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Abstract—Recent development in wireless communications has
provided many reliable solutions to emergency response issues,
especially in scenarios with dysfunctional or congested base
stations. Prior studies on underwater emergency communications,
however, remain under-studied, which poses a need for combining
the merits of different underwater communication links (UCLs)
and the manipulability of unmanned vehicles. To realize energy-
efficient underwater emergency communications, we develop a
novel underwater emergency communication network (UECN)
assisted by multiple links, including underwater light, acoustic,
and radio frequency links, and autonomous underwater vehicles
(AUVs) for collecting and transmitting underwater emergency
data. First, we determine the optimal emergency response mode
for an underwater sensor node (USN) using greedy search and
reinforcement learning (RL), so that isolated USNs (I-USNs) can
be identified. Second, according to the distribution of I-USNs, we
dispatch AUVs to assist I-USNs in data transmission, i.e., jointly
optimizing the locations and controls of AUVs to minimize the
time for data collection and underwater movement. Finally, an
adaptive clustering-based multi-objective evolutionary algorithm
is proposed to jointly optimize the number of AUVs and the
transmit power of I-USNs, subject to a given set of transmit power,
signal-to-interference-plus-noise ratio (SINR), outage probability,
and energy constraints, achieving the best tradeoff between the
maximum emergency response time (ERT) and the total energy
consumption (EC). Simulation results indicate that our proposed
approach outperforms benchmark schemes in terms of the energy
efficiency (EE) of UECNs, contributing to underwater emergency
communications.

Index Terms—Wireless communications, emergency response,
underwater communication link, autonomous unmanned vehicle,
reinforcement learning, multi-objective optimization.

I. INTRODUCTION

ECENT advancements in wireless communications have
provided potential solutions to energy-efficient emergency

responses and post-disaster rescues [1], including monitoring
industrial devices, collecting environmental parameters, and
recovering communication networks. Most studies focused on
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above-ground emergency response, such as deploying wireless
sensor networks to provide emergency services and scheduling
unmanned aerial vehicles to collect emergency data [2], while
the prior works on underwater emergency communications are
relatively limited. An underwater emergency communication
network (UECN) comprises underwater sensor nodes (USNs)
and surface sink nodes (SSNs), where a USN transmits data to
an SSN (e.g., ship, buoy, drone) or transfers data to a relay node
(RN) [3]. Compared to terrestrial communications, underwater
communications mean transmitting data through underwater
communication links (UCLs), including underwater light (UL),
underwater acoustic (UA), and radio frequency (RF) links, and
complex underwater environments become the most influential
factor [4]. RF waves are easily affected by (sea) water, causing
limited communication ranges. The slow propagation speed of
acoustic waves in (sea) water causes very high latency of UA
channels. Underwater pressure and temperature and organisms
misalign transceivers and enhance path losses of UL channels
[5]. To mitigate underwater environmental impacts on channels,
unmanned vehicles gain attention. For example, an unmanned
surface vehicle (USV) and an autonomous underwater vehicle
(AUV) function as a surface gateway and an underwater RN,
respectively. Motivated by the above, one feasible solution to
constructing an energy-efficient UECN is to comprehensively
consider relay detection and selection and AUV deployment,
which is the focus of this study.

A. Related Works

An individual channel has merits and demerits [6]. As listed
in Table Ⅰ, UL links can support high-data-rate communication
within a relatively short communication distance. Elamassie et
al. [7] first derived a closed-form expression for modeling the
bit error rate (BER) of vertical UL links. To extend the optical
communication range, a light-path (LP) routing protocol based
on a beamwidth tradeoff was proposed to optimize end-to-end
(E2E) data rates [8]. In addition, an optical relay system was
proposed to approximate outage probabilities [9], and Shihada
et al. [10] adopted an LED or laser to provide wireless access at
different distances. In particular, UA communications support
data transmission up to 20 km, providing wider communication
coverage than UL and RF communications. Huang et al. [11]
proposed an adaptive modulation scheme for optimal channel
selection, where the frequency of UA links ranged from 900 to
1500 Hz. Following [11], an active queue management policy
was proposed to schedule acoustic links [12], but this scheme
was only suitable for static scenarios. Considering the quality
of service, an energy-effective acoustic network was proposed
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to reduce delay and transmission errors [13]. Compared to UL
and UA channels, RF channels provide moderate data rates and
have a unique propagation mechanism whose communication
distance is lower than 100 m under the water. Che et al. [14]
investigated the performance of RF underwater communication,
indicating that increased RF frequencies reduced propagation
distances. Following [14], a time division multiplexing access
(TDMA)-based RF network was built for coastal monitoring
purposes [15], where the performance of RF signals at 3 kHz
was evaluated. Compared to a two-dimensional (2D) network
architecture, a three-dimensional (3D) RF network was built to
increase data rates [16].

