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The purpose of' this paper is to  study the basic principle of fish propulsion. As 
a simplified model, the two-dimensional potential flow over a waving plate of 
finite chord is treated. The solid plate, assumed to be flexible and thin, is capable 
of performing the motion which consists of a progressing wave of given wave- 
length and phase velocity along the chord, the envelope of the wave train being 
an arbitrary function of the distance from the leading edge. The problem is 
solved by applying the general theory for oscillating deformable airfoils. The 
thrust, power required, and the energy imparted to the wake are calculated, and 
the propulsive efficiency is also evaluated. As a numerical example, the waving 
motion with linearly varying amplitude is carried out in detail. Finally, the 
basic mechanism of swimming is elucidated by applying the principle of action 
and reaction. 

1. Introduction 
'How does a fish swim'? is indeed a fascinating question. Geometrically, 

fishes of many varieties have their bodies in s planar form of fkite aspect ratio, 
that is, their bodies have finite length and width and are thin in the third dimen- 
sion; other varieties have slender cylindrical forms. Almost without exception 
all fishes have a flexible body to the extent that they can perform undulating 
motions in swimming. Physical observations further indicate that in general 
the motion of the deformable body consists of a train of waves, which are not 
standing waves, but which progress astern. Furthermore, the wave amplitude 
usually grows toward the tail, Most fishes propel themselves in water a t  speeds 
corresponding to a Reynolds number, based on their length, of the order of 105 
or higher. Presumably the inertia forces in the surrounding fluid are an im- 
portant factor in producing the propulsion; the viscosity of the fluid, other than 
generating drag, is important in creating circulation around the swimming body, 
and only in this role does i t  affect the propulsive forces. Taylor (1951, l95Za, b )  
has discussed certain aspects of propulsiorl of swimming bodies. In  the first two 
references Taylor treated the problem of swimming microscopic organisms in 
viscous fluid where viscosity plays the leading role. In  the third reference he 
investigated the swimming of long narrow animals. It is the purpose of this 
paper to study the mechanism of marine propulsion for very largc Reynolds 
number and to discuss its important features such as the effect, on the propulsive 
force and the swimming efficiency, of the wavelength, the phase velocity of the 
wave, and the spatial variation in amplitude of the wave. 
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In  order to  simplify the determination of these complicated effects, this ana- 
lysis is limited to the relatively simple case of a two-dimensional waving plate of 
negligible thickness. The fluid is assumed to be incompressible and inviscid, but 
with the Kutta condition imposed at the trailing edge of the plate. The problem 
then becomes the general problem of airfoils in unsteady motion. In  order to 
represent the body profile in swimming, the plate must have infinite degrees of 
freedom. The solution of the case for airfoils in oscillatory motion of general 
form has been obtained by Kiissner & Schwarz (1940); this solution is used as 
the starting point for further analysis in this work. However, the calculation of 
the propulsive force on the airfoil in unsteady motion has only been investigated 
for a limited number of simple cases, presumably because i t  is of small import- 
ance in any application in aeronautics. KArmAn & Burgers (1943, p. 304) cal- 
culated the propulsive force and the work expended in maintaining the motion, 
but only for the most simple case of a rigid plate in transverse oscillation, thus 
providing a qualitative theory for flapping flight. Another calculation of the 
propulsive force, for the particular case of a rigid wing, is given by Nekrasov 
(1948). Since the problem is of primary interest in connexion with the flight of 
birds, and especially with the swimming of fishes, the thrust, the power required 
for maintaining the motion and the energy imparted to the fluid are calculated 
here for the general case of a waving deformable plate. 

For further application of the general result, consideration is given to  the 
motion of a flexible plate which consists of a train of progressive waves, the 
amplitude of the wave being taken as an arbitrary function of the distance along 
the plate, which is assumed to possess a Taylor expansion. In  this general case 
i t  is found that the time-average of the energy imparted to the fluid, (E,), is 
always positive; it vanishes if, and only if, the circulation around the swimming 
plate remains constant. A subsidiary result indicates that the time-average of 
the power input, (P), can be negative (implying that energy can be extracted 
from the fluid), but only in case of an oscillatory motion with a t  least two degrees 
of freedom. It is also shown that when energy is taken out of the fluid, the average 
thrust on the body cannot be positive. As a simple example, the waving motion 
with linearly varying amplitude is carried out in detail, the results plotted in 
diagrams and their physical significance discussed. 

Finally, an attempt is made to elucidate the basic mechanism of swimming by 
applying the principle of action and reaction. When the plate acquires a forward 
momentum as it swims through a fluid, the fluid is pushed in the backward 
direction with the net total momentum equal and opposite to that of the action. 
Investigation of the strength of the vortex sheet shed from the trailing edge of 
the plate indicates that the forward thrust is positive only when the vorticity 
is so oriented that the fluid in the wake is pushed backwards from the tail, and 
the thrust is negative otherwise. Thus the momentum of the fluid in reaction is 
well concentrated in the vortex wake, appearing in the form of a jet of fluid 
expelled from the plate. 

