
Analysis of the swimming of long and narrow animals 

B y Sir  Geoffrey  T aylor, F.R.S.

(Received 23 February 1952)

The swimming of long animals like snakes, eels and marine worms is idealized by considering 
the equilibrium of a flexible cylinder immersed in water when waves of bending of constant 
amplitude travel down it at constant speed. The force of each element of the cylinder is 
assumed to be the same as that which would act on a corresponding element of a long 
straight cylinder moving at the same speed and inclination to the direction of motion. 
Relevant aerodynamic data for smooth cylinders are first generalized to make them applicable 
over a wide range of speed and cylinder diameter. The formulae so obtained are applied to 
the idealized animal and a connexion established between BjA, V/U  and R±. Here B  and 
A are the amplitude and wave-length, V the velocity attained when the wave is propagated 
with velocity U, is the Reynolds number ZJdp/p,, where d is the diameter of the cylinder, 
p and fi are the density and viscosity of water.

The results of calculation are compared with James Gray’s photographs of a swimming 
snake and a leech.

The amplitude of the waves which produce the greatest forward speed for a given output 
of energy is calculated and found, in the case of the snake, to be very close to that revealed 
by photographs.

Similar calculations using force formulae applicable to rough cylinders yield results which 
differ from those for smooth ones in that when the roughness is sufficiently great and has 
a certain directional character propulsion can be achieved by a wave of bending which is 
propagated forward instead of backward. Gray’s photographs of a marine worm show that 
this remarkable method of propulsion does in fact occur in the animal world.

1. I ntroduction

The motions which fishes, snakes and other animals make when they swim have 
been studied photographically by Gray (1939a). The way in which their muscles 
produce the observed movements of their flexible bodies seems to be understood. 
The external mechanics of the locomotion of snakes on land has also been discussed 
(Gray 1946, 1949), but attempts to analyze swimming from the point of view of 
hydrodynamics have failed because, in general, there is no way in which experiments 
made with rigid bodies can he used to predict the forces acting on flexible bodies. 
In the special case when the flexible body is very long compared with its lateral 
dimensions it may be legitimate to assume that the reaction of the surrounding 
water on any section or it is the same as though that section were part of a long 
cylinder moving at the same speed and in the same direction as itself. This assump
tion has been used successfully in calculating the curves made by the cable of 
a captive balloon in a wind or by the underwater part of a fishing line when trolling 
for mackerel. The data on which these calculations were based were obtained by 
setting up a long straight cylinder or wire a t various angles of incidence to the air 
current in a wind-tunnel and measuring the force acting on it.

Attempts to apply similar methods to the mechanics of swimming might be 
successful if the swimmer were sufficiently long in comparison with its thickness. 
For this reason the swimming of snakes, leeches and certain marine worms have 
been studied. Since wind-tunnel measurements give the force on a cylinder set at 
angle of incidence iin a wind of velocity Qthe most direct method of applying the
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basic assumptions would be to measure the velocity and direction of motion of each 
element of the body of a swimming animal at successive intervals of time. This 
could be done by making measurements on successive frames of a cinematograph 
record, but the work would be very laborious, and it might be impossible to make 
measurements sufficiently accurate to determine reliable values of Q and i. Even 
if the work could be carried out and the basic assumption used in conjunction with 
wind-tunnel measurements to calculate the force on each element of the body, the 
only possible final result would consist in verifying (or not verifying) that the 
integrated resultant force and couple acting on the whole animal are both zero. 
Such a result would contribute little to our understanding of the general principles 
of the mechanics of swimming.

For tills reason a less direct method has been adopted. A study of successive 
frames in some of Gray’s photographs of long animals swimming has revealed two 
main features which seem likely to be significant in the mechanics of swimming: 
(1) the animal sends waves of lateral displacement down its body and (2) in some 
cases, particularly in the case of a snake, these waves increase in amplitudes as they 
pass down the body.

In the analysis which forms the subject of this work the first of these features is 
studied as a problem in the mechanics of an idealized or ‘mathematical’ animal 
which consists of a flexible cylinder of uniform section. I t  will be assumed to swim 
by sending waves of uniform length and amplitude at a uniform speed down 
its body.

The work is divided into nine sections. In §2 the relevant aerodynamic data are 
examined and formulae are given for the lateral and longitudinal components of 
force acting on a cylinder set obliquely to a stream of fluid. Two sets of formulae are 
given. The first refers to smooth and the second to rough cylinders. In § 3 equations 
are given which represent the geometry of a flexible cylinder down which waves of 
bending of constant amplitude are being propagated. In §4 the swimming char
acteristics of a smooth flexible cylinder are calculated and the results shown in 
a ‘swimming diagram’. In §5 measurements of Gray’s photographs of smooth 
animals swimming are compared with the calculations of §4. In §6 the energy 
required for propulsion of smooth animals is calculated and the amplitudes of the 
waves which drive them fastest for a given output of energy is found. In §7 
calculations analogous to those of §4 are made for animals with a rough surface. I t  
is found that when the surface is sufficiently rough and the roughness has certain 
directional characteristics, an animal could swim forwards by sending waves 
forwards along its body, and in § 8 the performance of a marine worm which actually 
swims in this way is compared with the calculations. In §9 some limitations to the 
application of the analysis are mentioned and the swimming characteristics of a very 
small animal discussed.

2. The force oh a circular cylinder set obliquely to a stream of fluid

Very few experimental data have been published on this subject. Relf & Powell 
(I9I7) gave measurements of the force on a smooth cylinder fin . in diameter set 
at angles varying by 10° intervals from 0 to 90° to the wind direction. The transverse
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force, FN, and the longitudinal force, FL, expressed as pounds weight per foot run 
of the cylinder in a wind of 40ft./s, is given in table 1 (from Relf & Powell 1917).

160 Sir Geoffrey Taylor

Table 1. Force on an inclined cylinder § inch diameter 
IN A WIND 40 FT ./s

1 2 3 4 5 6 7
f F l F l F l

i° (L b ./ft. run) (L b ./ft. run) 0-Q7 sin2 i F x  (calc.) cos i(sin  i) \ cos i
0 0 0-0016 0 0 — 0-0016

10 0 0 0 2 5 0-0016 0-0021 0-0021 0-0039 0-0016
20 0-0090 0-0021 0-0081 0-0081 0-0038 0-0022
30 0-0191 0-0024 0-0175 0-0172 0-0039 0-0029
40 0-0297 0-0023 0-0290 0-0282 0-0037 0-0030
50 0-0415 0-0019 0-0410 0-0400 0-0034 0-0029
60 0-0525 0-0015 0-0525 0-0509 0-0032 0-0030
70 0-0606 0-0012 0-0618 0-0598 0-0036 0-0035
80 0-0657 0-0003 0-0680 0-0657 [0-0017] 0-0017
90 0-0672 0 0-0700 0-0677 — —

F y  (calc.) =  5-91 x  10-8 { ! • !  sin2 i  +  0-045 (sin i)%}

I t  was pointed out by Pelf & Powell that FN is nearly proportional to sin2 i, where 
i is the angle between the axis of the cylinder and the wind direction. The values of 
0-07/sin2 iare given in column 4 of table 1 for comparison with values of FN in 
column 2. I t  will be seen that the agreement is fairly good. If  Q is the wind velocity 
Q sin i is the component of velocity at right angles to the cylinder, and since the 
drag on a cylinder placed at right angles to the wind is very nearly proportional to 
Q2, the interpretation of their measurements, which Relf & Powell gave, is that the 

normal component of velocity determines the normal force independently of the 
longitudinal component Qcosi. This result was to be expected on theoretical 
grounds because at the Reynolds number of Relf & Powell’s experiments (7-9 x 10s) 
the boundary layer is laminar. The field of flow is therefore one in which the three 
components of velocity u, v, w and also the pressure, p, are functions of two variables 
x and y only. Under these circumstances u, v and p  are independent of w in the sense 
that their values are unaltered by any change in w, though w is dependent on u and v.

