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Dynamic Modeling and Simulation
of a 3-D Serial Eel-Like Robot

Wisama Khalil, Senior Member, IEEE, Guillaume Gallot, and Frédéric Boyer

Abstract—This paper presents the dynamic modeling of a
3-D-serial underwater eel-like robot using recursive algorithms
based on the Newton–Euler equations. Both direct and inverse
models are treated in the paper. The inverse dynamic model al-
gorithm gives the head acceleration and the joint torques as a
function of the joint positions, velocities, and accelerations. The
direct dynamic model gives the head and joint accelerations as a
function of the joint positions, velocities, and input torques. The
proposed algorithms can be considered as a generalization of the
recursive Newton–Euler dynamic algorithms of serial manipula-
tors with fixed base. The algorithms are easy to implement and to
simulate whatever the number of degrees of freedom of the robot.
An example with 12 spherical joints is presented. The fluid forces
have been taken into account using a simple model based on Mori-
son’s model.

Index Terms—Autonomous structures, dynamic modeling, eel-
like robot, fluid forces, swimming robot.

I. INTRODUCTION

R ECENTLY, many projects are devoted to the design and
control of anguilliform robots owing to their potential in

specific underwater applications including oceanic inspection
and industrial endoscopy [1]–[3]. The work presented in this
paper is done in the framework of the project “Robot Anguille”
supported by the French Centre National de la Recherche Scien-
tifique (CNRS). In this project, the modeling approach is based
on three hierarchical levels: 1) a “macro-continuous” modeling
based on a beam-like approach [16]; 2) a serial rigid bodies
structure with revolute joints and 3) on a Navier–Stokes code
modeling the fluid–structure interactions [11]. This paper is
devoted to the second level, which deals with a hyperredun-
dant serial system. To develop the dynamic models for such a
structure, we propose to use efficient recursive Newton–Euler
algorithms similar to those proposed for rigid and flexible ma-
nipulators [4]–[9]. The main difference between the two systems
is that the acceleration of the base in the case of manipulators is
equal to zero, whereas in the case of a swimming structure, the
head is free and its angular and translational accelerations must
be determined in both direct and inverse dynamic models. The

Manuscript received February 21, 2006; revised June 14, 2006. This work
was supported by the French Centre National de la Recherche Scientifique
(CNRS) under Project “Robot Anguille” of the Interdisciplinary Research Pro-
gramme ROBEA. This work appeared in part in IEEE International Conference
on Robotics and Automation, 2005. This paper was recommended by Associate
Editor P. J. Sanz.

The authors are with the Institut de Recherche en Communica-
tions et Cybernétique de Nantes (IRCCyN), Ecole Centrale de Nantes,
Nantes Cedex 03 44321, France (e-mail: wisama.khalil@irccyn.ec-nantes.fr;
guillaume.gallot@irccyn.ec-nantes.fr; frederic.boyer@emn.fr).

Digital Object Identifier 10.1109/TSMCC.2007.905831

proposed dynamic models are easy to implement and simulate
using numerical calculation. The inverse dynamic model, which
is used in general in the control problems, can be used in sim-
ulation too when assuming that, the joint positions, velocities,
and accelerations are given. The direct dynamic model can be
used in simulation when the joint torques are specified.

This paper is organized as follows. In Section II, we present
the kinematic modeling of the robot. Then, in Section III, we
recall the general form of inverse and direct dynamic model
of swimming robots using the Lagrange form and explain our
choice to use recursive Newton–Euler algorithms. In Sections IV
and V, we describe the different steps to solve the inverse, and
then, the direct dynamic model of our robot. In Section VI, we
describe the model of fluid-structure interaction, which is used
to simulate the eel-robot. Finally in Section VII, we present
some simulation results obtained using our algorithms.

II. KINEMATIC MODELING OF THE STRUCTURE

The system treated in this paper is an eel-like robot with
serial structure. It is composed of a sequence of n + 1 links
and n joints. The joints can either be revolute or prismatic.
Since prismatic joints are not used for such robots, we limit
the description and the modeling in this paper for revolute joints
only. A complex joint (universal or spherical) can be represented
by an equivalent combination of two or three revolute joints,
respectively. We use the notations of Khalil and Kleinfinger [8],
[9] to describe the structure. The links are numbered such that
link 0 constitutes the head of the robot and link n is the tail. We
assign a frame Σj attached to each link j, such that the zj -axis
is taken along the axis of joint j, and the xj -axis is along the
common normal between zj and zj+1.

The transformation matrix from frame Σj−1 to frame Σj is
expressed as a function of the following parameters [8], [9]:

1) αj : The angle between zj−1 and zj about xj−1.
2) dj : The distance between zj−1 and zj along xj−1.
3) θj : The angle between xj−1 and xj about zj .
4) rj : The distance between xj−1 and xj along zj .
The variable of joint j, defining the relative orientation be-

tween links j – 1 and j, is given by

θj = qj + q0j (1)

where q0j is a constant offset.