After this paper had been submitted, the author learned of M. J. Lighthill's 
work on a related subject (the swimming of slender fish) presented briefly in the 
Forty-Eighth Wilbur Wright Memorial Lecture (Lighthill 1960~)  and sub- 
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sequently in a separate paper (Lighthill 1960 b ) .  In  these references the theory is 
worked out for slender fish. The problem dealt with in this paper, however, is 
concerned with what may be called a two-dimensional flat fish. The theory for 
,wimming of real fishes ought perhaps to lie somewhere in between these two 
limiting cases. It may be speculated that this subject also has some application 
in the aeroelasticity of oscillating wings. 

2. Formulation of the problem; the acceleration potential 
Consider the two-dimensional incompressible flow of an inviscid fluid generated 

by the motion of a deformable solid plate of zero thickness spanning from x = - 1 
to x = 1 in an otherwise uniform stream of constant velocity U in the positive 
$-direction. The motion of the flexible plate may be prescribed in the general 
form by y = h(x, t) for - 1 < x < 1, 

where h(x, t) is an arbitrary continuous function of x for every time t, the maxi- 
mum amplitude of h and ahlax being assumed very small compared with unity. 
The flow velocity q has x- and y-components given by q = (U + u, v) and satisfies 
the continuity equation 

divq = u,+v, = 0 .  

(The subscript x, or y, denotes partial differentiation with respect to x, or y.) 
By assuming the perturbation velocity u, v to be small compared with U ,  the 
Euler equations of motion for the ideal fluid may be linearized to give 

where $(x, Y, t) = (P~-P)/P, (4) 

in which p is the density, p the pressure of the fluid and p, the pressure at  in- 
finity. The constant term p, is included in the above definition of $ for con- 
venience. The function # is Prandtl's acceleration potential, as grad $ gives the 
acceleration field of the flow. Taking the divergence of (3) and making use of (2), 
we obtain 

$22 + $YY = O. (5) 

Hence $ is a harmonic function of (x, y) for every t. Consequently a conjugate 
harmonic function $(x, y, t) may be defined by the Cauchy-Riemann equations 

I t  then follows that in terms of the complex variable z = x+ iy, the complex 
acceleration potential 

f (2, t) = $(x, Y, t) + M x ,  Y, t) (7) 

is an analytic function of z at  all times. Here, i = 2/ - 1 is the imaginary unit for 
the space variables (x, y). In  terms off (2, t) and the complex velocity 



For given f (z, t), w can be obtained from (9) by integration 

provided, of course, the integral exists. I n  the above, w is assumed to vanish at 
z = - co, the upstream inhi ty.  

In  unsteady flow, unlike steady flow, a vortex sheet will in general be shed 
from the solid plate to form a vortex wake, i.e. a surface across which the tan- 
gential velocity component is discontinuous, even in two-dimensional motions. 
The pressure p, however, is continuous everywhere inside the flow except across 
the solid plate. I n  particular, it is also continuous across the wake. Since q5 is 
a linear function of p (see (4)), it follows that f (z, t) must be a regular function of z 
for every t inside the flow except a t  the solid plate. Though the complex velocity 
w is also an analytic function of z, w may, however, admit discontinuities across 
the vortex wake, in addition to the singularities a t  the plate boundary. For this 
reason it is convenient to work with the acceleration potential; its application 
also results in considerable simplification in the analysis. 

The boundary condition that the component of the flow velocity normal to 
the moving solid boundary must vanish may be linearized to give 

The corresponding condition on f (z, t) can be derived from (3) and (6) as 

It is seen from (11) and (12) that v and @ are even in y, and hence from the 
Cauchy-Riemann equations, u and q5 must be odd in y. Since q5 is regular every- 
where inside the flow, it follows that 

$(x,O,t) = 0 for 1x1 > 1 and for all t. (13) 

At the trailing edge of the plate, x = 1, the Kutta condition requires 

I f(1, t)l < oo, for all t. (14) 

It should be pointed out, however, that in order to be possible to distinguish 
the trailing edge from the leading edge, the case of U = 0 should be treated as 
a limiting case of U -+ 0 with the configuration h(x, t) so given that the flow at 
2 = 1 is in the direction of positive x. Furthermore, it is required that 

f(z,t)+O as Izl-+oo; w(x,t)+O as x+-oo. (15) 

This completes the statement of the problem. 
Of particular interest in the present work is the case in which the profile of 

the flexible plate has a progressive wave of arbitrary amplitude given by 

h(x, t) = A(x) cos (kx- wt +s) for 1x1 < 1, (16) 

where k is the wave-number, w the circular frequency (which is taken to be 
positive throughout this work), s an arbitrary phase angle and A(x) the arbitrary 
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amplitude of the wave motion. It is convenient to introduce the imaginary unit 
j = ,/ - 1 for the time variable t, e.g. exp (jut) = cos wt + j sin wt. The different 
notation j is used here so that it will not be confused with the imaginary unit i 
for the space variables x, y. (Thus, though i 2  = - 1 and j 2  = - 1, ij $. - 1.) In  
this notation the most general form of the simple harmonic motion of the flexible 
plate, including (16) as a special case, can be written 

h(x, t) = hl(x) eiwt for 1x1 < 1, (17) 

where hl(x) is an arbitrary real function of x, but may in general be complex 
with respect to j. Taking the real part of the above expression for the eventual 
physical interpretation is of course understood. 