Relf & Powell’s measurements were successfully used by McLeod (1918) to 
calculate the shape of a flexible cable used for towing weights under an aeroplane. 
For this purpose McLeod found that sufficiently accurate results could be obtained 
if Fl were neglected altogether. There is, however, an intrinsic interest in applying 
the principle that the transverse components of velocity are independent of the 
longitudinal components, to make predictions about the longitudinal force (Sears 
1948; Wild 1949). In the present investigation the longitudinal component of force 
turns out to be of paramount importance. I t  is not possible to apply Relf & 
Powell’s data directly to cases in which the Reynolds number differs greatly from 
that at which their experiments were made. For this reason, as well as for the 
intrinsic interest of the subject, a theoretical prediction about the effect of Reynolds 
number on the force acting on a cylinder placed obliquely in a stream of fluid is 
needed.
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Analysis o f the swimming of long and narrow animals 161 

Normal component of force
The component of force acting on unit length of a cylinder a t right angles to its 

axis when placed obliquely in a fluid stream will be represented by N, and N  depends 
only on Qsin i so far as variations in Q and i are concerned.

The experimental results on smooth cylinders set at right angles to a fluid stream 
of velocity Q are represented in figure 1 (from Goldstein 1938). In this figure the drag 
coefficient CD is plotted against R — dQp/p; CD is defined by the equation

N  = \pQH€D, (2-1)

and d — 2ais the diameter of the cylinder, p is the density of fluid and p  the viscosity. 
Curve a, figure 1, shows the value of CD. Figure 1 also shows in b the part, \CD]P, of 
CD which is due to the component of stress normal to the surface of the cylinder and 
in c the part [Op]/ due to the tangential component. Evidently

[CDk  +  [Ci,]/ =  CD. (2-2)

•X-----

F ig u b e  1. D rag coefficients for sm ooth  circular cylinders.

It will be seen in figure 1 that \Pd \p  is nearly constant in the range 20 < I? < 105, 
where it varies only between 0*9 and 1*1. On the other hand, \C^\f  is found to be 
nearly equal to 4j in this range (Thom 1928). Using this value for the
principle that lateral components of velocity are independent of longitudinal 
components yields the following expression for N :

N  = lpdQ2{[CD]p sin2 i + sin» i). (2-3)
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162

In Relf & Powell’s experiments R  = 7*9 x 103, so that 4 = 0-045. Their measure
ments of Fn are expressed in Lb./ft. at 40ft./s, so that the factor of CD in (2-1) is

QO-48
981x 453-6(i) (0'00122) (t x 2’54) <40 x 30'48)2 = 5'91 x 10-2

Sir Geoffrey Taylor

and (2-3) gives Ĵ v = 5-91 x 10~2{[U£>]p sin21 x 0-045 sinH'}. (2-4)

The value of [ Ĉ\p which, when i = 90°, gives the best agreement with the measure
ments of column 2, table 1, is \Cjf\p = 1*L Using this value in (2-4) the figures given 
in column 5, table 1, were calculated. Comparing columns 2 and 5 it will be seen that 
(2-3) is a good representation of Relf & Powell’s measurements.

I t  is of interest to note that when i = 90° (2-3) applies approximately to very low 
Reynolds numbers. The value of CD for values of R  from 0-4 to 4-0 has recently been 
calculated by Tomotika (1951). The corresponding values of 1-0 + 4 which 
result from taking \^d\p = 1 in (2-3) are given in table 2 for comparison. I t  will be 
seen that when i = 90° no large error will result from applying (2-3) down to = 2.

T able 2. Values of Cd for a circular cylinder  

T om otik a’s
R calcu lation l-0  +  4 i2 - i

1 5-93 5-0
2 4-04 3-8
3 3-39 3-3
4 2-92 3-0

Longitudinal component of force L
The longitudinal component is due entirely to the longitudinal component of the 

tangential stress which depends only on the distribution of w, the component of 
velocity parallel to the axis of the cylinder. If  the components of velocity in the 
plane perpendicular to this axis are u and v the equation for w is

dw dw u -^+ v^r-cx
p  /d2w 02wA
p \0cr2 4 / ’

The equation to the conduction of heat in two dimensions is

(2-5)

0$  0$  K /02#  02t>\
U dx  ̂Vdy p<x \0a;2 dy2) ’ ( 2-6 )

where & is the temperature, k the conductivity and or the specific heat at constant 
pressure. Since u and v are independent of w, (2-5) and (2-6) show that if k — per 
the equations for & and w are identical. Though in fact for air k = 1*14 it is worth
while to make the assumption that k — per in order to make use of this analogue.

The boundary conditions to be satisfied at the surface of the cylinder are

and at infinity
-Q- ~  -i>0, w — 0,
i} = 0, w — W.

Here i) is the excess of the temperature at any point above the air at distant points 
and d-0 is the value of # at the surface. W is the longitudinal component of velocity
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Analysis of the swimming of long and narrow animals 163

of the air far from the cylinder which is taken to be at rest. The analogue therefore 
shows that at all points of the field

W — w _  &
~ W ~  = T0‘ (2-7)

■s0# ds, and theThe rate of loss of heat from unit length of the cylinder is H  

longitudinal force is L  = y| ^  ds, the integrations being taken round the perimeter

of a cross-section. Hence L _ p  
H ~  k $ o' ( 2-8)

It is therefore possible to use measurements of H  to determine L.
As a result of a large number of measurements of the rate of loss of heat from wires 

stretched at right angles to a wind stream, King (1914) concluded that the rate of 
loss of energy per unit length of wire of radius a is 1*432 x lO~3d-0 *J(aQ) watts. 
Dividing by 4*18 King’s experimental result is therefore

— 3*417 x 10~4 cal/s. (2*9)

Hence if k = per, ̂  = 3*14 x 10~4 -  *J{aQ). (2*10)
W K

Assuming that air has no viscosity but has conductivity, Boussinesq (1905) obtained 
for heat loss from a cylinder

( 2 - 11)

King, on the other hand, made the same assumption about viscosity but assumed 
a different surface condition of heat transfer. His theoretical result was

#0 J(aQ)
2 Jtt \l{pKcr) — 3*55 J(pKcr). ( 2*12)

The value of L  appropriate to a flat plate of breadth b placed edgewise in a wind is 
(Blasius . 908) L  _  1.228PWQ

If therefore fi = k/ct (2*8) gives
(2*13)

(2*14)

Making the assumption of Boussinesq and King that 0 it is found that for 
a flat plate „

V(Kpo-Qb).

