relevant to the mate-
rial presented here can be broadly segmented into three cate-
gories: modeling, control, and devices. The results discussed
here are based on relevance to the topic of analytical modeling
and control. A more complete review of existing methods can
be found in the tutorial papers by Sfakiotakis [9], Colgate and
Lynch [10] and Bandyopadhyay [11].

1) Modeling: Modeling of the fluid dynamics of live fish
swimming and of actuated mechanisms in water has received
extensive attention. With respect to live fish, Lighthill showed
that forward tail-fin locomotion can be represented as a spatial
traveling wave along the fish body [2]. Further investigations
into forward tail-fin locomotion using fluid dynamics models
were made by Churchill [12], Newman and Wu [3] and
Wolfgang [13]. Modeling of fast starts and turns have been
studied by Weihs [14], [15] and Ahlborn [16], [17] with
further live fish studies made by Domenici and Blake [18],
Budick and O’Malley [19] and Spierts and van Leeuven [20].
Studies of pectoral fin propulsion and maneuvering in fish have
been made by Blake [21], [22], Drucker and Lauder [23], and
Gordon et al [24]. With respect to mechanisms, experimental
results have been compared to inviscid flow theory and have
been used to optimize thrust production [25].

Kinematics models based on biological studies of the shape
of a fish body during swimming have been used in a number
of instances to generate forward and turning locomotion ([26],
[27], [28], [29], [30], [31], [32], [33], [34]) as well as agile
maneuvers such as snap turns and fast starts ([35], [36],
[13], [37], [38], [29], [39], [40], [41], [42], [43]). In such
approaches, the shape of a fish during each step of a maneuver
is represented digitally and scaled to the length of the robot
of interest. An optimization problem is then solved to find
appropriate robot joint angles to match the robot shape as
closely as possible to the fish shape at each time step. This
approach does produce the desired motions, but requires the
optimization problem be re-solved if the number of links or
their physical dimensions are altered.

In order to construct dynamics models for fin-actuated
underwater vehicles, a number of numerical studies of flow
around actuated foils have been pursued to produce appropriate
mathematical models of thrust from actuated surfaces [44],
[45], [46]. Some of the earliest work with techniques of
geometric mechanics and control that applied to fin-actuated
systems was produced by Kelly and colleagues [47], [48]
where the dynamics of a planar flapping foil with lift of the

form considered here was studied. A geometric mechanics
derivation of the equations of motion for a planar three link
system without lift or drag was presented in Kanso et al [49]
and Melli et al [50]. A key point to note in the unforced
system dynamics is that even without lift and drag, the Coriolis
terms from the shape dependent mass matrix will cause motion
to be produced when the links of the system are actuated.
This derivation is closest in style to the approach here, and
considered a comparison of the effects of treating added mass
of the links independently (an approximation) or coupled
accurately (precluding analytical closed form representations).
A preliminary version of the dynamics model to be discussed
here was presented in the author’s work [6]. A number of
other planar ([51], [52], [4], [5], [7], [53], [54], [43]) and 3D
([55], [56]) dynamics models have been derived from Euler-
Lagrange equations with lift and drag and have been demon-
strated for simple forward and turning gaits in simulation.

With respect to vehicles with flexible tails, Kose et al
constructed a planar model of flexible tail propulsion using
flexible beam theory [57], McIsaac and Ostrowski derived
a model of planar anguilliform locomotion without external
forcing [58], [59], and Boyer et al have demonstrated 3d
locomotion in simulation [60] using a continuum model of
the vehicle and elemental quasistatic lift and drag. Dynamics
models of pectoral fin actuation were constructed by Chiu et al
[61] and validated using data from Kato’s experimental work
with such devices [62] but without analytical control design.

2) Control: The approaches used to design control for
fin-actuated vehicles can be categorized as numerical opti-
mization, adaptive techniques, and geometric methods. As
mentioned in the discussion of kinematics models, optimiza-
tion methods have been used in a number of instances with
kinematic models to find robot joint angles to match the
robot shape to empirically observed fish behaviors during
locomotion [26], [51], [52], [63], [27], [28], [32], [64], [56],
[65], [33], [57], [35], [36], [13], [37], [38], [29], [39], [40],
[41], [42], [43]. When applied to dynamics models, on the
other hand, optimization can be used to find controls that
require minimal energy with respect to certain norms (e.g.
Saimek and Li [54] and Kanso and Marsden [66]). In order to
deal with unmodeled fluid effects and mechanical properties,
adaptive techniques such as fuzzy or genetic controllers have
been used in the pectoral fin systems of Kato et al [67], [68],
[69] and the planar tail-fin vehicles of Kuo and colleagues
[43], [34] and Yu et al [29], [30]

Only a few studies have used the approach of geomet-
ric nonlinear control theory to produce motion generation
or closed loop control of fin-actuated systems. Kelly et al
considered the use of geometric nonlinear control methods
for motion generation of a planar body in a fluid with forcing
from a single point vortex in [47], [48]. McIsaac and Os-
trowski constructed gaits for eel-like motion from their planar
dynamics models [58], [59] using perturbation methods. In
Kanso et al [49], motion generation is demonstrated using a
model derived from geometric mechanics, but the motions are
not connected to nonlinear control synthesis tools. In Melli
et al [50], numerical methods were used to draw connections
between the geometric structure of the unforced dynamics and
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particular motions in the system. This approach does generate
the desired motions but is not a systematic study of the full
set of possibilities. To explore the full range of capabilities
of the dynamic system with forcing from lift and drag,
the authors’ early work with planar versions of the system
considered here explored the Lie algebraic structure of the
forced system dynamics [4], [8], [7]. That work demonstrated
connections between the model and capabilities of the system
that would likely not be observed in nature, and validated the
simplified modeling approach for locomotion in the plane.
These results were then addressed with averaging theory to
construct feedback control for trajectory tracking [5], [7], [70],
[8]