By the conformal transformation 

the original z-plane, cut along the x-axis from x = - 1 to x = 1, is mapped onto 
the region outside the unit circle 151 = 1. On the unit circle, = exp (i0), and 
hence 

x = ~ 0 ~ 8 .  (188) 

Since the plate has zero thickness, h and ahlax must be even functions of 8. We 
assume that h,(x) in (17) can be expanded in a Fourier cosine series 

m 

(19a) 

where A = ?/ " hl(x) cos nod8 (n = 0, 1,2, . . . ). = 0 
(19b) 

The coefficients Pn, like hl(x), may be complex in j. From (1 8 b) ,  

a/ax=-(c~ce)a/ae for y = o ,  1x1 < 1. 
Hence, from (19), 

from which it is readily seen that . 

The coefficients y, can be solved from the above recursion formula to yield 

m 

v(x, k 0, t )  = - U An cos no eiwt on x = cos 8, I (21 a)  

where An=-(yn+juPn), c ~ = w / U ,  for n = 0 , 1 , 2  ,.... (21 b) 

The quantity cr = w/ U is called the reduced frequency referred to the half-chord 
which has been normalized to unity. If the chord is c,  cr assumes the value wc/2 U.  



The solution for f(z, t) satisfying conditions (21) and (12)-(15) has been ob- 
tained by Kussner & Schwarz (1940); the method may be briefly outlined as 
follows. If the acceleration potential f (z, t) is invariant under the mapping (18), 
i.e. f (2, t )  = f{z(<), t), then the solution must assume the form 

where the coefficients a, are real with respect to i so that condition (13) is satis- 
fied. The term with a, in (22a) represents the singularity at  the leading edge 
[ = - 1; the infinite series represents an analytic function which, when ahlax has 
no discontinuity on the plate, is regular on and outside the unit circle \[I = 1. 
To determine the a,, we note that on the plate, < = eie, 

m 

a, cos n8 eiwt. 1 
Substituting (21) and (22c) in (12), we readily obtain 

3-g a, = A,+- (A,-l-h,+l) for n =  1,2,3 ,.... 
2n 

The coefficient a, has to be determined by applying (lo), the imaginary part of 
which becomes, in the present case of periodic motion, 

Choosing (x, y) to be any point on the plate (such as x = - 1 + 0, y = + O), and 
applying mnditions (21) and (22c), then by appropriate integration by parts 
and making use of (23 a), we find that the infinite series cancel and the final result 
yields 

a0 = (A, + A,) C(a) - 4 ,  (23 b) 

where KO and K, are the modified Bessel functions of the second kind. P and 0 
are respectively the real and imaginary part of C(cr), which is usually called 
Theodorsen's function (for its tabulated value, see Luke & Dengler 1951). 

3. Hydrodynamic forces 
The pressure difference across the plate, according to (4) and (22 b), is 

CO 

tan $8 + 2 a, sin n8 eiut, 
n= 1 1 

the positive sense of Ap being in the positive y-direction. 
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(1) Lifl. The lift on the solid plate is 

L = Itl (Ap) dx = (Ap) sin ed0 = ~ r p  U2(ao + a,) efut. I: (25) 

(2) Moment. The moment of force about the mid-chord, in the nose-up 
sense, is 

1W = - (Ap) xdx = +n-pU2(ao - aZ) eiot. (26) 

The real parts (with respect to j )  of (25) and (26) give respectively the lift and 
moment on the plate due to  the motion given by the real part of (19). These 
results are of course known in unsteady wing theory (e.g. see Robinson & 
Laurmann 1956). 

(3) Thrust. The thrust, taken to be positive in the negative x-direction, acting 
on the solid plate is given by 

in which the quantity with subscript R denotes the real part (with respect to  j )  
of that quantity, and Ts represents the thrust due to the leading edge suction. 
Since the thrust contains the non-linear terms of small amplitude, in calculating 
the integral in (27) the real physical quantities, given by the real part of their 
complex representations, must be used directly. For the subsequent analysis 
it is convenient to separate the real and imaginary parts of the following func- 
tions. For n = 0,1,2, . .., 

Then 

Substituting (29) into the integral for Tp in (27), we obtain 



The last expression follows from (20 b) and (28). Tp can still be expressed in another 
form by eliminating A; (for n > 1) from (30). Substituting (2Ob), (21 b), (23) 
into (28), we have 

I ?  - I ?  = 2 - I ?  = 2 for n = 1,2, . . . ; (31 a) 

A; = (a2/2n) (BA-, - B;,,) + 2aBt - I?;, for n = 1,2, . . . ; (31 b) 
A; = (A; + A;) F ( a )  - (A," + 4) G(cr) - A; 

= ( a B i  - I?;) P ( a )  - (crB'; - I?;) [l - P ( a ) ]  

+ [cr(B; + B;) + (I?; + r';)] G(a).  (31 C) 
m m m 

Hence Z A;(I?;-, - I?;+,) = a2 B;(B;-, - B;+,) + 4a Z nB; B t  
n=l n= 1 n= 1 

m m 

- Z I';(I';-, - I?;,,) = a2B; B;  - I?; I?; + 4a Z nB; B;. 
n=l n= 1 

Therefore 

This expression exhibits more explicitly the dependence of Tp on the reduced 
frequency a since apart from A; the coefficients Bn, rn are seen to depend on a 
only as a linear combination of sin wt and cos wt. 