Hence for a flat plate I _ 0*589.

(2*15)

(2*16)

The efiect of taking account of the motion in the viscous boundary layer is therefore 
to reduce the estimate made using Boussinesq’s assumption by a factor 0*589. If
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the same factor applies to the cooling of cylinders Boussinesq’s boundary condition, 
namely, d- — constant at r — a,would give

= 451 x ° '589 V( = 2’65 V(P^or), (2-17)

and King’s boundary condition (dd/dri = constant at r would give

•»—rr-pr- = 3-55 x 0*589 J(pKcr) = 2-09 (2*18)

I t  will be noticed that all these formulae are of the form

#0 VK>) = A (2*19)
A  being a constant. Using the values p = 0-00122, k = 5-0 x 10~5, cr = 0-2417, in 
King’s experimental result (2-9), (2-19) is satisfied if A — 2-85, which is not far from 
the value 2-65 predicted by taking the temperature of the air at the surface of the 
cylinder as the same as that of the cylinder and assuming that the reduction in 
heat transfer due to viscosity is the same as for a flat strip.

If it were true that k = per it would be possible to predict L  directly using (2-8) 
and (2-19) with A  = 2-85, but since one set of measurements of L  is available it is 
better to use the form suggested by (2-19) and determine the value of A  which best 
fits the observations when (2-19) is used in conjunction with (2-8). In the case of 
a cylinder set obliquely Q must be replaced by Qsini. Assume therefore

~  = A ^(pK cr) <J(aQsini). (2-20)

164 Sir Geoffrey Taylor

The kinetic theory of gases gives the relationship k — 1-603/4, Cv = 1-14 for air, 
and since W — Q cos i,(2-20) can be written in the form

( 2-21)

where R  = dQp/p.
The first step in comparing this formula with Relf & Powell’s observation is to 

divide the value of FL given in column 3 of table 1 by cos i (sin i)*. The results are 
given in column 6. I t  will be seen that except for the value at i = 90°, which is 
indeterminate and at i = 80° where the observation is probably inaccurate and at 
i = 0 where they have little meaning, the values are very constant. The values of 

JjJcos i are given in column 7 for comparison with those in column 6. I t will be seen 
that those in column 6 are more constant than those in column 7. The mean value 
of -F (̂cos i)-1 (sin i)- i  in column 6 is 0-0036 Lb./ft., so that the value of A  which fits 
the observations is found by inserting in (2-21)

453-6x9810-0036 cos i sin* i x 30-48
instead of L, and

d

and R

|  x 2-54, Q =40 x 30-48, p

f  x 2-54 x 40 x 30-48 x 0-00122
_ _ _ _ _

0-00122, 

7-9 x 103.
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Analysis of the swimming of long and narrow animals 165

I t  is found in this way that Relf & Powell’s measurements of FL are closely

predicted by (2-21) if A  is taken as 4*1 or 5-4, so that (2-21) becomes

L = £ pdQ2(5-4:R-i)cosis. ( 2*22)

If  A  had the value 2*85, deduced by assuming k per and using King’s heat- 
transfer measurements, the numerical factor in (2-22) would have been 3-78 instead 
of 5*4. Though for air a = 1-14 per,it seems hardly likely that this error in the assump
tions could account for the difference between 5-4 and 3*78.

I t would be of interest to test (2*22) experimentally, particularly a t low values of R.

Rough cylinders
If the cylinder is so rough that the boundary layer is not laminar the force cannot 

be analyzed by the method used for smooth cylinders. In general, it is not possible 
to make any theory of the aerodynamics of rough cylinders because the force would 
depend on the exact nature of the roughness. If  the roughness consisted of a number 
of long projections pointing equally in all directions, it is likely that the force on 
them would be in the direction opposite to that of their motion. The normal com
ponent of force Nmight be divided into portions due to the pressure and to the skin 
friction, the friction being the resultant force on the projections. In that case the 
force component formulae might be,

N  = \pdQ%CD\  sin2 i + sin i), |  (2>23)

L  = ^pdQHJfcos i.J
This case is illustrated as 6 in figure 2. In-the limiting case when the diameter of the 
cylinder was so small that CD is negligible compared with Cf  the * cylinder ’ would 
look like a hairy string. The force components might then be taken as

N  = lpdQHJf sini,] 

L  — \pdQHJj cj
(2-24)

(2*24) might also be expected to apply to a body in the form of a fine thread on which 
a number of equally spaced spherical beads were threaded. This case is illustrated 
as c in figure 2.

Another possible form of roughness might consist of thin disks or plates set at 
right angles to a cylinder. In that case the roughness would make a much greater 
contribution to L  than to N, and the appropriate formulae might be

N  = $PdQ\CD]p 8inHA 

L  = \pdQK)f co&i. J
(2-25)

This case is illustrated as d in figure 2. All these formulae, except those for a smooth 
cylinder shown as a in figure 2, are entirely speculative; they are set down because 
by using them in an analysis of swimming it might be possible to derive qualitative 
ideas as to how the nature of the surface of an animal affects its quality as a swimmer.
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166 Sir Geoffrey Taylor

a {Cx)\v sin2 i  +  4i2_ * sin* i cos i  sin* i

Cf cos ib [Culv sin2 i  + sin i

c Cf sin  i Cf cos i

Cf  cos i

F igure 2. T yp es o f  roughness w ith  corresponding force form ulae.

3. Geometrical and kinematical considerations and assumptions

If  the backward velocity of the waves relative to the mean position of any 
material element of the cylinder is U and the velocity with which these waves drive 
it forwards V, and if the centre line of the cylinder is deformed into a sine curve of 
amplitude B  and wave-length A, the equation which represents the centre line at 
time tis

y = B s in -^ { x + (U -  V)t). (3-1)

Here x is the co-ordinate representing distance relative to fixed axes in the direction 
along which the animal is swimming, y is at right angles to x.