1094-6977/$25.00 © 2007 IEEE
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The homogeneous transformation matrix, which define frame
Σj relative to frame Σj−1 is given by the (4 × 4) matrix [8], [9]

j−1Tj =




Cθj −Sθj 0 dj

CαjSθj CαjCθj −Sαj −rjSαj

SαjSθj SαjCθj Cαj rjCαj

0 0 0 1


 (2)

where C* and S* denote cos(*) and sin(*), respectively.
In the following, the upper left exponent indicates the projec-

tion frame. We note that the (3 × 3) orientation matrix j−1Rj

of frame Σj with respect to frame Σj−1 is the (3 × 3) upper
left submatrix of j−1Tj , whereas the position vector j−1Pj

defining the origin of frame Σj with respect to frame Σj−1 is
equal to the upper right (3 × 1) submatrix.

The transformation matrix between the world fixed frame Σw

and the frame fixed with the head Σ0 is denoted by wT0. This
matrix is supposed to be known at t = 0, it will be updated by
integrating the head acceleration.

The Cartesian velocities and accelerations of the links are
calculated using the following recursive equations [8], [9]:

j Tj−1 =
[ jRj−1 −jRj−1

j−1P̂j

03×3
jRj−1

]
(3)

j Vj = j Tj−1
j−1Vj−1 + q̇j

j aj (4)

j γj =
[ jRj−1

[
j−1ωj−1 ×

(
j−1ωj−1 × j−1Pj

)]
jωj−1 × q̇j

jaj

]

+ q̈j
j aj (5)

j V̇j = j Tj−1
j−1V̇j−1 + j γj (6)

where

j Tj−1 (6 × 6) screw transformation matrix;
P̂ (3 × 3) skew matrix of vector product associated with

the vector P, such that P × u = P̂ · u
Vj (6 × 1) kinematic screw vector of link j, given by

Vj = [VT
j ωT

j ]T ; (7)

Vj linear velocity of the origin of frame Σj ;
ωj angular velocity of link j;
jaj (6 × 1) matrix defined by

jaj =
[
03×1

jhj

]
;

0m×n (m × n) zero matrix;
hj unit vector along zj -axis, representing the joint axis

j. Thus, jhj = [0 0 1]T .

III. GENERAL FORM OF THE DYNAMIC MODELS

A. Introduction

The dynamic model of an eel-like robot can be represented
by the following relation:[

06×1

Γ

]
= A

[
0V̇0

q̈

]
+ C (8)

where

Γ (n × 1) vector of joint torques;
q (n × 1) vector of joint positions;
A (6 + n) × (6 + n) inertia matrix of the robot, whose

elements are functions of the joint angles; it can be
partitioned as follows:

A =
[
A11 A12

AT
12 A22

]
. (9)

A11 is the (6 × 6) equivalent inertia matrix of the composed
link 0, which is composed of the inertia of all the links referred
to frame Σ0 (the head).

A22 is the (n × n) inertia matrix of the robot when the head
is fixed.

A12 is the (6 × n) coupled inertia matrix of the joints and the
head. It reflects the effect of the joint accelerations on the head
motion, and the dual effect of head accelerations on the joint
motions. C is the (n + 6) × 1 vector representing the Coriolis,
centrifugal, gravity, and external forces effect on the robot. Its
elements are functions of the head and joint velocities and the
external forces, in particular, the hydraulic forces. This vector
can be partitioned as follows:

C =
[
C1

C2

]
(10)

where

C1 Coriolis, centrifugal, gravity, and external forces effect on
the head;

C2 Coriolis, centrifugal, gravity, and external forces effect on
the links 1, . . . , n.

B. Solution of the Inverse Dynamic Model

In the case of an anguiliform robot, the inverse dynamic model
gives the joint torques and the head acceleration in terms of the
head velocity and joint positions, velocities, and acceleration.
Thus, using (8), the inverse dynamic model is solved as follows.
At first, we use the first row of (8) to obtain the head acceleration

0V̇0 = −(A11)−1 (C1 + A12q̈) . (11)

Then, the second row of (3) will be used to find the joint torques

Γ = AT
12 V̇0 + A22 q̈ + C2. (12)

C. Solution of the Direct Dynamic Model

In the case of an anguiliform robot, the direct dynamic model
gives the joint accelerations and the head acceleration in terms
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Fig. 1. Forces and moments on link j .

of the head velocity, and joint positions, velocities, and torques.
Thus, using (8), the direct dynamic model is solved as follows:[

V̇0

q̈

]
= A−1

[
−C1

Γ − C2

]
. (13)

Solving the inverse and direct dynamic problems using the
Lagrangian expanded form, as that given in (8), is very time
consuming. This is because of the large number of degrees of
freedom of the system; typically n is equal to 36 for our 12
spherical joint robots. This gives very complicated expressions
for the elements of the matrices A and C. Besides, inverting the
inertia matrix A for the direct dynamic model will be tedious
even for simulation. The researchers who tried such methods
have limited their application for two-dimension (2-D) planar
systems [1], [15], [19] with a small number of internal degrees of
freedom. Therefore, we propose here to use a recursive method,
which is easy to programme, and its computational complexity
could be further improved using the techniques of customized
symbolic method [7]–[9].