TABLE I: COMPARISONS OF DIFFERENT CHANNELS

Parameter UL channel UA channel RF channel

Frequency 1012-1015 Hz
10 Hz-100

kHz
MHz ranges

Transmit
power

In the range of
milliwatts to

watts
Few watts Few watts

Data rate Gbps kbps Mbps

Communicatio
n distance

10-100 m up to 20 km up to 10 m

Performance
parameter

Absorption,
turbulence,
and organic

matter

Temperature,
shipping
activity,

salinity, and
pressure

Conductivity
and

permeability

Propagation
speed

2.25×108 m/s 1500 m/s 2.25×108 m/s

Line-of-Sight
(LoS)/None
LoS (NLoS)

LoS only Both Both

Given [7]-[15], using an individual channel is not robust, i.e.,
longer communication distances cause lower data rates, which
poses a need for hybrid systems [17], including RF-optical, RF-
acoustic, and acoustic-optical systems. In [18], a hybrid visible
light communication (VLC)-RF relaying system was proposed
to support spatially random terminals. To enhance transmission
capacity, Luo et al. [19] proposed an adaptive routing scheme
for an RF-acoustic system. Similarly, Han et al. [20] integrated
optical and acoustic channels to enhance throughput, and Lin et
al. [21] proposed a software-defined networking (SDN) system
based on UA-UL links, extending communication coverage.

However, those studies did not account for the distribution of
USNs. To address this issue, deploying AUVs can be a feasible
scheme. An AUV-assisted acoustic network was established to
support mobile data collection [22]. Similarly, Han et al. [23]
studied a high-availability model to schedule AUVs, increasing
packet delivery ratios, and a heterogeneous underwater network
was built using stochastic optimization [24]. To realize optimal
power control, a reinforcement learning (RL) model was used
to maximize signal-to-noise ratios (SNRs) [25]. Furthermore, it
should be noted that energy is the most fundamental limitation
of AUVs [26]. Carolis et al. [27] proposed a runtime estimation
framework to calculate the energy consumption (EC) of AUVs,
and Deutsch et al. [28] compared various energy management
schemes, including rule-based and optimization-based models.

Therefore, to realize energy-efficient underwater emergency

communications, it is crucial to study how to build a UECN by
joint link selection and AUV deployment. So far, the existing
works [21], [25], and [29] did not synthetically solve the issue
mentioned above. In [21], the authors proposed a hybrid UL-
UA network for underwater communication without optimizing
SNRs. In [25], an RN identification algorithm was proposed to
transmit data to a USV, but this method was only suitable for a
static scenario, reducing underwater communication distances.
Similarly, Xing et al. [29] separately minimized the EC of data
transmission and maximized system SNRs, although these two
objective functions should be jointly considered.

B. Contributions

Motivated by the merits of three channels and the flexibility
of AUVs, we propose a multi-link and AUV-assisted UECN.
Compared to the prior works [18]-[29], this study considers a
cooperative UECN whose resources, including transmit power,
time slots, and bandwidth, are limited during the process of data
propagation. Thus, to rationally utilize the limited resources, all
system units (USN and AUV) must cooperate and work in their
optimal emergency response modes (ERMs). That is, one USN
within the communication range of the USV can forward data
to the USV directly, but the other USNs disconnected from the
USV must transfer data to an RN or an AUV. Here, our goal is
to simultaneously minimize the maximum emergency response
time (ERT) and the total EC, which can be formulated as a
multi-objective optimization problem (MOP), and our main
contributions include optimal mode selection, optimal AUV
deployment, and optimal time-energy balancing.