The leading edge suction arises from the singular pressure at the leading edge, 
hence for its determination the non-linear terms in the expression for the pressure 
in the neighbourhood of the leading edge must be taken into account. The exact 
expression for the pressure is given by the Bernoulli equation 

where G, denotes the complex conjugate of w, = u, - iv, with respect to i, the 
subscript R indicating the real part in j, and <D is the velocity potential such that 
u, = a<D/ax, U, = a<D/ay. NOW from (10) and (22), 

where z1 = +(Cl + +il). Hence by integration by parts, it is readily seen that the 
asymptotic representation of w(z, t )  near the leading edge is 

i Ua, 
w(z, t) g - eiot + O(1) as 5 -+ - 1. 

C+1 

The part of w which is real in j thus reads 

From this result i t  can be seen that the velocity potential <D and a@/at remain 
bounded near the leading edge and hence 
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Since a@/at makes no contribution t o p  near the leading edge, the problem of the 
unsteady suction force hence reduces to the same problem for the steady motion 
in the sense that the time-dependent quantities appear only as parameters (or 
coefficients) in the expression for p. Let the x- and y-components of the singular 
force acting a t  the leading edge be denoted by X s  and Ys, then by applying 
Blasius's formula to a small circle of radius e surrounding the leading edge, 

X s- iY s = y  wLdx = - &np U2Ah2. 

Therefore Ys = 0, and the leading edge thrust is 

Ts = - X s  = &np U2Ah2. 

From (27), (32) and (35), the total thrust is 
w 

(Ah + I?;) (Ah - I?;) + a2Bh B; + 4 a  C nBA B: 
n=l 

Two limiting cases are of particular interest. 
(i) a -+ 0. For a < 1, B(o) and G(a) of (23c) can be expanded as 

B(a) = 1 - +na + 0(a2 log a),  @(a) = a(y  +log &a) + 0(a2 log a) ,  (37) 

where y is Euler's constant, y = 0.5771 ... . Substituting (31) and (37) in (36), 
we obtain 

T = &npU2(- (a log &a) (I?; + I?;) (I?," + Y;) + O(a)} for a < 1. (38) 

Since I?; and I?: depend on a only in the form of a linear combination of sinot 
and cos wt, T therefore tends to zero like alog a as a -+ 0. This is, of course, 
D'Alembert's paradox, as should be expected, that a rigid body immersed in 
a steady flow of an ideal fluid experiences no drag. 

(ii) a 1. I n  this case, use of the asymptotic expansions of the Bessel func- 
tions in (23c) yields 

Hence from (31 c) and (36) we obtain 

T &np U2(a2[Bh B; + &(Bi - B;)2] + O(a)} for a B 1. (40) 

Thus, T behaves like a2 as a + a. 

4. Power required; energy conservation 
If the prescribed motion is to be maintained, then an external force equal and 

opposite t o  the pressure force across the plate must be applied. Over a segment of 
the plate of length dx, this external force is - (Ap),dx, acting in the positive 
2-direction. The power required to maintain the motion is equal to the time rate 
of work done by this external force, or 



where (ahlat), denotes the real part of ah/at which, by (19) and (28), is 

Substituting this equation and (29a) into (41) and integrating, we obtain 

Upon elimination of A; from the above series, by using (31 b), and after some 
rearrangement of the terms, we finally have 

m 

Ah(B," - B';) + ZaB," B; - B," I'; - B'; I?; + 2 C, nBk B; 
n=l  

" 1 + u2 Z; - (BA-l - B;+J - B;+~)]. (42 b) 
n= 2n 

From this result it is noted that P vanishes with vanishing cr and behaves like 
a3 for large g. 

From the principle of conservation of energy, the power input P (or the energy 
put into the system per unit time) must be equal to the time rate of work done by 
the thrust, T U, plus the kinetic energy imparted to the fluid in unit time. Let 
the last quantity be denoted by Ew, then 

Making use of (36) and (42 b), we obtain 

From (2 1 b)  and (28), 

= crBg - I?;, A: = - (crBk + I?:) for n = 0,1,2, . . ., (44b) 

which can be used to  rewrite (44a) as 

The energy lost Ew can be determined by an alternative method. By the basic 
principle of hydrodynamics, Ew is equal to  the time rate of work done by the 
pressure over the body surface, that is 

where n is the unit vector normal to  the body surface S,, pointing away from the 
fluid. At the leading edge where p and q are singular, S, is replaced by a small 
circle s around the leading edge. Thus 
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Using the solution (34a ,  b )  in the first integral, we find that this integral is equal 
to - Ts U where Ts is the leading edge suction (see (35)).  The second integral is 
readily integrable; the final result is found to be identically (44 c). 