3) Devices: The earliest demonstrated fin-actuated hard-
ware systems came out of MIT and Draper Laboratories with
the Robopike, Robotuna and VCUUV projects [71], [28],
[26], [27]. Robopike and Robotuna were constrained to planar
motion in flow tunnels, but the VCUUV was capable of full 3D
motion using actuated bow planes. On the opposite end of the
size spectrum, a microscale free swimming 3D robot with both
tail fin locomotion and pectoral fin maneuvering has been built
by Deng and Avadhanula [72], and preliminary experimental
results for fin actuation, but not directional motion generation
or tracking, were presented. Experimental results for flapping
foils generating thrust were compared to control theoretic
models by Yamaguchi and Bose [73], Kelly et al [47], Read
et al [74], Saimek and Li [54], Licht et al [31]. Planar
vehicles with tail-fin actuation have been demonstrated in [52],
[75], [29], [30], [32], [65], [64], [34], and 3D vehicles with
tail-fin actuation and pectoral fin depth control have been
demonstrated in 3D in limited cases by Kim and Youm [55],
Wang et al [56] and Zhou et al [33] (also demonstrated depth
control) and Ziegler et al [40]. Extensive work with planar
systems propelled using pectoral fins has been performed by
Kato and colleagues [67], [68], [69] demonstrating the ability
to both propel forward, turn and follow desired trajectories.
Snap turns and fast starts have been demonstrated in [35], [36],
[13], [37], [38], [29], [39], [40], [41], [42], [43]. Experimental
work by the authors of this paper includes planar vehicles [4],
[5], [7] and early work with fully 3D vehicles in [6].

Devices with actuated flexible fins are also in development
for a number of applications. At a large scale is the device
built by Davies et al [76] in emulation of a ribbon fin. An eel-
like robot with five links was built by McIsaac and Ostrowski
[59] and used to demonstrate their theoretical methods [58]
and flexible fins for hovering have been demonstrated in [77].
At a smaller scale, tailfin actuated microbots with buoyancy
control of depth has been built by Guo et al [53] and Kosa et
al [57].

C. Organization of the Paper

The paper is organized as follows. In Section II, the design
and physical properties of the experimental fin-actuated robot
shown in Fig. 1 are presented. A system model amenable
to geometric control theoretic methods is then presented in
Section III. An important aspect of this model is that its
applicability is not limited to the specific system here with

a two-link tail, but is general enough to encompass a tail
with an arbitrary number of discrete links. Motion generation
and control inputs to generate particular gaits are given in
Section IV. The controls are demonstrated in simulation and
in experiment in Section V. A comparison of these results
shows that the extremely simple model does in fact capture
the qualitative behavior of the physical system, and feedback
control produces the desired trajectory tracking capabilities.
Further, this model can be used to produce agile maneuvers
such as snap turns. Concluding remarks and directions of
ongoing work are given in Section VI.

II. EXPERIMENTAL SYSTEM

The physical device being used in the work discussed
here is shown in Fig. 1. The body of the robot has two
sealed compartments composed of aluminum side or top
panels wrapped with heat-molded semi-transparent acrylic.
The forward body compartment contains the microcontroller
board, Phytec MPC555 with Freescale MPC555 PowerPC
microprocessor, mated to a custom made motherboard, sensing
and communication devices, pectoral fin servo motors, and
batteries. The aft compartment contains the servo motors for
the two tail links. The tail itself is composed of a wishbone
shaped “peduncle” region and a rectangular-planform thin
hydrofoil (NACA 0012) with chord length 8cm and span 25.4
cm for the “caudal” fin. The tail joints are actuated with Hitec
HS-5945MG high-torque (peduncle) and HS-5925MG high
speed (caudal) servo motors, respectively capable of 0.847Nm
and 1.27 Nm torque at 6V. The two “pectoral” fins located at
the front of the body are independently actuated by Hitec HS-
5925MG high-speed servos.

The onboard sensors consist of a 3D compass, Honey-
well HMR3300, which can measure 360 degrees of yaw
and ±60 degrees of roll and pitch, and a pressure sensor,
Druck PDCR4010, able to measure depth with a resolution
of 0.016atm. Data collection, processing, and control function
generation are handled onboard by the microcontroller. The
microcontroller has roughly 4 MB of memory which allows
for the collection of trajectory data (orientations, depth, time,
servo commands, and received data). When operated in the
indoor test tank, the robot is equipped with a 72MHz RC
receiver, model Electron 6 from Hitec. The robot is capable
of decoding data on this frequency for either remote control
or autonomous operation. In the remote control mode, the
received data consists of low-level commands, such as tail
joint frequency and depth set point. In the autonomous mode,
the received data consists of spatial position informationwhich
is transmitted by an external tracking system (discussed later
in this section).

Physical dimensions of the robot are shown in Fig. 2. The
overall weight is approximately 3kg. The centers of buoyancy
and gravity are engineered to be co-linear (but not coincident)
along the bodyx3 axis. The pectoral fins are composed
of dense styrofoam covered with fiberglass and are located
forward and above the center of mass. The fins have the NACA
0012 hydrofoil profile with chord length 11.3cm and span
7.8cm. The lift force generated by each fin is assumed to act
at its quarter chord point.
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Fig. 2. Physical dimensions of the robot (in cm).

Given the limited onboard sensor suite and the nonlinear
dynamics of the vehicle, onboard full state estimation is
extremely challenging. Therefore, an external real-time vi-
sion system consisting of four identical underwater cameras
connected to a central computer was designed and imple-
mented. Each camera, model CVC320WP from CSI Speeco,
is connected to its own Osprey 100 capture card in the
central computer, which is an Intel Pentium 4 2.4GHz machine
running Linux. Grayscale video frames of resolution320×240
are simultaneously captured from each camera at rates up to
30Hz. To maximize the available workspace, the cameras are
mounted in the upper corners of the test tank, at a depth of ap-
proximately 18cm. Observation data collected online consists
of blob centroid features extracted from each image. These
features are obtained by first subtracting the static background
and then running a blob detector on the thresholded difference
between the current image and the background.