• Optimal mode selection: First, we formulate three ERMs,
including E2E transmission (ERM 1), RN transmission (ERM
2), and AUV transmission (ERM 3). Second, the optimal ERM
of a USN is determined using a stepwise algorithm, including
relay detection and selection. In the first step, a greedy search
(GS)-based algorithm is proposed to find out all USNs that can
transmit data to the USV directly, and these USNs can function
as underwater RNs to transfer data returned from the remaining
USNs. In the second step, following the distribution of RNs, an
RL-based algorithm is proposed to select the best RN for a USN
disconnected from the USV, maximizing the channel capacity
(CC) and ensuring the connectivity between a USN and an RN.
Accordingly, I-USNs can be identified.

• Optimal AUV deployment: To ensure that the data returned
from I-USNs can be received by the USV, the optimal AUV
deployment is obtained by jointly optimizing the locations and
controls of AUVs. First, a stepwise clustering scheme is used to
determine the optimal locations of AUVs, which minimizes the
data transmission time of I-USNs. Second, AUV velocities can
be optimized by convex optimization, and the optimal solution
is given by the method of Lagrange’s multipliers. As a result, an
AUV arrives at the optimal suspension location to receive data
returned from I-USNs, which shortens the time for underwater
data transmission and movement.

• Optimal time-energy balancing: From the multi-objective
optimization perspective, this study aims to determine the best
time-energy tradeoff by maximizing the energy efficiency (EE)
of the UECN. To this end, an adaptive clustering-based multi-
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objective evolutionary algorithm (AC-MEA) is proposed to
yield the Pareto front (PF) of the MOP, where the number of
AUVs and the transmit power of I-USNs are optimized, subject
to a given set of transmit power, signal-to-interference-plus-
noise ratio (SINR), outage probability, and energy constraints.
Numerical results indicate that our proposed approach achieves
higher EE than benchmark schemes.

The remainder of this study is organized as follows. In
Section Ⅱ, the system model and the problem formulation are
introduced. In Section Ⅲ, the optimal mode selection and AUV
deployment are realized, and the formulated MOP is solved by
our proposed AC-MEA. Simulation results and analyses are
shown in Section Ⅳ, and Section Ⅴ concludes this study. The
main notations used in this study are shown in Table Ⅱ.

TABLE Ⅱ: MAIN NOTATIONS

Parameter Description

  Integer operator

  Fraction operator

  Indicator function

  Expectation

  Loss function of a neural network

  Counting function

  Min-max normalization

 Q Q-value

   Depth-dependent function

  Lagrangian function

 Euclidean norm

 Cardinality

N Number of USNs

M Number of AUVs

,0
out
i Outage probability between USN i and USV 0

,
out
k i Outage probability between USN k and RN i

,
out
l j Outage probability between I-USN l and AUV j

UL
,i kL UL PL between USN i and USN k

UA
,i kL UA PL between USN i and USN k

RF
,i kL RF PL between USN i and USN k

Fig. 1. System model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The UECN consists of three units, including a set={1,...,N}

of N USNs, a set ={1,...,M} of M AUVs, and one USV, as

shown in Fig. 1, where USNs are randomly deployed below the
sea level to collect data, AUVs are dispatched to assist I-USNs,
and the USV works as an SSN, and the locations of USN i,

AUV j, and USV 0 can be denoted by  USN USN USN, ,i i ix y z ,

 AUV AUV AUV, ,j j j jx y zu , and  USV USV
0 0, ,0x y , respectively. In

our model, we consider the following configurations: 1) The
locations of USNs and AUVs are known to the USV, and the
USV is responsible for computation-intensive missions [25]; 2)
Three types of links are introduced, including UL, UA, and RF
links, and the frequency-division multiple access (FDMA) over
orthogonal channels is used for underwater communications; 3)
The upper bounds of transmit power are denoted by UL

maxP , UA
maxP ,

and RF
maxP , respectively, the frequencies of three links are 1310

Hz, 20 kHz, and 5 MHz [5], respectively, and the bandwidth is
1 kHz; 4) The time domain of a channel is divided into slots,
and time slot t is for transmitting a packet. Similar to [14], the
duration of t, denoted by the ERT of a USN per round, includes
transmission time and delay, guard time, and preamble time.
Given the predefined configurations, the geographically fixed
USNs can transmit their data to the USV if they are within the
communication range of the USV; otherwise they must transfer
data to RNs or AUVs.