The analysis is simplified by giving the whole field a velocity — in the direction 
+ x. This reduces the centre line to rest, but each element of the flexible cylinder is 
now travelling parallel to the centre line with velocity q which is constant if the 
centre line is assumed to be inextensible. Though, in fact, real animals are by no 
means inextensible it does not appear that in swimming, as distinct from progressing 
over solid ground, the centre lines suffer appreciable extension or contraction. The 
self-propelling property of an inextensible cylinder will be investigated and q will 
therefore be taken as constant. Figure 3 shows the geometry of the field. Since the 
fluid is now moving parallel to the axes of x with velocity U — V, the angle of 
incidence of the stream on a, fixed sine curve would be the angle between the tangent
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Analysis of the swimming of long and narrow animals 167

to the sine curve and the axis of x (see figure 3). Since the particles of the ‘snake’ 
are moving along the curve with velocity q, the angle of incidence i, which determines 
the mechanical reaction of the fluid on an element of the cylinder, is given by

ta n : ( U ^
% q — (U — V

(3-2)

and the relative velocity Q is given by
Q* = q * -2 q (U -V )co sd  + (U -V )* . (3-3)

F igijrej 3. D efin ition  o f  axes.

It is convenient to express these equations in non-dimensional form. Writing

V nU, q = yV , z = ~ { x  + (U-V)t],= tan a, (3-4)

(3*1) becomes = tan a sin z, A (3-5)

so that tan 6 — = tan a cos z, (3-6)

and cos d — (1 + tan2 a  cos2 z)_i, sin 6 = tan a cos z( 1+ tan2 a  cos2 z)- i ;(3-7)

(3-3) becomes
Q2
jjl ~72 + (1 — n)2 — 2y (1 — w) cos 6; (3-8)

(3*2) with (3*8) gives ^  sin i = (1 — n)sin 6, (3-9)

and Q cos i = y  — (1 — n)cos 6. (3-10)

Before going further it may be remarked that y is a function of a only. Since the 
velocity U of the waves is defined as the velocity relative to the mean positions of 
the particles of the animal, the time taken for a wave travelling with velocity U to 
go one wave-length is equal to the time taken for a particle moving with velocity 
q along the centre line of the body to traverse one wave-length, so that

_ q _length of one wave-length of a sine curve 
U one wave-length
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1 C2n
Hence ’' “ J . A - s J .  Z T e

Substituting for cos dfrom (3-7) it will be found that

168 Sir Geoffrey Taylor

y — -  sec a E(a),

(3-11)

(3-12)

where E(oc) is the complete elliptic integral of the second kind. This has been 
tabulated for value of a between 0 and \rr.

Equilibrium conditions
It will be assumed that the animal forms itself into an integral number of wave

lengths. The equilibrium condition is then that the resultant force on one wave
length is zero. The component of force in the direction y is certainly zero because 
the symmetry of the assumed shape ensures that this shall be the case. The equi
librium condition therefore resolves itself in the equation

f N sindds = f Lcosdds. (3*13)
Jo Jo

Further progress can only be made by substituting expressions like those given in 
§ 2 to represent Nand L  in terms of Qand If  one of these be selected and and
i given their values in terms of z using (3*3), (3*7), (3*9) and (3'10), the equilibrium 
equation (3-13) is then expressed as a relation between definite integrals. For any 
given value of a and nthese can be integrated numerically, and a relation between 
a, nand the experimentally determined constants contained in the expressions for 
N and L  can be found. The two types of expression (2*3) and (2-22) appropriate to 
smooth animals and (2*23), (2*24) or (2*25) for rough animals will next be discussed 
separately.

4. Smooth animals

The expressions (2*3) and (2*22) developed in §2 for the components of force on 
a smooth cylinder contain E — Qdpl/i. In discussing the swimming characteristics 
of any waving movement the animal may make, it is more convenient to define the 
Reynolds number in terms of velocity Uwhich is the same for all parts of the body.

Thus if R, = U (4-1)

from (3*8) E  — J?i{y2 + (1— n)2— 2y(l — ti) cos#}*; (4*2)

substituting for E,Q and iin (2*3) and (2*22)

N- $pdU*{[CD]p (1 -nfsin2 + 4I?r*(l-n)» sin* 6} (4*3)

and L — |pd(72{5*4(l — w)*J?f*sin*0[y — (1— w)cos<9]}. (4*4)

At this stage it is necessary to point out that 6 may be positive or negative. The 
first term in the expression (4*3) for N  contains sin2 6 as a factor, but the direction 
of the normal force is reversed when 6 changes sign. For this reason when the 
expression for N  is inserted in (4*3), (sin 6) j sin d j should be written instead of
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169Analysis of the swimming of long and narrow animals

sin2#, but if the limits in the integrals (3*13) are taken as 0 and JA instead of 0 and 
A, # does not change sign and symmetry ensures that the resulting equation is true 
if (4-3) is true. After inserting (4*3) and (4*4) in (3* 13), the equilibrium is found to be

[Cd]vR{C — 5*4y (1— n)~i ~f sin*#dz
n Jo

— (1 — w)- i ^  js-4 |* sin*#cos#dz + 4 j  sin4#sec#dzj, (4*5)

where C 2 f 47rsin3#
7T J o ^ e dz'

(4*6)

When the expressions (3*7) for sin# and cos# are inserted in (4*5) the integrals are 
intractable but they can be integrated numerically. For this purpose a value of 
a, was first fixed. (3*7) was then used to find the values of cos # and sin # corresponding 
with the ten values of z which divide 90° into nine equal parts. When integrating, 
the values of the integrands at z = 0 and z = \n  were halved and added to the sum of 
the other eight values. The result was divided by 9. This gives an approximation 

2 f i7rto the value of -  (integrand) d zwhich is accurate enough for the present work. 
rrj o

2 fi" 2 fi*
Values of L = -  sin*#dz, L  = j sin5 #cos #dz,

n Jo J o

I3 — ~ J  sin5 # sec #dz, ^ j sin4#sec#dz

obtained in this way are given in table 3.

Table 3
a h h h h
0 0 0 0 0
10 0-315 0-312 0-006 0-318
20 0-446 0-429 0-034 0-463
30 0*547 0-501 0-098 0-599
40 0*633 0-537 0-213 0-750
50 0-711 0-542 0-413 0-954
60 0*782 0-505 0-762 1*267
70 0*849 0*424 1-450 1*873
80 0-910 0-276 3-388 3*603
90 1-000 0 00 00

When the expressions (3*7) for cos # are substituted in (4*6) the integral C can be 
expressed explicitly as a function of a. In fact

2 C = -  [tan a — cos a log tan (In + |a)]. (4*7)

JB 1
Values of C and y and X ~ 2n*'aD a are S*ven *n c°lumns 2, 3 and 4 of table 4. Values 

°f [Cx)]p jRl obtained by inserting these values in (4*5) are given in table 5.
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The results of these calculations can conveniently be displayed in a diagram 
which may be called a ‘swimming diagram’ in which contours of equal values of 
\CD]p R{are shown, the ordinates representing and the abscissae, a. To

produce such a diagram it is necessary to interpolate between the calculated values

170 Sir Geoffrey Taylor

Table 4

a °  B /A r C A A 2 A 3 A A A
0 0 1-0000 0 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000
5 0-0139 1-0019 0-0004 0-9981 0-9962 0-9943 0-9924 0-9905 0-9887