A particle filter [78] is run on the central computer, and the
resulting state estimate is transmitted via radio communication
to the robot. Propagation is achieved using a Frenet-Serret
model with variable speed and a zero order hold on control
inputs. This model is a decent first-order approximation of the
robot body motion and more importantly, can be processed
quickly in order to meet the real-time constraint. Because
the estimator does not know which control inputs the robot
is applying, zero-mean Gaussian noise is assumed for each
input. The observation model of the particle filter relies upon
a Tsai camera calibration [79], [80] generated from known
world to image point correspondences. This calibration allows
each particle to be projected into each image. The probability
of the observation given the projected particle state is Gaussian
based on image distance, and each camera is assumed to be
independent. Resampling is done after each update, and a total
of 1500 particles are used.

III. M ODELING

One of the primary foci of this work is to explore the
connection between bio-inspired underwater vehicles and an-
alytic nonlinear dynamics and control theory. Therefore the
system model needs to be based on analytical representations
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Fig. 3. Free body diagram of robot showing modeled lift and drag forces.

rather than numerical calculations or empirical data. Clearly
this choice will place limits on the accuracy of the modeled
behavior relative to the true system performance, however,in
the context of autonomous vehicle operation, small differences
can be mitigated with feedback control. The validity of this
approach is considered in the following sections, as well asin
related works [4], [5], [7], via the comparison of simulation
and experimental results.

The fluid in which the robot is operating is assumed to be
inviscid, irrotational and incompressible as well as infinite in
domain, and three-dimensional fluid effects will be neglected.
Any rigid body moving in a fluid environment will cause
movement of the surrounding fluid which can be modeled
with an appropriate set of fluid state variables. For simplicity
however, the state of the fluid will not be explicitly monitored
here, but rather its interaction with the robot mechanism will
be treated as externally applied lumped forces. When a rigid
body accelerates in a fluid, a portion of the surrounding fluid
also accelerates. As the state of the fluid is not being modeled,
this change in fluid energy is accounted for by assuming an
apparent increase in the mass of the object, termed added
mass, in the direction the object is accelerated. Additionally, as
fluid elements move relative to one another and around solid
bodies, pressure differentials develop. When summed up, these
incremental differentials result in net forces typically resolved
into orthonormal components termed lift and drag. Viscosity
in a fluid will also produce drag on a body often referred to
as skin friction, but the fluid here is assumed inviscid and this
type of drag is therefore neglected. Given the composition of
the system here (body, two-link tail, and two pectoral fins),the
set of external forces on the system is then lift and drag from
the tail,Lt andDt, lift and drag from the body,Lb andDb,
lift and drag from the two pectoral fins,Lpr

, Lpl
, Dpr

, and
Dpl

, the force of buoyancy,Fb, the force of gravity,Fg, and
the moments resulting from these forces. A free body diagram
of the system with these forces is shown in Fig. 3.
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A. Unforced equations of motion for the body segment

The position and orientation of the body segment of the
robot are denoted byg ∈ SE(3) which can be written in
homogeneous matrix notation as

g =

[
R x

0 1

]
, (1)

whereR ∈ SO(3) is the orientation of the body, andx ∈ R
3 is

the position of the center of mass of the body, both relative to a
fixed inertial reference frame. Here the longitudinal axis of the
body is taken to be thex1 axis (positive forward), the lateral
axis to be thex2 axis (positive to the left), and thex3 axis to
be positive upward. ZYX Euler angles are used to determine
the rotation matrix from the body orientation vectorθ in the
analysis and simulations below. The body-fixed translational
and angular velocities are denoted by the vectorsV andΩ. In
this notation, the velocity of the body is given by

Ṙ = RΩ̂ (2)

ẋ = RV (3)

where Ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 contains the angular

rotation ratesωi = θ̇i.
For an incompressible, irrotational and inviscid fluid, the

unforced equations of motion of a singlerigid body may be
written using Kirchoff’s equations [81]:

JΩ̇ = JΩ × Ω +MV × V (4)

MV̇ = MV × Ω (5)

whereJ andM are the inertia and mass matrices including
added mass effects. Defining the momentum of the robot body
(without the tail) as̃p = [Π, P ] = [JΩ,MV ], these equations
can be expressed as

˙̃p =

[
Π × Ω + P × V

P × Ω

]
. (6)

Approximating the body segment as an ellipsoid of massm

with body axes given byax1
, ax2

andax3
, the added mass in

all three axes is4
3
πρax1

ax2
ax3

[82]. The moment of inertia
about x1 is J1 = 1

5
m(a2

x2
+ a2

x3
) with added inertia term

4

15
πρax1

ax2
ax3

(a2

x2
+ a2

x3
) and similarly for the other two

axes. The two tail links will be modeled as flat plates with no
added mass in thex1 or x3 directions and no added inertia
aboutx2. Added mass for thex2 direction of a flat plate is
1

4
ρπl2h (l andh are respectively the length and height of the

plate), and the added inertias are2πρ( l
4
)4h. For simplicity of

calculation, the components of the mechanism will be assumed
to be hydrodynamically decoupled (i.e. added masses are
independent). For a comparison of results with this assumption
to results with coupled added mass calculations, the readeris
referred to [49]. For simplicity, the pectoral fins are assumed
to have no added mass.

B. Potential forces

The vehicle is assumed to be neutrally buoyant with centers
of buoyancy and gravity that are non-coincident but are co-
located along an axis parallel to the bodyx3 axis. The direction
of gravity, in the body-fixed coordinate frame, is given by
Γ = RT k wherek = [0, 0, − 1]T . If the vector from the
center of mass to the center of buoyancy isrb = [0, 0, hb]

T ,
then the effect of the non-coincident forces is a net torque
− 1

2
mγΓ × rb whereγ is the magnitude of the gravitational

force.