5. Average value of thrust and energy; efficiency of prdpulsion 
Since we are primarily interested in the average values of the thrust and the 

power input over a single period T = 2n/w,  we now define the time average of 
an arbitrary function of the time g(t)  by 

To determine the average values of the infinite series in (36) ,  (42b)  and (44) ,  
we write 

Pm=/3;+j,8;l ( n = 0 , 1 , 2  ,... ), ( 4 6 a )  

where /3A and pi are the real and imaginary parts of fin. Then from (28), 

BA = cos wt - sin wt, Bi = ,8: cos wt +PA sin wt. (46b)  

Expressions similar to these may be written for PA, I?:, A;, A:. By using the 
relations 

(cos2 wt)  = (sin2 wt)  = 4, (sin wt cos wt) = 0, ( 4 7 )  

it is evident that 

( B A B i )  = 0 ,  ((BA-l - BA+,) (Bi-, - B:+,)) = 0 ,  ( 4 8 a )  

( B ;  B ; )  = (B," B';) = 4(/3;/3; + P," Pi). (48b)  

Therefore the time averages of the infinite series in (36) ,  (42b)  and (44)  vanish 
and consequently 

{ T )  = +n-pU2 ( (A;  + I?;) (A; - I?;) + e2B; B;) ,  ( 4 9 )  

( P )  = +npU% {A;(B,"- B';) + 2crB," B'; - B," I?; - B; I?;), ( 5 0 )  

{ E w )  = +npU3 { ( A ;  -A;)  (A; + A;)).  ( 5 1 )  

These expressions indicate that (T), { P ) ,  ( E w )  depend on the time average of 
quantities which contain only five coefficients: I?,, I?,, B,, B, and A,. These 
equations are for the moment left in the above relatively simple form; their 
values for a specific case will be calculated in detail in 5 7. 

It is of interest to point out that ( E w )  in general is positive definite. To show 
this result we first make use of (31 c )  and write (51)  as 

- (A," + R';)2 G2). ( 5 2 )  
We further write, as in (46) ,  

h n = h A + j h [  ( n = O , l , 2  ,... ), 
and hence from (28)  

A; = A; cos wt - hi sin wt, A: = hi cos wt + sin wt. (53b)  



Then from (47) it follows that 

{(A; + A;) (A," + A!;)) = 0. 
Therefore (52) becomes 

From the known behaviour of the Theodorsen function (see (23c)), it can be 
shown that F 2 (P2 + G2) for 6 2 0 and the equality holds only if 6 = 0. There- 
fore it follows from (52)  that in general {Ew) > 0; it vanishes only in the special 
cases a. = 0 and A, = -A1. The first case is the steady motion for which the result 
Ew = 0 is obvious. The second case includes the trivial limiting case of A, = A, = 0, 
but the general case with non-vanishing A, and A, is of more interest. As will be 
shown in the following section, the case of A, = -A,, with A, 9 0, corresponds 
to the condition under which the circulation around the solid plate remains 
constant (zero) so that no trailing vortex wake will be shed from the plate, even 
in wavy motion. 

From the above result it follows that {P) - {T U) = (Ew) is non-negative. 
Hence, when energy is taken out of the fluid ({P) negative), {T) cannot be 
positive. However, no deikite statement, such as the above for {Ew), can be 
claimed separately for {T) and {P). When (T) 2 0, and hence (P) 2 U (T) > 0, 
we may define the average efficiency for producing useful thrust by 

6. Circulation around the plate; vortex sheet strength 
The vortex wake is assumed to lie along the x-axis downstream of the trailing 

edge. The strength of the vortex sheet a t  a point P(x, 0) of the wake is denoted 
by y(x, t). The circulation GI '  around a small rectangular circuit passing through 
the points A(x, + 0) ,  B(x + Gx, + 0), C(x + Gx, - 0), D(x, - 0), in this order, is 
approximately 

r 

which must be equal to the total vorticity within the circuit, yGx. This statement 
may be regarded as the definition of y. Since u is odd in y, we therefore have 

Furthermore, at  any point of the wake, x > 1, 

by virtue of (3) and (13). Hence for x > 1, y is a function of the single variable 
(x - Ut) only. Thus, if the value of y a t  the trailing edge is known, i.e. 

say, then y(x,t) = g ( t-- for x 2 l .  (57) 
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In a co-ordinate system fixed in the fluid at  infinity, the trailing edge of the 
plate travels a distance - Udt along the x axis in the interval dt. If in the same 
time interval the circulation around the plate changes by the amount dl? from 
the value r(t), then from the trailing edge there separates a vortex of strength 
-dl?, which in turn is spread out into a vortex sheet of strength y distributed 
over a length Udt immediately behind the trailing edge. Hence 

a r  
at - = - Uy(1, t) = - 2Uu(l, + 0, t). (58) 

The circulation r ( t )  around the plate can then be obtained by integration. Thus, 
once the value of u a t  the trailing edge is known, the strength of the vortex wake 
and the circulation around the plate can be determined from (57) and (58). 

To calculate u, we first substitute (22a) in (10) and integrate by parts, giving 

1 
= (f (z, t) - jg e - j c ~ ~ ~ a  efull f(zl, t) dzl) . 

Now q5 = Ref = 0 on y = 0, 1x1 > 1 ; hence by separating the real and imaginary 
parts (in i = ,/ - l), making use of (22), and by taking 0 = cos-lx as the integra- 
tion variable over the plate, we obtain 

m 
= - j g ~  ei(+u)/I ej"cOs@ (1 - cos 8) + Z: a, sin n0 sin 0 dB. 