10 0-0281 1-0077 0-0022 0-9923 0-9848 0-9773 0-9699 0-8626 0-9560
15 0-0426 1-0178 0-0077 0-9827 0-9659 0-9518 0-9335 0-9216 0-9028
20 0-0579 1-0324 0-0185 0-9691 0-9397 0-9116 0-8847 0-8591 0-8346
25 0-0742 1-0523 0-0367 0-9514 0-9063 0-8644 0-8256 0-7894 0-7553
30 0-0919 1-0788 0-0647 0-9294 0-8660 0-8071 0-7577 0-7097 0-6698
35 0-1114 1-1132 0-1053 0-9029 0-8192 0-7471 0-7254 0-6329 0-5829
40 0-1335 1-1577 0-1558 0-8713 0-7660 0-6793 0-6077 0-5524 0-4985
45 0-1592 1-2160 0-2398 0-8347 0-7071 0-6080 0-5303 0-4689 0-4198
50 0-1897 1-2930 0-3452 0-7921 0-6428 0-5239 0-4520 0-3839 0-3486
55 0-2273 1-3970 0-4877 0-7430 0-5736 0-4598 0-3812 0-3277 0-2856
60 0-2757 1-5420 0-6835 0-6864 0-5000 0-3856 0-3125 0-2641 0-2305
65 0-3413 1-7531 0-9600 0-6211 0-4226 0-3132 0-2490 0-2092 0-1824
70 0-4373 2-0817 1-3713 0-5453 0-3420 0-2437 0-1910 0-1602 0-1400
75 0-5940 2-6476 2-0418 0-4561 0-2588 0-1826 0-1385 0-1197 0-1018
80 0-9026 3-8133 3-3410 0-3485 0-1736 0-1152 0-0894 0-0756 0-0664
85 1-8191 7-3732 7-1028 0-2127 0-0872 0-0567 0-0439 0-0377 0-0329
90 — — — 0 0i 0 0 0 0

T able 5. Smooth animals : VALUES OF [CD]\p -^l
a 20°

n \
20° 30° 40° 50° 60° 70° 80°

0-95 — 482
0-9 2-2 xlO4 3-8 x 103 1-4 xlO3 713 413 274 201 163
0-8 6-9 x 103 1200 444 226 131 87-6 64-6 52-6
0-7 3-3 x 103 (603 213 109 63-5 42-7 31-6 25-9
0-6 1820 321 119 61-1 35-9 24-3 18-2 15-0
0-5 1083 192 71-6 37-0 21-9 15-0 11-4 9-50
0-4 655 118 44-2 23-1 13-80 9-60 7-37 6-26
0-3 384 71-0 26-9 14-3 8-70 6-17 4-84 4-19
0-2 204 39-5 15-3 8-38 5-26 3-87 3-13 2-80
0-1 78-4 17-6 7-25 4-27 2-86 2-26 1-94 1-82
0 — 1-82 1-41 1-28 M 2 1-08 1-06 M l

-0-1 — — — — 0-20 0-41 0-56
-0-2 — — — — — — — 0-16

given in table 5. The resulting diagram is shown in figure 4. Since the angle a is not
JB 1directly measurable on photographs of swimming animals, the scale for = — tan a

is marked on the top of the diagram. Limitations to the application of this analysis 
are discussed in § 9.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 N

ov
em

be
r 

20
23

 



BjA

Analysis of the swimming of long and narrow animals 171

•05 10 -20 -50 1-0 2 0 4 0
•Utj 07 -U8 -uyi1 I I  1 1•01 -02-03 04

F ig u r e  4. Sw im m ing d iagram  for long, sm ooth  an im als show ing contours for constan t va lu es  
o f [C dJj, R \. L ine A  represents conditions for m axim um  speed  w ith  g iven  energy o u tp u t.

5, Comparison w ith  photographs op swimming snake and leech

Snake

Figure 5 shows a sequence of photographs of a snake taken at intervals of s by 
Professor James Gray. The snake is swimming in a shallow trough over a grid of 
5 cm squares. Each photograph is displaced two squares downwards from its 
predecessor. I t  will be seen that the waves increase as they pass from head to tail. 
To measure Vand Uthe centre lines of the snake in each position were traced and 
the results superposed to form the diagram of figure 6. The position of the head in 
each case is shown as a black dot; the broken line AB  in figure 6 is drawn so that it 
passes closely along the path pursued by the head. I t will be seen that the head only 
deviates slightly from this line, but that the tail moves violently. Using figure 6 
Gray found that the head moves 10 cm in j^s, so that V = 32 cm/s. To measure 
U is not easy, partly because the amplitude of the motion is not constant. The 
velocities of the maxima (i.e. the points on the curves furthest from the broken line 
A Bin figure 6) were measured. The maximum marked D in figure 6 appears in all 
the frames. During the j^s interval between frame 1 and frame 6 it moved back 
4-5 cm. The maximum marked C is pronounced only between frames 3 and 6. 
During the corresponding interval of y^s it moved back 1-8 cm. The maximum 
marked E  exists between frames 1 and 4. During the corresponding ^  s it moves
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172 Sir Geoffrey Taylor

3-4 cm. The wave velocities corresponding with the maxima C, D and E  respectively 
are therefore 9*6, 14-5 and 18*0cm/s. These velocities are equal to U —V. Their 
mean is 14 cm/s, so that if V = 32 cm/s

n V 32
--- zzz ------------ zzz 0*7
U 32+14 (5-1)

A rough estimate of the mean amplitude of the waves can be obtained by finding the 
distance between lines parallel to the broken line A B  which touch the maxima at

4 + ^
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F igure 5. Snake (Natrix) sw im m ing in w a ter ; 5 cm  squares, 
16 fram es per second (J. Gray).

F igure 6. Centre lines o f snake superposed. m ean line o f m otion o f  
head; C, D, E , m axim um  distances from A B .

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 N

ov
em

be
r 

20
23

 



Analysis of the swimming of long and narrow animals 173

D and E. In the case of frame 6 this is 2B — 4-7 cm, and the corresponding wave
length is 17-6 cm. So that jg/A = 0-134. (5-2)

The point corresponding with n — 0-7, BjX — 0-134 is marked in figure 4 at S0. I t  
will be seen that it falls near the line \CD\p R \ — 100. The diameter of cross-section 
of the snake as measured on the photographs was 0-6 cm. The velocity U was 
32+ 14 = 46 cm/s and for water ju, ~  0-011, so that

46 x 0-6Xi-i = —--------
1 0-011

2500.

I t  has been seen in §2 that \0D~\V is approximately 1-0, so that

= (2500)* = 50. (5-3)
The point where the line \Pd\p R\ = 50 cuts the abscissa J5/A = 0-134 is shown as 
a cross at Sx in figure 4. This corresponds to V/U  = 0-55. The swimming efficiency 
which may be judged by the value of Uis therefore rather larger than that 
predicted assuming a wave of constant amplitude, but the fact tha t the measure
ments of BjX  and of VjU  vary over such a wide range would make accurate 
prediction impossible.