C. Forces on heaving and pitching hydrofoils

Each of the pectoral fins can pitch, and the tail fin can pitch
and heave, with arbitrary frequency. Using results from [45]
to determine the lift forces under the assumption that all shed
vortices are neglected gives

Lf1 = 4πdVf1(Vf1 + dωf ), Lf2 = 4πdVf2(Vf1 + dωf ),
(7)

whereLf1 is the force generated along the chord of the foil,
andLf2 is the force generated out of the chord/span plane.
The quarter chord location of the foil is denoted byd, while
Vf1 andVf2 are the speeds of the foil in its body-fixedx1 and
x2 directions, respectively. The angular rate of the foil about
its leading edge is denotedωf .

Notice that in this formulation, the angle of attack of the
foil does not explicitly appear in the equations as the fluid
is assumed to be at rest, so the angle of attack is implicit in
the definition of the forces. Furthermore, as three dimensional
fluid effects are not being considered here, the aspect ratio
and the effect of the body next to the pectoral fins have been
neglected.

D. Lift and drag on the body

To allow use of planar results, the lift and drag will be
calculated in each plane, and the lift and drag will be assumed
negligible in thex2−x3 plane. Because the body is an ellipsoid
rather than a thin pitching and heaving plate, lift and drag on
the body of the robot are assumed to be generated in the usual
steady fashion. Under these assumptions, the lift on the body
is

Lb,12 =
1

2
ρclb,12α12Ab,12

(
V 2

1
+ V 2

2

)
, (8)

Lb,13 =
1

2
ρclb,13α13Ab,13

(
V 2

1
+ V 2

3

)
, (9)

(10)

where clb,12 and clb,13 are the lift coefficients per angle of
attackα12 in thex1−x2 plane, andα13 in thex1−x3 plane.
The planform area of the body is given byAb,12 in thex1−x2

andAb,13 in the x1 − x3 plane. As in Fig. 3, the velocity of
the body isV , andρ is the density of the fluid. The drag is
computed in a similarly to the lift as

Db,12 =
1

2
ρ(cdb0 + cdb,12α

2

12
)Ab,12

(
V 2

1
+ V 2

2

)
, (11)

Db,13 =
1

2
ρ(cdb0 + cdb,13α

2

13
Ab,13

(
V 2

1
+ V 2

2

)
, (12)
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wherecdb0 is the zero lift drag coefficient of the body,cdb,12

andcdb,13 are the drag coefficients per square angle of attack
for thex1 −x2 andx1 −x3 motions of the body respectively.

Lastly, the fluid is known to add a damping effect to
rotations of the body about its principal axes, as the rotating
body will induce separated flow about its bluff edges which
will transfer rotational kinetic energy from the body to the
fluid. This effect is somewhat crudely, but effectively, included
in the model as a simple viscous moment that impedes body
rotation in all directions,

Mdamp = −cmΩ, (13)

wherecm is a simple damping coefficient.

E. Forced equations of motion

For systems such as this one where forces on the system are
independent of the body position and orientation, Lagrange-
Poincaŕe equations can be used to describe the system dy-
namics. The relevant information will be stated below, and
the reader is referred to the references (e.g. [83], [84]) for full
detail. A mechanical system of the type considered here can
be described by the states of the main body,g, termed group
states, in combination with the values of the states that describe
the relative placement of the moving components to the main
body, denotedr and termed the shape states. Here the shape
statesr are the tail joint angles,r = [ψ1, ψ2]

T . The effect of
the pectoral fins is assumed to be limited to generation of lift
forces, and they are not included in the system momentum or
added mass.

Recall [84] that the Lagrangian for a system ofk links with
statesr, g, ṙ, and ġ can be written as

L(r, g, ṙ, ġ) =
1

2

k∑

i=1

V T
i (r, g, ṙ, ġ)Mi(r, g)Vi(r, g, ṙ, ġ)

−U(r, g) (14)

=
1

2

[
ṙ

ġ

]T

M(r, g)

[
ṙ

ġ

]
− U(r, g), (15)

whereU(r, g) is potential energy (from buoyancy and gravity),
andVi andMi correspond to the body-fixed velocity and mass
matrix of each of the links in the system. Because the mass
matrix for an immersed mechanical system will change based
on the joint anglesr, but not based on the group statesg, the
Lagrangian can be rewritten using the body-fixed velocity of
the group states,ξ = g−1ġ, to give the reduced Lagrangian:

l(r, ṙ, ξ) = L(r, e, ṙ, ξ) (16)

=
1

2

[
ṙ

ξ

]T

M(r)

[
ṙ

ξ

]
− U(r, e) (17)

=
1

2

[
ṙ

ξ

]T [
m(r) AT (r)I(r)

I(r)A(r) I(r)

] [
ṙ

ξ

]

−U(r, e)(18)

where the last equation is simply a re-expression of the
previous wheree ∈ SE(3) is the identity element,A(r) is
termed the local connection,I(r) is termed the local form
of the locked inertia tensor,M(r) = M(r, e) is termed the

reduced mass matrix, andm(r) is the shape mass matrix. The
Lagrange-Poincaré equations are then

g−1ġ = ξ = −Aṙ + Ip (19)

ṗ = ad∗ξ
∂l

∂ξ
+ Fξ (20)

Mrr(r)r̈ =
∂l

∂r
+ Fr. (21)

The first equation (19) describes how to obtain the body
motion from the momenta and shape, and for the system
here is just a re-expression of (3) which statesṘ = RΩ̂ and
ẋ = RV . In the second equation (20),p is the bulk system
momentum which includes the effects of the tail motion, and
Fξ are the external forces of lift and drag from all fins and
the body. The termad∗ξ1

ξ2 is the coadjoint or dual to the Lie
Bracket (discussed below). Here the operation is simply given
by (6) replacing[Ω, V ] with ξ and [Π, P ] with ∂l

∂ξ
. The final

equation (21) describes the controlled physical shape of the
system, which reduces tör = Fr because the shape here is
fully controlled. The termMrr = m(r)−ATIA is the kinetic
energy matrix for the shape states.