Without loss of generality, three ERMs are first expressed as
follows.

1) ERM 1: A USN directly transmits data to the USV
through the selected UCL.

2) ERM 2: A USN directly transmits data to the USN in
ERM 1 through the selected UCL, and thus the data can be
transferred to the USV by a single-hop relay.

3) ERM 3: A USN directly transmits data through the
selected UCL to an AUV, and the AUV can move back to
the USV to offload data.

Next, to decipher the features of different channels, three PL
models are selected to reflect the channel attenuation caused by
communication distances and frequencies.

The most commonly used channel model of a UL link is the
LoS model, where the light beam of a transmitter aligns with
the direction of a receiver [8]

  
    

, RecUL
, 10 2

, , 0

exp
10log ,

2 cos 1 cos

T R i k

i k

i k i k

c d A
L

d

  

  

 
  

  
(1)

where ,i kd is the Euclidean distance between USN i and USN k,

 is the wavelength, ,i k is the elevation angle, 0 is the laser

beam divergence angle, RecA is the receiver aperture area, T
and R are the optical efficiencies of a transmitter and a receiver,

respectively, and  c  is the attenuation coefficient [30]

      ,c a b    (2)
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denote the

coefficients of absorption and scattering, respectively, D is
the water thickness, IP is the power of incident light, and AP

and SP are the power of absorption and scattering, respectively.

The attenuation of an acoustic channel can be expressed as
[31]

 ,UA
, 10 , 1010log 10log ,

1000
i k

i k i k

d
L d f   (3)

where  1,2  is the spreading coefficient, f is the frequency,

and  1010log f is given by
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(4)

In addition, the ambient noise of a UA link is an inevitable
factor influencing communication performance whose sources
include turbulence, shipping, waves, and thermal noise, which
can be expressed as a function of f in kHz [13]
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(5)
where TN , SN , WN , and NN are the power spectrum density

for turbulence, shipping, waves, and thermal noise, respectively,

 0,1s is the shipping factor, w is the wind speed, and the

total ambient noise is         1010log T S W NN f N f N f N f .

The PL model of an RF channel can be given by the Maxwell
equation [32]

RF
, ,8.686 ,i k i kL f d (6)

where μ and ι represent the permeability factor and electrical
conductivity of seawater, respectively.

B. Problem Formulation

Given the problem of establishing an energy-efficient UECN,
the main challenge is to simultaneously minimize ERT and EC.
Since all system units (USN and AUV) work simultaneously,
the practical ERT depends on the longest ERT of system units,
which is equivalent to a min-max problem (MMP), whereas the
EC stems from all system units. Motivated by this, the original
problem (OP) can be defined as the following MOP
(OP):
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s.t. , ,            (7c)
AUV

max max, , ,j jD z E E j    (7d)

   UL UA RF UL UA RF
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0, , , , , , ,i i i i i i i iL L L L P P P P i    (7e)

   UL UA RF UL UA RF
, , , , , , , ,, , , , , , ,k i k i k i k i k i k i k i k iL L L L P P P P k    (7f)

   UL UA RF UL UA RF
, , , , , , , ,, , , , , , ,l j l j l j l j l j l j l j l jL L L L P P P P l    (7g)

UL UL UA UA RF RF
max max max0 ,0 ,0 ,P P P P P P      (7h)

where , , and  denote the sets of USNs selecting ERM 1,

ERM 2, and ERM 3, respectively, iT , kT , lT , and jT denote

ERT, iE , kE , lE , and jE denote EC, maxD is the maximum

diving depth, maxE is the upper bound of AUV energy, and

   indicates that AUVs are required to assist I-USNs iff 
is not empty.