Leech
Figure 7 shows eight successive frames in a sequence of photographs of a large 

leech swimming from right to left over a grid of 2 cm squares. The frequency of the 
photographs is 15/s. I t  was found that the average speed of the head forward 
was 2-0 cm in seven frames so that V = 2 x ^  = 4- 3 cm/s. The velocity backwards 
of the crests and troughs of the waves were obtained by measuring the slopes of the 
broken lines drawn through them in figure 7. The velocity backwards of the first 
wave corresponding with the crest which extends from frame 1 to frame 6 is 
U —V = 12 cm/s, that corresponding with the first trough extending from frame 3 
to frame 8 is also 12 cm/s. The velocity of the second crest extending from frame 5 
to frame 8 is 7-5 cm/s, so tha t if the first crest and first trough which each appear 
on six frames are used U = 12+ 4-3 = 16-3cm/s, while the last crest which appears 
only in the four frames 5 to 8 give U = 7-5 +4*3 = 11-8 cm/s. Perhaps the best way 
to weight these observations is to take

U =
5 x 16-3 + 5 x 16-3 + 3 x 11-8

— = 15-3 cm/s,

V 4-3so that n = -== = —— = 0-28. (5-4)
U 15-3

To obtain a mean value for J5/A a tangent line was drawn wherever possible to 
touch the curved profile at two points, and the maximum distance of the body of 
the leech from this line was measured in each frame. This distance was taken as 2B 
and the distance between the points of contact as A; in this way the following values 
of B/X were obtained: 0-06, 0-07, 0-09, 0-09, 0-08, 0-16, 0-07. The mean value is

BjX = 0-089. (5-5)
■The point V/U = 0-28, B/X = 0-089 is marked as L0 in figure 4. I t will be seen that 
it lies between the contours [CD~\p R[ = 20 and R\ = 40.
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174 Sir Geoffrey Taylor

Unfortunately, the leech is not circular in section but approximately elliptical; 
in fact, the dimensions of the axes or the ellipse as seen in figure 7 are 0*2 and 
0-9 cm. Taking d as the mean of these,

The point L xin figure 4 corresponds with the value of VjU  predicted by the 
diagram.

It will be seen therefore that the swimming performance of the leech is close to 
what would be expected if it were a smooth cylinder.

F igure 7. L eech sw im m ing in  w ater; 2 cm  squares, 15 fram es per second (J. Gray).

6 . E n e r g y  r e q u i r e d  f o r  p r o p u l s i o n  o f  s m o o t h  a n im a l s

The rate, W, at which the animal does work on the surrounding fluid per unit 
length of its body is the mean value of

N ( U - F)sin 0 + L{q-(U-F)cos0}

d — 0*55 cm,

so that

Taking [CD]p as 1-0 this gives I2f = 28. (5-6)

i f

or U(l — n) {Nsin0 — L cos6} + qL. (6-1)
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The first term in (6-1) vanishes owing to the equilibrium condition (3*13) so tha t 
from (4*4)

W = qx (mean value of L)

~ lpd(5-4yU3Rii) (1 — w)- * - f  {y — (1— w)cos#}sin*<!?sec0dz. (6-2)
n J o

I t  is of interest to know the amplitude of wave which would propel the animal at 
a given speed with the least output of energy. For this reason it is useful to express 
(6*2) in terms of V rather than U. Remembering that contains as a factor, 
the required expression is

Analysis of the swimming of long and narrow animals 175

w = % V 3 U r )  e <re>a >- (6-3)

where G(n, a) — (1 — w)1 w-*{(y2 — y ) / 4 + wy/J 
2 Cin 2 f**

(6-4)

and / 4 = -  J sinttfsectfdz, Ix = -  I sndfldz. (6-5)

Values of Ix and / 4 are given in table 3 and values of Gî noc) are given in table 6. 
Using auxiliary diagrams it is possible to construct from the figures of table 6 
a diagram analogous to figure 4 which displays lines of constant G(n, a) on a diagram 
(figure 8) whose ordinates are n and abscissae a.

T a b l e  6 . V a l u e s  o f  G(n, a )

\  n
a

0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

Q
10 11-2 3-44 1-80 101 0-66 0-44 0-30 0-20 012
20 23-8 6-27 2-91 1-66 1-05 0-70 0-47 0-31 0-18
30 49-6 11-2 4-81 2-62 1-61 1 0 4 0*69 0-45 0-26
40 104 20-1 8-37 4-33 2-56 1-62 1 0 5 0-67 0-38
50 212 4 3 0 1 6 1 7-98 4-54 2-78 1-76 110 0-62
60 578 102 36-8 17-5 9-64 5-74 3-54 2-16 1*19
70 1957 335 117 5 4 0 28-0 16-8 10-1 6-06 3*27
80 14780 2481 848 385 203 116 68-6 40-4 21*4

Wave for minimum output of energy
The lines displayed in figure 8 correspond with conditions under which constant 

energy output is required to propel an animal at a given speed. By superposing 
the diagram on that of figure 4 which displays lines of constant [Cy^ a set of 
possible values of Rx are obtained, but since for a constant V and d, is not con
stant, this superposition has little meaning. To find the minimum value of W corre
sponding with any given value of d and V it is necessary to construct a diagram

similar to figure 4 but displaying contours of constant \CD • That is to say,

the values of [CD]p R\ given in table 5 must be multiplied by w* to give the figures 
of table 7 and a new set of contours drawn. The diagram obtained in this way is 
shown in figure 9. I t will be seen that its curves are similar in general appearance 
to those of figure 4.

Vol. 214. A. 12
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The set of values of a  and n which characterize the propulsion of the animal at 
a given value of V are found by moving along the appropriate contour in figure 9.

0(n, a)

176 Sir Geoffrey Taylor

F igure 8. G(n, a). Shows in non-dimensional form the rate  of dissipation of energy.

To find the particular value of a which corresponds with the least energy output, 
figure 8 may be superposed on figure 9. The required value of a will be that corre

sponding with the point on the contour of [CTJ\V , where it touches one of the
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Analysis of the swimming of long and narrow animals177

Table 7. Values of [CjAp

\ n  

a  \
0-1 0-2 0-3 0*4 0-5 0-6 0-7 0-8 0-9

10 24-8 9 1 1 210 414 766 1415 2757 6203 20968
20 5-57 17-7 38-9 74-6 136 249 504 1079 3632
30 2-29 6-85 14-7 28-0 50-6 92-2 178 397 1280
40 1-35 3-75 7-83 14-6 21-2 47-3 90-8 202 676
50 0-90 2-35 4-77 8-75 15-5 27-8 53-1 117 392
60 0-71 1-73 3*38 6-07 10-6 18-8 35-7 78-3 260
70 0-61 1-40 2-65 4-66 8-03 14-1 26-4 57-8 191
80 0-58 1-25 2-30 3*96 6-71 11-7 21-7 4 7 1 154

superposed contours of G(n, a). In this way the points on the broken line shown 
as A  in figure 4, were found. Though there is no physical reason to suppose that 
animals do in fact swim by forming the particular type of wave which involves 
least output of energy, it is worth noticing that the point in figure 4 which corre
sponds to a swimming snake is close to this line. The point corresponding with 
a swimming leech is well to the left of the fine, showing that this specimen bent its 
body rather less than would be expected if the most efficient movement were used.