IV. N ONLINEAR CONTROL

In order to evaluate the validity of the model in the previous
section relative to the actual robot, the first question thatmust
be addressed is how to determine controls that will generate
desired motion primitives. The model derived here is known
not to be feedback linearizable (see e.g. [4], [5], [7]) due to
the particular nonlinear structure of the components, however,
pairings of control and motion primitives can be accomplished
using geometric nonlinear control methods.

A. Accessibility

To evaluate accessibility, (19)-(20) must be rewritten in the
form

ż = f0(z) +

m∑

i=1

fi(z)ui(z, t) (22)

where m is the number of control inputs and here is
equal to four for the number of actuated joints. Specifically
u1, u2, u3, u4 are respectively the inputs to the first and second
tail joints, the right pectoral fin, and the left pectoral fin.As
stated above, the tail fin actuation enters the system as torque

inputs to (21) asFr =

[
u1

u2

]
. The pectoral fin actuation

appears in the system equations as velocities in the lift terms
which are nonlinear functions. In order to achieve the form
(22) in which controls only appear linearly, the system states
can be augmented with statesψ3, ψ̇3, ψ4, and ψ̇4:

ψ̈3 = u3 (23)

ψ̈4 = u4. (24)

The overall system state is then z =
[gT , rT , ψ3, ψ4, ġ

T , ṙT , ψ̇3, ψ̇4]
T where z ∈ SE(3) ×

R
2
× R

2
× se(3) × R

2
× R

2.
In (22), f0(z) is termed the system drift vector field, and

fi(z) are termed the system control vector fields. With the



7

given definition of the statez, the control vector fields are
unit basis vectors:f1 = e17, f2 = e18, f3 = e19, f4 = e20 and
correspond, in order, to the first and second tail joints, andthe
right and left pectoral joints. The vector fields dictate howthe
system state evolves over time with and without control ac-
tuation. Motion forward or backward along individual control
vector fields can be created by setting the appropriate controls
to constant values with the appropriate signs. To determine
the effects of more complicated time-varying controls, theLie
brackets of vector fields can be computed and analyzed.

Recall that the Lie bracket of two vector fieldsfi andfj is
another vector field denoted[fi, fj ] defined by

[fi, fj ] =
∂fj

∂z
fi −

∂fi

∂z
fj . (25)

The Lie bracket also satisfies the properties:

[fi, fi] ≡ 0 (26)

[fi, fj ] = − [fj , fi] (27)

[fi, [fj , fk]] = − [fj , [fk, fi]] − [fk, [fi, fj ]] . (28)

Lie brackets between control vector fields correspond to par-
ticular combinations of oscillatory, or area generating, motions
of the associated control input functions. These vector fields
then determine what system motion will be accomplished if
the corresponding control input functions are applied to the
system. An important point to note is that while those control
inputs will generate the given motion along the vector field,
they may also generate motion in other vector field directions.

1) Forward locomotion and heading control:Determining
the motions to which vector fields correspond at all states
in a system with this level of complexity is generally quite
difficult. However, as the vector fields are analytic, they can be
evaluated for representative physical parameters and analyze
the result for particular operating conditions. Straightforward,
but involved, calculations have then shown in previous work
[4] the following correspondence between vector fields and
motion directions:

ψ̇1 ↔ f1 (29)

ψ̇2 ↔ f2 (30)

ẋ1 ↔ [[f0, f1], [f0, f2]] (31)

θ̇3 ↔ [f1, [f0, [f1, [f0, f2]]]]. (32)

From this correspondence direct motion can be generated in
thex1 andθ3 directions. Note that the Lie bracket calculations
are made before evaluating at particular states, sof0 = 0 does
not imply [f0, fi] = 0. Motion in thex2 direction is coupled
with the θ3 direction, and an additional spanning vector field
has not been found. However, as trajectory tracking in the
plane can be accomplished as long as a vehicle can move
forward and turn with a finite radius, the robot can move
between any two points in the plane with arbitrary initial
and final orientation. The lack of the final vector field simply
precludes such motions happening on arbitrary time scales.
Note that these Lie bracket- direction pairs correspond to the
dominant effect produced. If biases are introduced into the
controls that will be discussed below, the termθ3, for example,
cold be generated by the Lie Bracket in (31) in addition toẋ3.

2) Forward locomotion and pItch control:To evaluate the
additional motions that can be generated by oscillating the
pectoral fins, consider only the vector fields that correspond
to those two fins. In this case, again evaluating the vector field
parameters at representative values used in the simulations
below, the following can be found (see e.g. [6]):

{
ẋ1, θ̇3

}
↔ [f3, [f0, f3]] (33)

{
ẋ1,−θ̇3

}
↔ [f4, [f0, f4]] (34)

ẋ1 → [[f3, f0] , [f4, f0]] . (35)

In the first two Lie bracket vector fields, the use of a single
fin will generate both forward propulsion as well as a yaw
turn. The turns generated by each of the fins are opposite in
direction, so in the third case where both fins are being used,
no net turn is generated. As in the previous set of vector fields,
additional motions can be generated by introducing a bias into
the controls. Here a bias will generate pitch and depth,θ̇1 and
ẋ3.

B. Motion Generation

For certain classes of nonlinear systems, including the oneto
which the system here corresponds, the use of superimposed
periodic inputs with particular frequency relations has been
shown to generate motion in desired directions that cannot
be directly actuated. A particular set of oscillatory signals
applied to the actuators of a system which results in a
characteristic (stable) system response is generally referred to
as a “gait”. One method to construct gaits and produce motion
in desired directions is to use a knowledge of the system Lie
brackets, discussed in the previous section, and an application
of averaging theory. Full details of the work below may be
found in [70].