2 n= 1 I 
Substituting from (23a) into the above integral and integrating the terms with 
the factor (ja/2n) by parts, we fmd 

m 

= -/~eiccos@(a0(l- cos 0) + 2 -A,[cos (n- 1) 8-cos (n+ 1) 01 
n = l  

The infinite series in the above integrand terminates after rearrangement. Now 
(see Watson 1944) 

1: eiu 
cos nod8 = njnJn(g) = nI,(jcr), 

where J, is the Bessel function and I;, the modified Bessel function, both of the 
first kind. Hence 



By using (23) and the relation (see Watson 1944, p. 80) 

the above expression may be written 
A h  u( 1, + 0, t) = - fn  u ej<~t-d - 0 L  I--- 

K 0 W  + K l ( j 4  ' 

If ho + hl = 0, then it follows from (57)-(59) that the circulation around the plate 
remains constant for all time and hence the vortex wake disappears. Further- 
more, it can be shown that Ko(jg) + Kl(jc) has no zero for real cr (see Erddyi & 
Kermack 1945). Therefore the necessary and sufficient condition for constant 
circulation around the flexible plate is 

which may be expressed, by using (20) and (21), in terms of the pffl as 

The motion for which the Pa's (see (19)) satisfy (60 b) is the one in which no trailing 
vortices will be shed. 

The circulation around the plate, from (58) and (59), is 

In  the limit of steady motion, w -+ 0, cr + 0, the denominator of the above 
expression tends to unity, and A, +- - y, (see (21 b ) ) ,  hence I' + - nU(y, + y,). 
Also, as (T -+ 0, an +- An for n = 0,1,2, ... (see (23)), and so from (25) the lift 
becomes L = 7ipU2(ho + hl) = - n-pU2(y0 + yl) = pUr, 

in agreement with the theorem of Joukowski. 

7. The flexible plate with progressive waves 
Consider in particular the motion of a flexible plate which consists of a train 

of progressive waves of wavelength h = 2nlk and frequency w/2n, as given by 

h(x, t) = C bm exp (je,) xm ei(ot-kx) 1 ( - l < x < l ) ,  
l m = o  (624 

where b, are taken to be real coefficients, em are constant phase angles, the 
amplitude of the wave being taken as an arbitrary function of x as represented 
by the series. Without losing generality we may take so = 0. The above equation 
may also be written 

In terms of the variable 0 defined by (18 b), we may write (Watson 1944, p. 22) 
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where &(k) is the Bessel function of the first kind. Thus 
w 

[ 
m 

h(x, t) = C, bm jnl exp (jem) Jbm)(k) + 2 C, ( - j)" Jp)(k) cos n0 eiwt, (64) 
m= 0 n=l  I 

where JP1(k) stands for dmJn(k)/dkm. If the wave propagates ,in the negative 
$-direction, k assumes negative values; this can be obtained by the continuation 

Jn(k) = ( - )" Jn( - k), Je)(k) = ( - )m* J?)( - k). (65) 
Comparing (64) with (19), we find that 0 

Substituting (66) in (20c) and using the relations (ErdAlyi 1953, vol. 2, p. 99) 

Substituting (66) in (28), we find, for .n = 0,1,2, ..., 

where D, and DI, denote the differential operators 

Similarly, from (68) and (28) we find, for n = 0,1,2, ..., 

The other coefficients (namely A;, A:, . . . , A:, . . . ) do not appear in {T) and (P); 
they will not be given here. 



Finally, when the above expressions for B,, B1, I?,, I?,, A, are substituted in 
(49), we have 

where Q, = a(u, k) + kJ,(k), Q, = Q(g, k) + kJl(k). (736) 

By making use of the results 

(sin (wt + s) sin (wt + 6)) = (cos (wt + s) cos (wt + 6)) = + cos (E - S), 

{sin (wt + E) cos (wt + 8)) = 4 sin (E - S), 

we obtain, after some straightforward manipulation, 

where the superscript numerals in the parentheses denote the order of differ- 
entiation with respect to k, e.g. Sl(" = anQ/alcn. 

To calculate {P) it is convenient to use the relation (P) = (T U )  + {E,), 
since {Ew) can be readily derived from (54). From the definitions (21 b) and 
(53a), we obtain by using (66) and (68) the following 

A," 

A; m=o (g - k) JlW 
Substituting these expressions into (54) and rearranging the terms, we find that 

where N,(g, k) = (C - k) J,(k), N(c, k) = (o - k) Jl(L). 



Swimming of a waving pbte 337 

With (T) and (Ew) determined as above, the average power required is then 

If the chord of the plate is c, then the above results hold valid if o = wc/2U, 
k = m/h ( A  being the wavelength), (T)/mpU2 is replaced by (T)/npU2($c), and 
{Ew)lv U3 by ( E W ) / ~ P U ~ ( ~ ~ ) .  

If the series in (62a), which represents the amplitude function of the plate 
motion, has but a finite number of terms, then both series in (74) and (75) will 
terminate. In particular, we shall consider the following special example. 