IV. RECURSIVE INVERSE DYNAMIC MODE

A. Introduction

In this section, we present the recursive Newton–Euler algo-
rithm for computing the inverse dynamic model of an eel-like
robot. With respect to manipulators, the main difference comes
from the fact that the head is free, and its acceleration must be
determined as an output of the algorithm.

The algorithm is based on the kinematic equations presented
in Section II, giving the Cartesian velocity and acceleration of
the links, and on the following Newton–Euler equation giving
the total forces and moments on each link:

jFj = j Jj
j V̇j +

[ jωj ×
(
jωj × jMSj

)
jωj ×

(
jJj

jωj

) ]
. (14)

Hence, the equilibrium dynamic equation of each link is given
by (Fig. 1)

j fj = jFj + j+1TT
j

j+1fj+1 + j fej (15)

where

Fj total external wrench on link j, given by

Fj =
[
FT

j MT
j

]T

Fj total external forces on link j;

Mj total moments of external forces on link j about the
origin Oj ;

Jj (6 × 6) inertia matrix of link j:

j Jj =
[

Mj I3 −jMŜj

jMŜj
jJj

]
(16)

jJj (3 × 3) inertia tensor of link j with respect to frame
Σj ;

I3 (3 × 3) identity matrix;
Mj mass of link j;
MSj first moments of link j with respect to frame Σj ;
fj wrench exerted on link j by link j − 1

fj =
[
fT
j mT

j

]T

fej wrench exerted by link j on the environment, and repre-
senting in our case the fluid–structure interaction effect.

B. Recursive Calculation of the Inverse Dynamic Model
Eel-Like Robot

The algorithm presented in the following can be considered as
a generalization of that of Luh et al. [4] for rigid manipulators.
The generalization concerns the calculation of the acceleration
of the head. The inverse dynamic algorithm, in this case, consists
of three recursive equations (a forward, then a backward, and
then a forward), as for flexible manipulators, instead of two
(forward and backward) for the rigid manipulators with fixed
base.

1) Forward Recursive Calculation: In this step we calculate
the screw transformation matrices, link velocities, and the ele-
ments of the accelerations and external wrenches on the links,
which are independent of the acceleration of the robot head
(V̇0, ω̇0). Thus, we calculate for j = 1, . . . , n, jTj−1,

j Vj and
j γj using (3), (4), and (5), respectively. We also calculate j βj

representing the elements of the Newton–Euler equations, which
are independent of the head acceleration in (14) and (15) such
that

j βj = j fej +
[

jωj ×
(
jωj × jMSj

)
jωj ×

(
jJj

jωj

) ]
. (17)

2) Backward Recursive Equations: In this step, we obtain
the head acceleration using the inertial parameters of the com-
posite link 0, where the composite link j consists of the links
j, j + 1, . . . , n.

We note that (15), giving the equilibrium equation of link j,
can be rewritten using (14) and (17) as

j fj = j Jj
j V̇j + j βj + j+1TT

j
j+1fj+1. (18)

Applying the Newton–Euler equations on the composite link j,
we obtain

j fj = j Jj
j V̇j + j βj + j+1TT

j

(
j+1Jj+1

j+1V̇j+1 + j+1βj+1

)
+ · · · + nT T

j

(
nJn

n V̇n + nβn

)
. (19)
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Substituting j+1V̇j+1, . . . ,
n−1V̇n−1,

n V̇n in terms of j V̇j using
(6), we obtain

j+1V̇j+1 = j+1Tj
j V̇j + j+1γj+1,

j+2V̇j+2 = j+2Tj+1
j+1V̇j+1 + j+2γj+2

= j+2Tj+1

(
j+1Tj

j V̇j + j+1γj+1

)
+ j+2γj+2 (20)

n V̇n = nTj
j V̇j + nTj+1

j+1γj+1 + · · · + nγn . (21)

From (19)–(21), we obtain

j fj = j Jc
j

j V̇j + j βc
j

(22)

with

j Jc
j = j Jj + j+1TT

j
j+1Jc

j+1
j+1Tj (23)

j βc
j = j βj + j+1TT

j
j+1βc

j+1 + j+1TT
j

j+1Jc
j+1

j+1γj+1 (24)

where j Jc
j is the spatial inertial matrix of the composite link j.