7. Swimming of a rough flexible cylinder

Similar analysis to that applied to a smooth swimmer can be applied to one with 
a rough surface, using any of the force-component formulae discussed in § 2. When 
the geometrical relationships (3*2), (3-9), (3-10) giving i and Q as functions of 
17, 6, n and a are inserted, the force components appropriate to the cases b, c, d 
of figure 2 are

(6) = \-Cd\p (1 -  w)2sin2 0 + Cf ( \ - n )  sin 6{y2 + ( l - n ) * - 2 y ( l - n) cos 0}* (7-1)

— (1 — ̂ ) cos 6}{y2 + (1 — n)2 — 2y( 1 — w) cos 0}*; (7-2)

(c) is obtained from (6) by setting [ C ^  = 0 and for (d)

J^ 5  =  [ (7-3)

l f i u 2 = c/(r  -  (1 -  «>cos 0} (r2+ (i -  «)2 -  2r (i -  «) cos e y .  (7-4)

Substituting for L  and N  in the equation of equilibrium (3-13) a relationship 
between [CD]pICf  and n, y and a is obtained in each case. These are

(6) ~ ^ ( l ~ n ) 2C =  -  f {y — ( l-w ) s e c 0}{y2+ ( l-w .)2- 2y(l — w)cos0)*dz,
Y/ n J0

(7*5)
(d) — (1— n)2C = -1  {y — (1 — w)cos0}{y2-f( l — 2y(l — w)cos0}*dz,

'  0 (™ ) 
(c) J {y(l — w)sec0}{y2+ (1 — n)2— 2y ( l— n)cos0}*dz = 0. (7-7)

1 2 - 2
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The occurrence of sec # in (7*5) arises because the last term

Cf ( 1 —n)sin # { y 2 + (1 — — 2 y (1 — cos #}*

in (7-1) is multiplied by sin #dz/cos # and transferred to the right-hand side of (7-5), 
where sin2#/cos# combines with cos# to produce sec#. Here C has the same 
meaning as in (4-6).

To integrate (7*5) and (7*6) numerically the method adopted in the case of 
smooth cylinders may be used. As an alternative the integrands can be expanded 
in powers of cos #:

{y2 + (1 — n)2 — 2y( 1 — n)cos #}4

178 Sir Geoffrey Taylor

— {y2 + (1 — w)2}J 1 — \m  cos # — I'm2 cos2# — -j^ra3 cos3 #

5 7 21 )- - . m 4 cos4 6 — ~Qm5 cos5 0 — —  me cos6 # ... 27 28 210 1 , (7-8)

where
2y(l — w)

W “  y2+ (1 — w)2‘ (7-9)

2 f i?r f*7r
Writing A = -  cosn#dz = (1 -ftan2acos2z)~iredz,

TTjo Jo
(7-10)

-  f {y—(1—w) sec#} (y2 + (l--?i)2— 2y( 1 — 71)008#}* dz
^  J o

= {y2 + (1 — w)2}*| - ( \ - n ) A _ x + [ \m { \-n )  + y] -  -  |m 2( 1 -  A1

-  [\m2y -  Jgm3( 1 -  n)] A2 -  \ j^ m 2y -  ~  w4( 1 -  »)J  Az -  ^  m4y -  ^  m5( 1 -  ra)J

- [ ^ m S y - l - m ^ i - w ) ]  A5- [ ^ w 6y - | | m 7( l - n ) ]  A6- . . . J  (7-11)

and

-  f (y — (1 — w)cos#}{y2 + (1 — n)2— 2y ( l — 7i)cos#}*dz
wj o

= {y2 + (1 -  n)2}* |y  — \\m y  + 1 -  ri\ Ax + 1 |  

+ [im2(1 -n)- rSm3y] A3 + ^ w 3( 1 -  -

Expressions for the integrals An can be derived from recurrence formula 

d 2 d
— M„) = -  -y- (1 + ta n 2acos2z)~*wdz
d a  n7rJo d a '

5 * (7-12)

so that

= —n cot a sec2 oc(An — Aw+2),

Aw+2 = An — -  cos a sin a A', (7-13)
7b
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Analysis of the swimming of long and narrow animals 179

where A'n is written for ^  An. The expressions for A3, A4, A5 and A 6 given in

Table 8 were obtained from A x and A 2, using (7*13). Here K  is the complete elliptic 
integral of the first kind, namely

K d z
(1 — sin2 a sin2 zj* ’

(7-14)

and K '  and K" are ~  K  andda da2
K.

Table 4 gives values of A x to A6; B\A, y and C are also given.
The results of calculations can be displayed in a swimming diagram like that of 

figure 4, but the quantity [ CD]pR{, the values of which were shown in figure 4, is 
replaced by [CD]pICf . The results for the type of roughness shown diagrammatically 
as ( d) in figure 2 are shown in figure 10. The contours of equal values of [CD]pICf  
shown in figure 10 differ from those for smooth cylinders, figure 4, in that negative 
values of F/ Uoccur in a part of the diagram which might correspond with physically 
possible circumstances. This cannot be said of figure 4.

BIX

•60 -80•06 -07 -09 09 I -12 -14 -16 18I I I 7 1 __ ! i l l

F igure 10. Sw im m ing diagram  for rough cylinder. V alues o f [(70] v!Cf .
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T a b l e  8
2 C hr 2

A _ x =  — I sec ddz  =  — sec <x.E(ot) = y
K Jo it

A 0 = \
2

A x =  — cos a  K(a)1T
2 ri"

A 2 =  — (1 +  ta n 2 a  co s2 z) dz =  cos a
o

2
A 3 = — [ i f  (a) cos3 a +  l£ '(a ) cos2 a  sin  a ]
17

A 4 = \cos a  +  i  cos 3a  
2

A 5 = A s  {}[K(a) — }K"(a)] (cos cc. — \  cos 3a — £ cos 5a) — -£$K'(a (sin 3a +  sin  5a)}
7T

A 3 =  A 4 — cos a  +  cos 3a +  y fg  cos 5a

8 . T h e  s w im m in g  o f  t h e  m a r i n e  w o r m  N e r e is  d iv e r sic o lo r

In preparing the diagram shown in figure 10 the parts of the curves corresponding 
with negative values of V/U  were calculated merely for the sake of mathematical 
completeness. On showing the diagram to Professor Gray and pointing out that 
a negative value of VjUwould correspond with a case in which a very rough 
animal could swim by sending waves of displacement in the same direction as that 
in which ,it wished to go, Gray called my attention to a set of photographs he had 
taken of a marine worm Nereis diversicolor which does in fact swim in this way. This 
set of photographs is reproduced from his paper (Gray 19396) in figure 11. The 
worm will be seen swimming from right to left. The photographs were taken at 
intervals of ^  s over a grid of 1 in. squares. The positions of the four wave crests, 
numbered 1, 2, 3, 4, are marked in each photograph. I t  will be seen that they move 
forward from right to left.