8. Waving plate with linearly varying amplitude 
In order to exhibit the effects of the non-uniform amplitude of the progressing 

wave along the plate and the effect of the different phase angles, we consider 
the relatively simple case 

h(x, t) = bo cos (wt - kx) + b1 cos (wt - kx + a) 

= Re([bo + b,x eje] ef(ot-k~)}, for - 1 c x c 1. (77) 

This is a special case of the general motion (62) with b2 = b, = . . . = 0, e0 = 0, 
el = E. From (74) it is readily verified that {T) now reduces to 

'T) - b: k) + b:T2(o, k) + bo bl[T3(o, k) cos E + T,(o, k) sin a], (78) g- 

aszasz, aQaQ, 
T2(v,7c) = --+--, 

ak: ak ak ak: 

a 
T4(v, k) = - - Tl(o, k). 

ak: 

The functions Q, Q are given by (72) and Q,, Q, by (73). 
From (75) we derive, for the present case, 

npU W (o, k) + bo b1[W3(a, k) cos E + W4(a, k) sin a], (79) (Ew; = 6: %(o, k) + bl 2 

where Wl(o, k) = [P - (P2 + G2)] [N$ + N:], 

The functions No and Nl are given by (75 b). 
22 Fluid Mech. 10 



FIGURE 1. Variation of the thrust-coefficient function T,(u, k) with the reduced frequency u 
a t  ~everal circular wave-numbers k (cf. statement below equation (76)). 

FIGURE 2. Variation of the thrust-coefficient function T,(a, k) with the reduced frequency u 
a t  several values of k. 

FIGURE 3. Variation of the thrust-coefficient function T,(u,k) with the reduced frequency u 
a t  several values of k. 
FIGURE 4. Variation of the thrust-coefficient function T,(u, k) with the reduced frequency u 
at several values of k. 
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FIGURE 5. Variation of the power-coefficient functions P,(a,k) and P,(u,h) 
with the reduced frequency u a t  several values of k. 

FIGURE 6. Variation of the power-coefficient functions P,(a, k )  and P,(u,k) 
with the reduced frequency u a t  several values of k. 

22-2 



The average power input, from (76), is therefore 

<p> 
= %Pl(g,  k )  + b? P2(u, k )  + b O 4 [ P 3 ( s ,  k) cos e + P,(cr, k )  sine], (80) 

where  pi(^, k) = q(cr ,  k )  + @(c, k) (i = 1 , 2 , 3 , 4 ) .  

In  figures 1-6 the above results for Ti and Pi are plotted versus the reduced 
frequency cr in the range 0 < cr < 6 for the wave-numbers k = - 1-5, - 1, - 0.5, 
0 ,  0-5,  1, 1.5, 2,  3. The results show that Ti and Pi vanish a t  cr = 0, and, for large 
values of cr, the magnitudes of and Pi behave like a2 and a3, respectively. 
For any given values of b, and b,, the average thrust and the power required 
can be readily obtained by simple linear combination of these functions. Par- 
ticularly simple are the cases ( 1 )  b, + 0 ,  b, = 0, and ( 2 )  b, = 0, b, + 0 ;  the solution 
for these cases, apart from a proportionality factor, are simply T I ,  P, and T2, P,. 

FIGURE 7. Swimming efficiency for two configurations, 7, for a uniform wave amplitude, 
and y2 for a linearly varying amplitude symmetrical about the plate centre. 

The f i s t  case (b, =/= 0 ,  b, = 0 )  represents a waving plate with a uniform wave 
amplitude. For a given positive k ,  implying that the wave travels toward the 
tail, both the thrust and the power required vanish a t  cr = k ,  when the wave 
velocity is equal to the free-stream velocity since the wave velocity is then 

This means that this wave form becomes frozen with respect to the fluid at 
infinity so that the plate merely travels along a sinusoidal path fixed in the space. 
As can be verified, this motion creates no circulation around the waving plate. 
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For positive k, the thrust ( T )  and the power required {P) are negative for 
0 < o < k and positive for o > k. Negative values of (P)  mean that energy is 
taken out of the fluid; this is possible only if k 2 0. For a rigid plate in transverse 
oscillation (k = 0), {P) is non-negative, in agreement with the remark by 
&irm&n that energy can be taken out the fluid only in the case %of an oscillatory 

with at  least two degrees of freedom. For a flexible plate with k $: 0 the 
degrees of freedom are infinite in number. At every fixed o, both Tl and Pl 
decrease with increasing positive k. In  the range of negative k, corresponding to 
wave propagation toward the head, i t  is noted that Tl and Pl have the general 
trend of decreasing with decreasing k. Thus, TI and PI reach their maximum 
values near k  = 0 for each given cr. Perhaps of more significance is the efficiency 
which becomes in this case 7,  = Tl/Pl. The values of rll, plotted in figure 7, 
indicate that in the range of positive thrust (TI > 0) 7,  increases with increasing 
k (negative as well as positive) for fixed o. This implies that the percentage 
rate of decrease in Tl is slower than that in Pl with respect to increasing k, for 
all k. Consequently, from the viewpoint of the efficiency, it is advantageous to 
have the waves propagating towards the rear. This result is interpreted here as 
affording a qualitative explanation of the observation that fishes in nature 
usually have the wave form of their body propagating from the head to the tail. 

The functions T2 and P2 behave in much the same manner as Tl and P,, as 
may be seen from the figures. The function 7,  = T2/P2 is plotted in figure 7. 

In the case of U -+ 0, with w = oU fixed, the limiting solution becomes 

{P)  + 2(Ew) -t 2U (T) .  