For j = 0, and since 0f0 is equal to zero, we obtain using
(22)

0V̇0 = −
(
0Jc

0

)−1 0βc
0. (25)

To summarize, the recursive equations of this step consist of
initialising nJc

n = nJn , nβc
n = nβn and then calculating (23)

and (24) for j = n − 1, . . . , 0.
At the end, 0V̇0 is calculated using (25).
Comparing (25) with (11), we can deduce that A11 is equal

to 0Jc
0 , whereas 0βc

0 is equal to (C1 + A12q̈).
3) Forward Recursive Equations: After calculating 0V̇0, the

wrench j fj and the joint torques are then obtained using (6) and
(22) for j = 1, . . . , n as

j V̇j = j Tj−1
j−1V̇j−1 + j γj (26)

j fj =
[

j fj
jmj

]
= j Jc

j
j V̇j + j βc

j
. (27)

The joint torque is calculated by projecting j fj on the joint axis,
and by taking into account the friction and the actuators inertia

Γj = j fT
j

j aj + Fsj sign (q̇j ) + Fvj q̇j + Iaj q̈j (28)

where

Fsj Coulomb friction parameter of joint j;
Fvj viscous friction parameter of joint j;
Iaj moment of inertia of the rotor of actuator j.

It is to be noted that the inverse dynamic model algorithm can
be used in the dynamic simulation of the eel-like robot when
assuming that the joint positions, velocities, and accelerations
trajectories are given. At each sampling time, the acceleration
of the head will be integrated to provide the angular and linear
velocities for the next sampling time. The integration of the
linear velocity will provide wP0 representing the position of
the origin of frame Σ0. Concerning the orientation, the angular

velocity is first transformed into quaternion velocity using the
following equations [8]:

Q̇ = ΩqQ (29)

where

Ωq =
1

2 ‖Q‖




0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0




ω0 = [ω1 ω2 ω3 ]T

Q = [Q1 Q2 Q3 Q4 ]T . (30)

The integration of (29) gives the quaternion Q. Then, the orien-
tation matrix wR0 is calculated using the relation

w R0 =




2
(
Q

2

1
+ Q2

2

)
− 1 2(Q2Q3 − Q1Q4) 2(Q2Q4 + Q1Q3)

2(Q2Q3 + Q1Q4) 2
(
Q

2

1
+ Q2

3

)
− 1 2(Q3Q4 − Q1Q2)

2(Q2Q4 − Q1Q3) 2(Q3Q4 + Q1Q2) 2
(
Q

2

1
+ Q2

4

)
− 1




(31)

where, for an orientation rot(u, α), denoting a rotation around
the unit vector u by an angle α, the quaternion components are
defined as

Q1 = cos(α/2) Q2 = u1 sin(α/2)

Q3 = u2 sin(α/2) Q4 = u3 sin(α/2)

where u = [u1 u2 u3]T .

V. DIRECT DYNAMIC MODEL

A. Introduction

The direct dynamic model of an anguiliform robot must pro-
vide the head and joint accelerations in terms of the joint po-
sitions, velocities, and torques. The proposed algorithm can
be considered as the generalization of that of Featherstone [5]
which has been proposed for rigid manipulators with fixed base.

B. Calculation of the Direct Dynamic Model

The direct dynamic model consists of three recursive calcu-
lations in the same order as those of the inverse dynamic model
(forward, backward, and forward).

1) Forward Recursive Equations: We calculate the link
Cartesian velocities using (3) and (4), and the terms of Carte-
sian accelerations and equilibrium equations of the links that are
independent of the acceleration of the head and of the joint ac-
celerations. From (5), (14), and (15), we calculate the following
recursive equations for j = 1, . . . , n:

j ζj =
[

jRj−1

[
j−1ωj−1 ×

(
j−1ωj−1 × j−1Pj

)]
jωj−1 × q̇j

jhj

]
(32)

j βj = j fej +
[

jωj ×
(
jωj × jMSj

)
jωj ×

(
jJj

jωj

) ]
. (33)
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2) Backward Recursive Equations: In this second step, we
first initialize nJ∗

n = nJn , nβ∗
n = nβn , and then, we calculate

for j = n, . . . , 1 the following elements, which permit to calcu-
late j fj and q̈j in terms of j−1V̇j−1 and will be used in the third
recursive equations [see (A17) and (A18) in Appendix A]:

Hj = j aT
j

j J∗
j

j aj + Iaj (34)

jKj = j J∗
j − j J∗

j
j ajH

−1
j

j aT
j

j J∗
j (35)

j−1J∗
j−1 = j−1Jj−1 + j T T

j−1
jKj

jTj−1 (36)

τj = Γj − Fsj sign(q̇j ) − Fvj q̇j (37)

jαj = jKj
j ζj + j J∗

j
j ajH

−1
j

(
τj − j aT

j
jβ∗

j

)
+ j β∗

j (38)

j−1β∗
j−1 = j−1βj−1 + j T T

j−1
jαj . (39)

3) Forward Recursive Equations: At first, the head accel-
eration is calculated by the following relation (see Appendix
A):

0V̇0 = −
(
0J∗

0

)−1 0β∗
0. (40)

We note that 0β∗
0 is a function of τ , whereas 0βc

0 in (25) is a
function of q̈.