To form a correspondence between oscillatory inputs and
Lie brackets, each of the control functionsui is chosen to be
of the form

ui(z, t) = ui0(z) +
m∑

j=1

uij(t) sin

(
2π

T
ωijt+ φij

)
(36)

whereωij ∈ Z, φij ∈ S
1, and i ∈ 1, . . . ,m. These controls

ui are then the sum of a purely state dependent term and a set
of T -periodic functions. The system (22) can be rewritten as

ż = f̃0(z) +
m∑

i=1

f̃i(z, t), (37)

where

f̃0(z) = f0(z) +

m∑

i=1

fi(z)ui0(z) (38)

f̃i(z, t) =
∑

ij

fi(z)uij(t) sin

(
2π

T
ωijt+ φij

)
. (39)

Note that thef̃i areT -periodic by construction. Additionally
T is assumed to be small, and the functionsuij(t) are assumed
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to satisfy
∫ T

0

(uij(s1) − ui0)ds1 = 0 (40)

∫ T

0

∫ s2

0

(uij(s1) − ui0)ds1ds2 = 0. (41)

The following results can then be proved.
Lemma 4.1 ([70]):Motion in the direction[fi, [f0, fj ]] can

be generated with control functions of the form

ui(z, t) = ui0(z) + ui1(t) sin

(
2π

T
ωt

)
(42)

uj(z, t) = uj0(z) + uj1 sin

(
2π

T
ωt

)
(43)

or of the form

ui(z, t) = ui0(z) + ui1(t) cos

(
2π

T
ωt

)
(44)

uj(z, t) = uj0(z) + uj1 cos

(
2π

T
ωt

)
. (45)

whereuj1 is a constant. Ifi = j, the definition forui is used.
Note that if i = j above, only positive motions along the

vector field will be possible, meaning that the gait cannot be
reversed.

Lemma 4.2 ([70]):Motion in the direction
[[f0, fi], [f0, fj ]] can be generated with control functions of
the form

ui(z, t) = ui0(z) + ui1(t) cos

(
2π

T
ωt

)
(46)

uj(z, t) = uj0(z) + uj1 sin

(
2π

T
ωt

)
. (47)

whereuj1 is a constant.
Lemma 4.3 ([70]):For motions in the direction

[fi, [f0, [fj , [f0, fk]]]], define the following:

χ(α) = cos

(
2π

T
αωt

)
. (48)

Motion in this direction can then be generated with control
functions determined by the following three cases:

(a) i = j = k:

ui(z, t) = ui0(z) + ui1(t)χ(1); (49)

(b) i = j or i = k or j = k: Assumei = j and make
similar choices in the other two cases:

ui(z, t) = ui0(z) + ui1χ(1) (50)

uk(z, t) = uk0(z) + uk1(t)χ(2) (51)

whereui1 is a constant;
(c) i 6= j 6= k:

ui(z, t) = ui0(z) + ui1(t)χ(3) (52)

uj(z, t) = uj0(z) + uj1χ(2) (53)

uk(z, t) = uk0(z) + uk1χ(1) (54)

whereuj1 anduk1 are constant.

Component Parameter Value
body mass 3.0 kg

length 0.40 m
width 0.06 m
height 0.09 m
clb,12 0.12 deg−1

clb,13 0.03 deg−1

cdb0 0.0 deg−1

cdb,12 0.02 deg−1

cdb,13 0.01 deg−1

cm 2.0 kg m2

A12 0.04 m2

A13 0.032 m2

peduncle mass 0.1 kg
length 0.085 m

tail fin mass 0.15 kg
chord 0.08 m
span 0.25 m

pectoral fins chord 0.10 m
span 0.35 m

TABLE I

PARAMETER VALUES FOR ROBOT CONTROL SIMULATIONS.

V. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the applicability and capabilities of the
model developed in Sec. III, both simulations with the model
and experiments with the system described in Sec. II have
been performed. Parameter values used in the simulations are
shown in Table I. As a note, these parameters have been chosen
based on observation, not based on parameter identification,
so deviation between experiment and simulation should be
expected. For the experimental results, lateral and longitudinal
position data comes from the vision tracking system whereas
all other data (orientations and depth) was generated and
processed onboard the robot. Key points to note in the results
below are that the onboard orientation measurements are
collected from a magnetic based device and are subject to
interference from the four servos (causing noticeable noise in
the data). Further, the maximum rate of the 3D compass is
8Hz and the maximum rate of the vision system is 20Hz, so
experimental time constant parameters (tail joint frequencies,
etc) have been chosen much slower than the upper capability
of the system in order to produce data with adequate sampling.

Both open loop and closed loop control will be presented
below. The first three sets of results are open loop and
respectively demonstrate forward locomotion without turning
using the tail, forward locomotion and turning from biasingthe
tail, and forward locomotion and turning using different tail
joint frequencies. Prior work with the planar version of this
system demonstrated that a forward gait can be constructed
by applying a sine to one tail joint and a cosine to the other,
both at the same frequency. Turns can be generated in one of
two ways. The first is to use the tail as a rudder by biasing
the forward gait motions away from the main body line. The
second, predicted by the geometric structure of the system
equations (32), results by applying a cosine of one frequency
to the first joint and a cosine of twice that frequency to the
second joint (Lemma 4.3). As shown below, these gaits can
also be realized in the free-swimming robot with its caudal
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Fig. 4. Simulation (a) and experimental (b) results for open loop control of the robot to generate forward swimming using tailpropulsion.

and pectoral fins.
The next three sets of results demonstrate feedback control

for heading regulation with tail propulsion, depth regulation
with tail propulsion, and depth regulation with pectoral fin
propulsion. As has been demonstrated in earlier work with the
planar system [5] and in the mathematical development [70],
by evaluating the actual and desired system configurations
and velocities after each oscillatory cycle, an error function
can be generated and used to modify the cyclic actuation of
the system. The feedback terms are only updated after whole
cycles of oscillation in order to average out the naturally
induced oscillation in the body from the underlying gross
system motion. For the full mathematical details, we refer the
reader to [70].

The final set of results is open loop and demonstrates an
initial comparison of the model with experiment for agile
maneuvering in the form of a snap turn. The controls for this
maneuver were determined from a least squares fit of live fish
data to the robot dimensions. Details are given below, but the
results indicate that the model does indeed capture the key
elements of agile maneuvering.