The velocities relative to fixed co-ordinates of all the waves are close to 
0-47 x 20 cm/s, while the velocity of the head of the animal is 0-088 x 20 cm/s. The 
value of V/U  is therefore

V 0-088 
U -0-47 + 0-088

The value of U/A is found to be approximately 0-18. The point A = 0-18, 
VjU = — 0-23 is shown in figure 10 as the point W. I t  will be seen that this point 

corresponds with a value [Go^/Cy rather less than 0*5, so that the longitudinal force 
coefficient is more than twice as great as the transverse coefficient. I t  is doubtful 
whether the type of roughness which this animal possesses would confer on it the 
property that Cf  is more than twice [GD]p if the roughness consisted of rigid pro
jections. In fact the roughness consists of flexible projections which the animal 
moves in the same direction as that of the surface itself in places where that surface 
is moving fastest, i.e. a t the outside of the bends in its body. This increases the 
longitudinal force coefficient. The details of the movement were explained by Gray 
(19396). The way in which each projection swings from left to right while the crest 
of a wave passes under it can be seen in figure 11.

180 Sir Geoffrey Taylor
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Analysis of the swimming of long and narrow animals 181

F igure 11. Nereis diversicolor, 2 0  fram es per second  (J . G ray).

9. Limitations to the application of the analysis

In attempting to apply the analysis of the swimming of smooth animals it is 
necessary to bear in mind two kinds of limitation. In many animals the waves of 
displacement increase in amplitude as they pass from head to tail. I t  seems likely 
that such animals swim more efficiently than would be predicted by the analysis, 
but this question is not discussed here. The assumption that the force on each 
element of the flexible cylinder is the same as that on a similar portion of a long 
straight cylinder is likely to be inaccurate either when the diameter of the cylinder 
is comparable with the wave-length of the motion or when the Reynolds number 
associated with it is very low. Though it would be difficult to estimate theoretically 
the lower limit of Reynolds number above which the formulae might be expected to 
apply, the limiting-value of V/Uwhen Rx = 0 can be calculated. So far only the 
analysis for the case when B /A is small has been given (Taylor 1952), and in that case

V 12 nVL  = = £tan*a. (9-1)

In a private letter from Professor Lighthill I have learned tha t Mr G. J. Hancock, 
a worker in his department a t Manchester University, has found that when BjX is 
not small but djX is small, (9*1) must be replaced by an expression involving elliptic 
functions which has very nearly the same value as the algebraic expression

V
u (9-2)
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182 Sir Geoffrey Taylor

The line representing (9*2) is shown chain-dotted in figure 4. I t  will be seen that this 
line lies close to the contour = 10, or approximately Rr 100 over its whole
length. The part of figure 4 lying below the chain-dotted line has been shaded to 
show that points in it have no physical meaning.

F igure 12. C eratopogonid larva sw im m ing, 40 fram es per second (J. Gray).

On consulting Professor Gray as to the possibility that animals may be found 
whose swimming characteristics would be represented by a point in the swimming 
diagram near the chain-dotted limiting line, he showed me photographs, here 
reproduced as figure 12, which he had taken of a ceratopogonid larva. This animal 
is about 1 cm long. The time interval between successive frames in figure 12 is s. 
On measuring the photographs the following mean values were found:

F = 2-17cm/s, U = 7*37 cm/s, A = 0-92 cm, = 0*038 cm, = 0-09 cm,

If [CD~\pis taken as 1*0, \CD~\p R\ — 5. The contour [C^\p R\ 5 lies within the
shaded portion of figure 4. The point representing the observations, namely,

so that

0*3 }, is shown as C in figure 4. As would be expected

it lies above the shaded portion.
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My thanks are due to Professor James Gray for permitting the publication of 
figures 5, 7 and 12, which have not previously been published, and of figure 11, 
which is taken from a paper to which reference is made in the text. I am also grateful 
to him for suggestions made in the course of the work.

R e f e r e n c e s

B lasius, H . 1908 Z . f .  M ath. Phys. 56, 285.
B oussinesq , J . 190s J .  Math. Pures appl. 285.
G oldstein , S. 1938 M odem  developments in  flu id  dynamics, p . 425. O x fo rd : C larendon P ress. 
Gray, J . 1939a  Proc. Roy. Soc. B , 128, 28.
Gray, J . 19396 J .  E xp . Biol. 16, 9.
Gray, J . 1946 J .  E xp. Biol. 23, 101.
Gray, J . 1949 J . Exp. Biol. 26, 354.
K ing , L . V . 1914 Phil.Trans. A , 214, 373.
M cLeod, A . R . 1918 Rep. Memor. Aero. Res. Comm., Bond., no. 554.
R elf, E . F . & P ow ell, C. H . 1917 Rep. Memor. Aero. Res. Comm., Bond., no . 307.
Sears, W . B . 1948 J .  Aero. Sci. 15, 49.
T aylor, Sir G eoffrey 1952 Proc. Roy. Soc. A , 211, 225.
T hom , A . 1928 Rep. Memor. Aero. Res. Comm., Bond., nos. 1176 and  1194.
T om otika, S. & A oi, T . 1951 Quart. J .  Mech. A ppl. Math. 4 , 401.
W ild , J . M. 1949 J .  Aero. Sci. 16, 41.

Analysis of the swimming of long and narrow animals 183

The effect of the temperature of preparation on the 
mechanical properties and structure of gelatin films

By E. B r a d b u r y  a n d  C. M a r t i n  

The British Cotton Industry Research Association, Shirley Institute, 
Didsbury, Manchester

(Communicated by Sir Eric Rideal, F.R.S.—Received 24 October 1951— 
Read 28 February 1952—Revised 16 April 1952)

[P late  4]

Gelatin films prepared by evaporation from aqueous solution at temperatures of 60° C and 
above differ considerably in structure and mechanical properties from films dried slowly at 
20° C, when gelling precedes dehydration. In the high-temperature preparation dehydration 
precedes the formation of a continuous structure, and X-ray and other evidence indicates 
that the molecular chains are in a disordered contracted state not far removed from their 
condition in the sol. The high-temperature film is characterized by low strength and high 
recoverable extension under conditions of high relative humidity. In the low-temperature 
preparation the greater degree of crystallization has partially extended the molecular chains, 
and the unidirectional contraction of the film on drying has oriented them in the plane of the 
film. This film exhibits thermal contraction in hot methanol, and is stronger, but at high 
humidity is much less extensible, than the high-temperature preparation.

Of the adhesives used for sizing rayon textile yarns, gelatin is the most common, 
and probably more is known about its sizing and weaving behaviour than about 
that of other adhesives. I t is thus a reasonable starting-point in a long-range
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