Then, q̈j and j fj (if desired) are calculated for j = 1, . . . , n
using the following equations (see Appendix A):

q̈j = H−1
j

[
−j aT

j
j J∗

j

(
j V̇j−1 + j ζj

)
+ τj − j aT

j
jβ∗

j

]
(41)

j fj = jKj
jTj−1

j−1V̇j−1 + jαj (42)

where

j V̇j = j V̇j−1 + j aj q̈j + j ζj . (43)

VI. FLUID–STRUCTURE INTERACTION MODEL

To simulate a swimming eel-like robot, we adopt a simple
fluid mechanical model. We assume that the forces exerted by
the fluid onto a given link are due only to the motion of that link.
Moreover the links are assimilated to elliptic cross-sectional
cylinders whose serial assembly builds a shape variable cylinder
with one of its three characteristic dimensions (the axial one)
longer (with a factor larger than 10) than the two others (the
transverse ones). Hence, we can invoke the slender–body theory
of fluid mechanics [20]. Based on this assumption, the 3-D fluid
flow near the body can be replaced by a continuous slicing
of planar flows transverse to the cylinders’ axes. Hence, the
fluid forces can be modeled by a density of wrenches applied
onto each cross section of the links, which only depends of the
transverse links’ motion. This corresponds to the so-called strip-
theory approach, commonly used in naval engineering [21]. It
is worth noting that such a model neglects the influence onto
the fluid flow due to the corners induced by the presence of the
joints.

To simplify the writing, we assume that the mass per unit of
volume of the robot is equal to that of water such that the robot
is neutrally buoyant. Moreover, jVj (s) denotes the velocity of
a cross section of the link j positioned at the distance s along
the link axis from the point Oj (see Fig. 2). This velocity can

Fig. 2. Representation of fluid wrench in the cross-section frame.

be decomposed in the local frame (ej1, ej2, ej3) as

jVj (s) = Vtj (s)ej1 + Vnj2(s)ej2 + Vnj3(s)ej3 (44)

where

Vtj the forward velocity component along axis ej1;
Vnj2, Vnj3 the perpendicular velocities along axis ej2 and ej3.

We also define Vnj = Vnj2ej2 + Vnj3ej3, and ‖Vnj‖ =√
V 2

nj2 + V 2
nj3. Similar relations to (44) can be written for

j V̇j ,
jωj , and j ω̇j .

With the previous assumptions, the model of the contact
forces between the fluid and the cylindrical links of the eel
is that of Morison [10], and can be defined by the following
field (along the links’ axes) of hydraulic wrenches densities per
unit of link axial length (with respect to the s cross-sectional
center):

j fhj (s) =
[

j fhj (s)
jmhj (s)

]
=

[
j fdrag(s)

jmdrag(s)

]
+

[
j fam(s)

jmam(s)

]
(45)

where, forces and moments are given respectively as

j fdrag(s) = Cld1,j |Vtj (s)|Vtj (s)ej1

+
3∑

i=2

Cldi,j ‖Vnj (s)‖Vnji(s)ej i (46)

jmdrag(s) = Cad1,j |ωtj |ωtjej1. (47)

And the density per unit of link axial length of added mass
forces and torques is given by

j fam(s) =
2∑

i=2

Clmi,j V̇nji(s)ej i (48)

jmam(s) = Cam1,j ω̇tjej1 (49)

where fdrag and mdragj are due to the friction viscosity and
pressure difference, whereas fam and mamj are in relation with
the quantity of fluid accelerated by the movement. Finally the
coefficients Cldi,j , Clmi,j , Cad1,j and Cam1j depend on the
mass per unit of volume of the fluid, the shape and size of
the profile (here elliptic), and the Reynolds number of the
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moving profile in the fluid (approximately 105). Their expres-
sions are given in Section VII.

The translational velocity and acceleration are calculated by
jVj (s) = jVj + jωj × jPj (s) (50)

j V̇j (s) = j V̇j + j ω̇j × jPj (s)+jωj × jωj × jPj (s) (51)

where jPj (s) is the position of the cross section of distance s
from the origin of the link fixed frame along the eel’s backbone.

Then, by superimposing all the “slice-by-slice” contributions
from s = 0 to s = Lj (the axial length of the jth link), we find
the global wrench exerted by link j on the fluid, expressed at
Oj as

j fhj =
[

j fhj
jmhj

]
=

[
j fdragj

jmdragj

]
+

[
j famj

jmamj

]

=
∫ Lj

0

j fhj (s) ds (52)

where

j fhj (s) =
[

j fhj (s)
jmhj (s)

]
= sT T

j

([
j fdrag(s)

jmdrag(s)

]
+

[
j fam(s)

jmam(s)

])

(53)

and

sTj =
[

I3 −j P̂(s)
03×3 I3

]
.