9. The basic mechanism sf  swimming 
From the basic principle of action and reaction in mechanics, it is to be 

expected that, when the plate attains a forward momentum as it swims through 
a fluid, the fluid must be pushed in the backward direction with a net total 
momentum equal and opposite to that of the action. From the resulting flow 
picture it can be seen that the momentum of reaction is concentrated in the 
vortex wake and appears in the form of a jet of fluid expelled from the plate. 
This mechanism has been elucidated, for the simple case of a rigid plate in trans- 
verse oscillation, by Khrmhn & Burgers (1943, p. 308). It is not difficult to illus- 
trate this mechanism for the present more general case by the following 
consideration. 

Consider again the simple case b, 0, b, = b, = ... = 0, as discussed pre- 
viously. The plate motion is given by 

h(x, t) = b, cos (wt - kx) for - 1 < x < 1, 

so that the trailing edge moves according to 

h(1, t) = b,cos (ot - k). 



The trailing edge will reach the highest position a t  t = klw. At this instant the 
vortex sheet at  the trailing edge, by (56) and (61), has strength 

Now for this case, by (66) and (68), 

Po = 2bo Jo(k), ,!Il = - 2bo jJl(k), yo = - 2bo jkJo(k), y, = - 2b,leJ,(k). 

Hence from (2 1 b) 

Furthermore, 

K o ( j 4  + K d j 4  = - frn{Jl(4 + Y , ( 4  +j[Jo(4 - Y1(@ll, 

where Y, are the Bessel functions of the second kind. Hence 

where 

FIGURE 8. A qualitative sketch of the trailing vortex waves 
in the wake of a swimming plate. 

By using the formula (Watson 1944, p. 77) Jl(z)Yo(z)- Jo(z)Y,(z) = 2/nz, it is 
readily seen that 

H(k, k) = Ji(k) + J!(k) + 2/7rk, 

which is positive definite for 0 < k < co. Actually it can be shown that H(c, k) > 0 
for 0 < cr < a, 0 < k < co (see Appendix). Therefore it follows that, so long as 
both o and Ic are positive, 

y(l,:) 2 0  according as crzk. 

Consider first the case cr > Ic > 0. When the trailing edge is a t  the highest posi- 
tion, the vorticity shed from the plate is negative, or in counterclockwise sense, 
as sketched in figure 8. On the other hand, when the trailing edge is a t  the lowest 
position, i.e. at  the opposite phase in time, the vorticity shed from the plate is 
positive. This indicates that the more detailed structure of the wake will have 
the form of a series of parallel waves in which the vorticity varies across the wake 
from a negative strength at the top to a positive value a t  the bottom. If now the 
velocity field due to this vortex system is calculated, it is found that the fluid in 



Swimming of a waving plate 343 

the vortex wake is expelled downstream of the plate, moving in the form of a 
jet in the positive x-direction. Consequently, by the principle of action and 
reaction, the plate experiences a positive thrust, as the result shows. For the 
same reason, the thrust is negative if 0 < cr < k. 

This work is sponsored by the Office of Naval Research of the U.S. Navy. 
The assistance rendered by Mr D. P. Wang, Mrs Zora Harrison and Mrs Luna 
Fung in the computations and by Mrs Rose Grant in preparing the manuscript 
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Appendix 
Thisnote is toshow that H(a, k) > 0 for 0 < a < co, 0 < k < a, where (see (81)) 

H(a, k) = [Jl(k)A(cr) + Jo(k) B(cr)] cos (cr - k) + [Jo(k) A(r)  - Jl(k) B(cr)] sin (cr- k), 

A(a) = J,(a)+Yo(cr), B(v) = Jo(cr)-Yl(a). 

By using Schafheitlin's integral representations for the Bessel functions (Watson 
1944, p. 169), for Rex > 0, 

2 in sin (2 + ?0) e-si cot 0 4(z) = - S n o cos* 0 sin0 
9 

and the relation J,(x) = - J;(z), Y,(x) = - Y&), one readily obtains 

4 *rsin(cr-fO) e-2wcot,jd* A(cr) = Jl(a) +YO(cr) = - S n 0 cos* 0 sin2@ 
7 

Using these results, one finds, after some straightforward manipulation, 

This shows that the sign of H depends only on the quantity in the square bracket 
in the numerator of the integrand, which is independent of a, since the re- 
maining part of the integrand is never negative. Therefore, the sign of H(g, k) 
is at least independent of cr. It follows that, for any given positive k, the function 
H(cr, k) must have the same sign as the function 

H, (k) = 4 ( k )  cos k + Jl(k) sin k 

which is the asymptotic representation of +$ncrH(o, k) as -+ + 0. 
Now the derivative of H, is 

H;(k) = - Jfi) sin k, 
k 



which vanishes at k = mn, m = 0,1,2, ..., and at k = k,, the positive zeros of 
J,(k). The value of k, is known to lie in (nn+n/8,n~+n/4), n = l,2,3, ... 
(Watson 1944, p. 490). A study of the value of H;(k) at these zeros of Hi@) 
shows that the only minima of H,(k) are at k = mn, m = 1,2,3, . . .. But 

which are all positive since it is known that sgn [Jo(mn)] = ( - )". Therefore 
H,(k) > 0 for 0 < k < m; the final result is then obvious. 
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