1) Open loop forward locomotion:As stated in Section IV,
forward motion from oscillation of the tail can be achieved by
inducing motion in the Lie bracket direction[[f0, f1], [f0, f2]].
Using the results above, this direction can be generated by the
controls

u1 = u11 sin

(
2π

T
ωt

)
, u2 = u21 cos

(
2π

T
ωt

)
. (55)

Applying these controls to both the simulation of the free-
swimming robot and the experimental system gives the result
shown in Fig. 4. In this case, the control parameters areu11 =
30 deg,u21 = 30 deg, 2π

T
ω = 344 deg·s−1.

Overall the general scale and magnitude of the net motion in

both translation and rotation is quite similar. The experimental
system does demonstrate slightly larger body oscillationsthat
the simulated system (most clearly seen in the region where
x1 ∈ [8, 10]cm). As mentioned above, the experimental system
is subject to noise in all of the plotted variables. Given this
noise, the low sampling rates of the sensors, and the modeling
simplifications, the results are quite reasonable.

2) Open loop turning from biased forward locomotion:
Using the above controls for open loop forward locomotion,
but with a tail offset, results in a constant turn rate when
the forward speed of the robot is constant. The controls that
generate this motion are given by

u1 = u11 sin

(
2π

T
ωt

)
+γ, u2 = u21 cos

(
2π

T
ωt

)
+γ (56)

with results shown in Fig. 5 forγ = 10 deg. Again, the
effects of sampling rates, measurement noise and parameter
mismatch are apparent. However, even given these issues, the
results are qualitatively quite similar, and the scale of motion is
not unreasonable. The experimental system clearly has greater
translational motion, but the net heading change is almost
identical to the simulation. As with the previous experiment,
the results are quite reasonable.

3) Open loop turning from two frequency tail gait:The
vector field [f1, [f0, [f1, [f0, f2]]]] has been indicated above
to generate motion in the yaw direction of the vehicle using
motion of the tail. This motion is higher order than forward
locomotion and therefore results in smaller body motion
magnitude than a vector field direction composed of fewer
Lie brackets. As such, a biological system likely would not
use it, but it is of interest from a theoretical point of view.
Control functions that will generate this motion are predicted
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Fig. 5. Simulation (a) and experimental (b) results for open loop control of the robot to generate forward swimming with turning using biased tail propulsion.

from Lemma 4.3 to be

u1 = u11 cos

(
2π

T
ωt

)
, u2 = u21 cos

(
4π

T
ωt

)
. (57)

Using the parametersu11 = 30 deg,u21 = 30 deg,2π
T
ω = 172

deg·s−1, simulation and experimental results for these controls
are shown in Fig. 6. A clear turn occurs about thex3 axis
with a small drift (less than 10cm each direction) in the body
position.

The qualitative and quantitative results of simulation are
quite similar with those from experiment. The experimental
system has slightly larger magnitude translation and net ori-
entation change, but the difference is on the order of less than
a centimeter in translation and 10-15 degrees in orientation. As
with the other open loop maneuvers, these discrepancies would
likely be minimized by performing an optimized parameter
identification of the experimental system. However, for the
stated goals here of exploring the connection between behavior
of the model relative to behavior of the experimental system,
the results are acceptable.

4) Closed loop heading control with tail propulsion:
Regulated heading control is implemented here by controlling
the tail bias rather than by using the dual-frequency tail gait.
The feedback structure is based on comparing measurements
over whole oscillation cycles as discussed above. To track
desired headingsθ3d, the control inputs then have the form

u1 = α1 sin(
2π

T
ωt) + γ, u2 = α2 cos(

2π

T
ωt) + αγγ, (58)

whereγ = −kpeθ − kdėθ − ki

∫
eθ. The error terms,eθ =

θ3d − θ3 were based on averages over whole periods of
oscillation. Heading feedback data is read from the compass.
Fig. 7 shows data for the use of these control functions with
tail joint amplitudesα1 = 27◦, α2 = 30◦, αγ = 1.5,

2π
T
ω = 1.9Hz, kp = 1.0 deg−1, kd = 3.0 deg−1·s, and

ki = 1.0 (deg·s)−1. The light dashed lines represent the target
heading, which changes by90◦ increments at certain instants.
For this experiment, the robot was set to run at a fixed depth.
Clearly, the experimental system required larger joint angles
in order to track heading and did not respond as quickly as the
simulated system for the same gains and operation parameters,
however, the general tail joint behavior was qualitativelyquite
similar and the experimental system did meet the tracking
requirements.

5) Closed loop depth control with tail propulsion:To
generate pitch actuation using nonoscillatory motions forthe
pectoral fins and oscillatory actuation of the tail, the forward
locomotion controls from the previous task were combined
with feedback control of the pectoral fin angles. For this task,
the pectoral fin angles were set to the same value, but they have
been constructed to be capable of differential drive for other
purposes. Superimposing the controls for tail thrust generation
and pectoral fin lift generation, control functions become

u1 = α1 sin(2π
T
ωt), u2 = α2 cos( 2π

T
ωt), (59)

u3 = u4 = −kpex − kdėx − ki

∫
ex, (60)

whereex = x3d − x3. Fig. 8 shows data for the use of these
control functions with tail joint amplitudesα1 = 27 deg,
α2 = 30 deg, 2π

T
ω = 1.9 Hz, kp = 0.25 deg/cm,kd = 0.39

degs/cm, andki = 0 deg/cms (no integral control was used).
The pectoral fin joints were limited to a maximum pitch of34
deg, and the integral term is limited to a maximum value of
3.3 cms to prevent windup effects.