The first term (drag and viscous wrench) of (52) is integrated
numerically at each sample time of the algorithm from s = 0
to s = Lj , while the second contribution (added mass) can be
explicitly computed in the local frame (Oj , ej1, ej2, ej3) as

j famj =
[

j famj
jmamj

]
= j Jaj

j
j V̇j + j βamj (54)

where jJaj
j is the (6 × 6) added inertia matrix and j βamj the

(6 × 1) matrix of Coriolis-centrifugal forces, both produced by
the added fluid masses. In order to compute these two matrices,
we first rewrite (54) in the local frame (Gj , ej1, ej2, ej3) at the
center of mass of the link Gj as

j famGj =
[

j famGj
jmamGj

]
= j Jaj

Gj
j V̇Gj + j βamGj (55)

where we introduced the notations

j Jaj
Gj =

[
maGj −mŝaGj

mŝaGj IaGj

]
(56)

j βamGj =
[

03×1
1
3

j Ŝj
jmaGj

(
jωj × jωj × jSj

) ]
(57)

where jSj is the position of the center of mass of link j with re-
spect to the origin of the link fixed frame. Furthermore, with the
expressions of the local (slice-by-slice) added mass coefficients
(48) and (49), j Jaj

Gj can be detailed as follows:
1) the (3 × 3) matrix of added linear inertia

a) jmaGj = diagi=1,2,3(maij )

where ma1j = 0,ma2j = Clm2,j .Lj ,ma3j = Clm3,jLj ;

Fig. 3. Three-dimensional eel-like robot.

2) the (3 × 3) matrix of added linear-angular coupled inertia

b) jmŝaGj = 03×3

3) the (3 × 3) matrix of added angular inertia

c) j IaGj = diagi=1,2,3(Iaij )

where Ia1j = Cam1,j .Lj , Ia2j = Clm3,j .L
3
j /12, Ia3j =

Clm2,j .L
3
j /12.

At this point, let us remark that all these data correspond to
the (6 × 6) added mass matrix of a thin ellipsoid computed at
its mass center [12].

Thus, (55) can be detailed as

[
j famGj

jmamGj

]
=

[
jmaGj 03×3

03×3
j IaGj

] [
j V̇Gj
j ω̇j

]
+ j βamGj . (58)

Transforming this wrench to the origin of frame j gives the
detailed expression of (52)

j fhj =
[

jmaGj −jmaGj
j Ŝj

j Ŝj
jmaGj

j IaGj − j Ŝj
jmaGj

j Ŝj

]
j V̇j

+

[
jmaGj

(
j ω̂j

j ω̂j
jSj

)(
j Ŝj

jmaGj + 1
3

j Ŝj
jmaGj

) (
j ω̂j

j ω̂j
jSj

)
]

+
[

j fdragj
jmdragj

]
. (59)

The introduction of (59) into (17) yields the elements corre-
sponding to j fej due to the fluid contact forces and a constant
term to be added to the (6 × 6) inertia matrix of each link called
“added mass” due to fluid. We finally obtain

j Jj = j Jj + Jaj
j (60)

with

j Jaj
j =

[
jmaGj −jmaGj

j Ŝj
j Ŝj

jmaGj
j IaGj − j Ŝj

jmaGj
j Ŝj

]
(61)

j fej =
[

j fdragj
jmdragj

]
+

[ jmaGj

(
j ω̂j

j ω̂j
jSj

)
4
3

j Ŝj
jmaGj

(
j ω̂j

j ω̂j
jSj

) ]
. (62)
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TABLE I
GEOMETRIC PARAMETERS OF THE STRUCTURE

VII. SIMULATION EXAMPLES

In this section, we present some simulation results obtained
for an eel-like robot using Matlab and Simulink. The robot is
composed of 13 rigid bodies connected by 12 spherical joints.
Each joint is represented by three intersecting revolute joints
(Fig. 3). This gives a system with 36 revolute joints and 37
links. The first link (link 0), which is the head of the robot, is
composed of a half of a spheroid and an elliptic cylinder. The
links 3 j − 2 and 3 j − 1, for j = 1, . . . , 12, are virtual zero
length and zero mass links; thus, there are no fluid forces acting
on them. The links 3j, for j = 1, . . . , 12 are elliptic cylinders
and the last link, the tail, is ended by a half of an ellipsoid.

The geometric parameters of the robot are given in Table I.
The offset values q0j are defined such that with qj= 0, the x0-
axis is aligned with the z3j -axis of the elliptical cylinder bodies
(with j being the number of the spherical joint, j = 1, . . . , 12).

From Fig. 3, we deduce that the local frames (ej1, ej2, ej3)
taken to express the fluid–structure model for the link 0 and
3j(j = 1, . . . , 12) are as follows.

1) For the head, e01 = x0 e02 = y0 e03 = z0.
2) For the links 3j, e3j1 = z3j e3j2 = x3j e3j3 = y3j .
The total length of the robot is of 2.08 m. The cross section is

of elliptic shape (whose great axis length is equal to 18 cm and
its small axis length is equal to 13 cm). Denoting that the half
small and great axis’s lengths of the elliptic section are a and b,
the coefficients of the fluid–structure model (46)–(47) are

Cld1 = (1/2)ρC1π(a + b)/2 Cld2 = (1/2)ρC22b

Cld3 = (1/2)ρC32a Cad1 = (1/2)ρC4(b2 − a2)2

Clm2 =ρπb2C5 Clm3 =ρπa2C6 Cam1 =ρπC7(b2−a2)2/8

where ρ is the robot volume density taken equal to 1.
From [12], C1 = 0.01, C2 = C3 = C4 = 1 and C5 = C6 =

C7 = 1 which correspond to the values of a cylindrical obstacle
plunged in a flow with a Reynolds number of approximately
Re � 105, meaning an eel velocity of approximately 1 m · s−1.

The simulation is carried out firstly using the inverse dynamic
model by giving q(t), q̇(t), q̈(t) as inputs and 0V0(0) = 0 as ini-
tial condition. Then, to validate the direct dynamic model, the
simulation has been carried out using the inputs q(t), q̇(t), and
Γ(t) obtained from the first simulation using the inverse dynamic
model, and the initial condition 0V0(0) = 0. The two simula-

Fig. 4. Geometry of the eel.

tions give the same results, which are given in the following
sections.

A. First Example: A Planar Propulsion

In this example, we study the planar forward propulsion. Fol-
lowing biomechanic’s literature about anguilliform locomotion
[13]–[15], we start with a planar forward propulsion motion. It
is produced by a continuous motion law of the following form:

Q(s, t) = f(t).A.eα.s sin
[
2π

(
s

λ
− t

T

)]
(63)

where A is the amplitude of the motion, α is introduced to
increase the amplitude when going from the head to the tail [14],
1/T is the frequency of the wave, λ represents the length of the
wave, and s the curvilinear coordinate along eel’s backbone
(Fig. 4). The function f(t) is a smoothing function, which is
taken equal to

f(t) = f1(t) = a0.t
5 + a1.t

4 + a2.t
3 + a3.t

2 + a4.t + a5 t≤ tf

f(t) = 1 t > tf (64)

where the coefficients satisfy the following conditions:

f1(0) = 0 f1(tf ) = 1 ḟ1(0) = f̈1(0) = 0

ḟ1(tf ) = f̈1(tf ) = 0

and tf is the ending time of f1(t).
To apply this continuous motion law to our model, we have

to discretize (63) to have the corresponding value on each joint
[18]. The values of the first joints of the spherical joints (joints
numbered j = 3i − 2, with i = 1, . . . , 12 denotes the number
of the spherical joint) are

qj (t) = Q(Xj+1, t) − Q(Xj , t) + Off1 (65)

where Xj=
∑j

k=1 rk is the distance of each joint from the
head, and Off1 is a constant value used to carry out the deviation
of the eel.

The other joint angles are taken equal to the constant offset
given in Table I. The following numerical values are used:

A = 0.06 α = 1.2 tf = 2 s λ = 1.8m

T = 2 s Off1 = 0.

Fig. 5 shows the head trajectory of the eel in the xw –yw plane
of the fixed world frame for a simulation of 30 s.

Fig. 6 gives the linear forward velocity of the robot in the
fixed-world frame.

These results show that the eel has a straight line trajectory
with a small transversal oscillatory motion. With the proposed
motion law, the eel needs approximately 30 s to reach its final
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Fig. 5. Head’s trajectory in the x–y plane of the fixed-world frame.

Fig. 6. Velocity of the head with respect to time.

speed, in order to satisfy the following limits of our actuators
for j = 1, . . . , 12:

Γmax = ±4N · m for joints 3 j−2 and 3j−1

Γmax = ±0.7N · m for joints 3j.

B. Second Example: A Three-Dimensional Looping

The goal of this example is to make the eel follow a vertical
circular trajectory in the xw –zw plane of the fixed frame. This
is achieved by adding to the propulsive law of the first example,
the following evolution on the second variables of the spherical
joints (j = 3i − 1) for i = 1, . . . , 12:

qj= f(t)Off2 (66)

where f(t) is the same function defined in the planar example.
The last joints (j = 3i for i = 1, . . . , 12) of the spherical joints
are taken equal to the constant offset given in Table I. The values
of the propulsive law A,α, tf , λ, T , and Off1 are the same as in
the first example, whereas Off2 = π/40.

Fig. 7. Trajectories of joints 1, 25, and 34.

Fig. 8. Torques of joints 1, 25, and 34.

Figs. 7–10 show the joint trajectories and torques of three
spherical joints. Fig. 11 shows the trajectory of the head in the
xw –zw plane of the world fixed frame and ten configurations of
the eel during the simulation. The motion presented is carried
out in 60 s. This second example has validated the possibility of
3-D motion.

VIII. CONCLUSION

This paper presents the inverse and direct dynamic modeling
of a swimming eel-like robot. The dynamic models are devel-
oped using the recursive Newton–Euler formalism. The inverse
model provides the acceleration of the head of the robot and the
torque of the joints whereas the direct model provides the accel-
eration of the head and of the joints. These algorithms constitute
the generalization of the algorithms of articulated manipulators
to the case where the base is not fixed. The generalization takes
into account the mobility of the base, which constitutes here the
eel’s head. Moreover, based on the literature of fluid mechan-
ics, a simplified model of the fluid–structure contact is adopted.
The presented research is currently being used to develop an
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Fig. 9. Torques of joints 2, 26, and 35.