The robot was started at the surface and given a target depth
of 91 cm, followed by a new target depth of122 cm half
way through the run. The pectoral fins initially set to their
maximum value to produce as much motion downwards as
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Fig. 6. Simulation (a) and experimental (b) results for open loop control of the robot to generate forward swimming with turning using different, integrally
related tail joint frequencies.
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Fig. 7. Simulation (a) and experimental (b) results of closed loop heading control generated by tail joint biasing.

possible. The fin control then drove the error to within10
cm of the desired value of91 cm below the surface of the
water, and then to the new target depth of122 cm, where the
robot then maintained the depth error within±10 cm before
the target depth was again changed to91cm. As with the
heading control, more effort was required for the experimental
system to perform the desired tack than for the simulated
system. Most likely this result is due to unmodeled or poorly
modeled physical parameters. Note that at the beginning of the
experimental run, the pectoral fins were at their pitch limit. The
overall magnitude of pectoral fin pitch was of the same order
for both simulation and experiment, although the settling time
was not as fast in the experiment as in the simulation. Overall,
however, the results are quite reasonable.

6) Closed loop depth control with pectoral fin propulsion:
The final feedback results consider the effect of using the
pectoral fins for both propulsion and depth regulation. Given
the small size of these fins compared to the caudal fin, the
motions were not as large as those generated by tail actuation.
However, for the purposes of small scale maneuvering, such
gaits may have importance in engineered systems. The vector
fields [f3, [f0, f3]] and [f4, [f0, f4]] have equal forward mo-
tion and opposite yaw motion for identical input parameters.
Applying a bias to the motion will also generate changes in
depth. This effect can be used for depth control similarly to
that demonstrated above for tail propulsion. To this end, the
controls

u3 = u4 = α34 sin

(
2π

T
ωt

)
+ γ (61)
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Fig. 8. Simulation (a) and experimental (b) results for depth control using tailfin propulsion and pectoral fin pitch actuation.
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Fig. 9. Simulated (a) and experimental (b) depth regulation using pectoral fin actuation for both propulsion and depth regulation.

whereγ = −kpex − kdėx − ki

∫
ex andex = x3 − x3d were

used to produce the depth regulation results shown in Fig. 9.
The control parameters wereα34 = 25deg, 2π

T
ω = 1.9Hz,

kp = 0.25 deg/cm,kd = 0.063 degs/cm, andki = 0.25
deg/cms. Comparing the simulation and experimental results
demonstrates that, again, the experimental system had to use
more effort to achieve the given tracking task and the settling
time was longer. Also, in the experimental system, the steady
state offset of the pectoral fins is not zero as the system
is positively buoyant, requiring the fins to constantly work
to maintain a fixed depth. Overall, however, the results are
acceptable.

7) Agile maneuvering:As discussed in the introduction,
live fish are capable of performing agile maneuvers such as
fast-starts and snap-turns, which are characterized by a single
non-periodic, or transient, motion. While these behaviors have

not been studied as thoroughly as steady locomotion or other
periodic behaviors, the use of transient effects may have
connections to optimization tasks for engineered systems.As
with the other fin-actuated devices used to demonstrate fast-
starts and snap turns, the fin-actuated robot presented in this
paper is capable of producing these maneuvers. However, no
prior work has addressed the construction and evaluation of
an analytic dynamics model able to replicate these behaviors.
Clearly such a model has significant usefulness for purposes
of control synthesis for fin-actuated vehicles and for studies
of live fish behaviors. In order to evaluate the model in Sec.
III for its ability to produce reasonable transient responses of
fin-actuated vehicles, images of goldfish spinal shape during
a snap turn behavior [14] were digitized. A least squares
optimization was then used to find joint angles that produce
a robot configuration that matches, as closely as possible, the
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goldfish shape. These values were then spline fit to create
smooth joint angle functions (Fig. 10) that were used to
generate the results in Fig. 11. The amplitude of the motion
was scaled with a constant parameterα to produce larger
angular changes. Note that for the purposes here of evaluating
the model for its ability to generate transient behaviors, the
particular means of finding controls that generate a snap turn
in the physical system are not so important as the end result
of a snap turn being produced.

The heading angle in the experimental results was captured
using the on-board magnetic compass. Due to the low data
rate of the compass, the data is somewhat noisy, but clearly
the vehicle demonstrates a sharp, non-periodic change in
orientation with the given controls. In both the experiment
and the simulation, an initial sharp turn is followed by a small
return, then a more slowly increasing orientation. The results
in both cases are qualitatively similar, although the initial sharp
turn in the simulation is much smaller than in experiment
and the final slower orientation change is much larger. The
difference in net motion and component magnitudes is likely
due to a mismatch of lift and drag coefficients as well as added
mass approximations between the model and the physical
system. However, the results do indicate that the simulation
will produce agile motions of the type possible in physical
systems.

VI. CONCLUSIONS AND FUTURE WORK

In the work presented here, techniques from geometric
modeling and nonlinear control theory have been applied to
the task of control synthesis for a fin-actuated robot. A great
deal of the prior work in this area has focused on the use of
kinematic models and numerical methods that do not permit
the development of analytical control theoretic techniques.
While the model being used is quite simplistic, the given
results demonstrate that the given simplified model is sufficient
as a design tool for these operation conditions. Clearly, a
more accurate model, with higher order fluid effects, would
lead to better response in the simulated system. Additionally,

performing a parameter fit between the experimental system
and the simulation would lead to greater agreement in the
results. These points are the topic of ongoing work with this
system.

Given the demonstrated agreement, at least qualitatively,
between the model and experiment, a number of control
theoretic questions can be addressed. Of particular interest is
the development of tests for controllability that are applicable
to the type of system here where existing tests fail for
initial conditions with zero velocity (such as when lift and
drag are incorporated into dynamics models). With respect
to the snap turn behavior specifically, the given results for
the experimental system are reasonable, and the fact that the
simulation agrees at least qualitatively indicates that the model
can be used to address some questions regarding transient
behaviors that are generally considered to require unsteady
forces. Exactly how far this model can be taken, and how much
it can be improved by the use of more accurate parameters or
more accurate accounting of added mass, remains to be seen,
but the implications for development of analytical methodsare
promising.
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