Fig. 10. Torques of joints 3, 27, and 36.

Fig. 11. Trajectory of the head origin frame in the xw –zw world fixed frame
and eel’s configuration each of 6 s.

eel-like robot with the same dimension and with the same num-
ber of degrees of freedom as given in the simulated examples.
However, the proposed algorithm can be used for other type
of systems (snake robots, flying robots, etc.) by taking an ap-
propriate external force model. Future work will involve the
following.

1) The generalization of the given algorithms for hybrid
structure, where the robot is composed of parallel mod-
ules, which are connected in series.

2) The development of a more accurate fluid contact model,
which takes into account the articulated structure of the
robot.

APPENDIX

OBTAINING q̈j AND j fj IN TERMS OF j−1V̇j−1

In this appendix, we detail the equations of the second and
third recursive step of the direct dynamic model. The principal
idea is to calculate q̈j and j fj in terms of j−1V̇j−1. Using (14),
(15), and (17), we can write the equilibrium equation of motion
of link j as

j fj = j Jj
j V̇j + j βj + j+1TT

j
j+1fj+1 (A1)

with

j V̇j = j V̇j−1 + j aj q̈j + j ζj . (A2)

Thus

j fj = j Jj

(
j V̇j−1 + j aj q̈j + j ζj

)
+ j+1TT

j
j+1fj+1 + j βj .

(A3)
As link n is a terminal link, then n+1fn+1 = 0, using (A3) for
j = n, we can obtain

nfn = nJn

(
n V̇n−1 + nan q̈n + nζn

)
+ nβn . (A4)

To obtain q̈n in terms of n−1V̇n−1, we use (28) giving

j aT
j

j fj = τj − Iaj q̈j (A5)

where

τj = Γj − Fsj sign(q̇j ) − Fvj q̇j . (A6)

So, introducing (A4) into (A5), we obtain

q̈n = H−1
n

(
−naT

n
nJn

(
n V̇n−1 + nζn

)
+ τn − naT

n
nβn

)
.

(A7)
Then, by introducing (A7) into (A4)

nfn = nKn
n V̇n−1 + nαn (A8)

with

Hn = naT
n

nJn
nan + Ian (A9)

nKn = nJn − nJn
nanH−1

n
naT

n
nJn (A10)

nαn = nKn
nζn + nJn

nanH−1
n

(
τn − naT

n
nβn

)
+ nβn .

(A11)

Equations (A7) and (A8) give q̈n and nfn in terms of n−1V̇n−1.
For link n − 1, we can rewrite equation (A1) (after replacing j
by n − 1) and using (A8) as

n−1Jn−1
n−1V̇n−1 = n−1fn−1 − nT T

n−1
nfn − n−1βn−1

(A12)
which can be rewritten after substituting for nfn from (A8) as

n−1fn−1 = n−1J∗
n−1

(
n−1V̇n−2 + n−1an−1q̈n−1 + n−1ζn−1

)
+ n−1β∗

n−1 (A13)
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with

n−1J∗
n−1 = n−1Jn−1 + nT T

n−1
nKn

nTn−1 (A14)
n−1β∗

n−1 = n−1βn−1 + nT T
n−1

nαn . (A15)

Equation (A13) has the same form as (A4); thus we can obtain

n−1fn−1 = n−1Kn−1
n−1V̇n−2 + n−1αn−1. (A16)

By generalizing this approach for the other links (j = n, . . . , 1)
j fj = jKj

jTj−1
j−1V̇j−1 + jαj (A17)

q̈j = H−1
j

[
−j aT

j
j J∗

j

(
j V̇j−1 + j ζj

)
+ τj − j aT

j
jβ∗

j

]
(A18)

with

Hj = j aT
j

j J∗
j

j aj + Iaj (A19)

jKj = j J∗
j − j J∗

j
j ajH

−1
j

j aT
j

j J∗
j (A20)

τj = Γj − Fsj sign(q̇j ) − Fvj q̇j (A21)

jαj = jKj
j ζj + j J∗

j
j ajH

−1
j

(
τj − j aT

j
jβ∗

j

)
+ j β∗

j (A22)

j−1J∗
j−1 = j−1Jj−1 + j T T

j−1
jKj

jTj−1 (A23)

j−1β∗
j−1 = j−1βj−1 + j T T

j−1
jαj . (A24)

We notice that, for the head (j = 0), (A19)–(A22) are not valid
since there is no motor on it. By using (A1) and the fact that0f0

is equal to zero, we obtain

0 = 0J0
0V̇0 + 0β0 + 1TT

0
1f1. (A25)

By using (A17) for j = 1, (A25) becomes

0 = 0J0
0V̇0 + 0β0 + 1TT

0

(
1K1

1T0
0V̇0 + 1α1

)
0 = 0J∗

0
0V̇0 + 0β∗

0. (A26)

The resolution of this equation gives

0V̇0 = −
(
0J∗

0

)−1 0β∗
0. (A27)
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