For simplicity, we consider that ,0i
i dT t , ,k i

k dT t , ,l j
l dT t ,

and  ,max ,j l j
j m d jT t t l   , where j is the set of I-USNs

connected with AUV j, j
j



  , j

mt is the movement time

of AUV j, and .l j
dt is given by [33]

, ,,

,,

,l j l jl j
d g a

l jl j

p d
t t t

R 
    (8)

where     , 10 1

, , 2 , 0 0log 1 10 l jL

l j l j l l jR B P N I     , ,l jB is the

bandwidth, ,l jP is the transmit power, 0N is the noise power, 0I

is the variable of interference power, .l jp is the packet size, .l j

is the propagation speed (Table Ⅰ), and 0.1gt s and 0.1at s

are guard time and preamble time, respectively. Note that ,0i
dt

and ,k i
dt are similar to (8), and    1

USN
,10 1 Pal l l jz B  


 if

a UA link is used; otherwise 1l  [12].

Given (8), we let ,0
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, where hoverP

is the hovering power and j
mE can be decomposed as

,j j j j j
m b l s eE e e e e    (9)

where be , le , se , and ee denote the energy consumed by the

buoyancy system, the linear system, the rotational system, and
the electronic system, respectively, and hoverP depends on ee .

Specifically, j
be is given by [34]

AUV AUV AUV
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max max max
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where ρ is the seawater density, B is the engine efficiency, bm

is the mass of the net buoyancy, g is the gravity acceleration,
and 0P is the atmospheric pressure. Then, j

le can be defined as

  4AUV 2
,0

max

cos
2 1 ,

2

j l l jj
l

L

z m a d
e

D





  
   

    
 (11)
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where lm is the mass of the movable block, la and L are the

linear system constant and efficiency, respectively, and ,0jd is

the distance between AUV j and USV 0.
To realize the rotation of an AUV, we have

 42
1 0

1
,

2
j
s s

S

e a  


  (12)

where sa and S are the rotational system constant and

efficiency, respectively, and 1 and 0 are the final and initial

angles of rotation, respectively.
Finally, to maintain the electronic system, j

ee is defined as

,0 ,e jj
e

j

a d
e

v
 (13)

where ea and jv are the electronic system constant and the

velocity of AUV j, respectively.

III. JOINT MODE SELECTION AND AUV DEPLOYMENT

In this section, we first select the optimal ERM for each USN,
by which I-USNs can be identified. Second, according to the
distribution of I-USNs, the optimal locations and controls of
AUVs are jointly optimized to save the time for data collection
and underwater movement. Finally, the best tradeoff between
ERT and EC is obtained using multi-objective optimization.

A. Optimal Mode Selection

To effectively collect emergency data, we need to determine
the optimal ERM for a USN and make sure that all USNs’ data
can be finally forwarded toward the USV, which significantly
shortens the time for data transmission and improves the EE of
the UECN. Given the locations of geographically fixed USNs,
we propose the following stepwise algorithm to determine the
optimal mode selection hierarchically.

1) Relay detection: Given the original distribution of all
USNs, we determine the USNs in ERM 1 that can work as
potential RNs to transfer data.

2) Relay selection: Given the distribution of RNs, we
propose an RL-based scheme to determine RNs for USNs
in ERM 2 and identify I-USNs.

1) Optimal Relay Detection: Obviously, we can assert from
(OP) that our goal is to maximize the number of USNs in ERM
1. That is, the most ideal solution to (OP) is that all USNs can
transmit data to the USV directly, subject to a given set of SINR
constraints. Therefore, given the minimum SINR threshold  ,

(OP) is equivalent to following optimization problem
(P1): max

i
i

i







(14a)
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(14b)
where i denotes a binary variable that is equal to 1 if USN i

can connect with the USV directly; otherwise it is set to 0.
Note that the problem above (P1) is non-convex because it is

the product of binary variable i and SINR i. Even if i is

relaxed to take a value belonging to {0,1}, the relaxed version
of (P1) is still non-convex due to two variables ,0iP and ,0iL

hidden in SINR i. Thus, this problem (P1) is equivalent to a
mixed-integer non-linear problem (MINLP), which is generally
NP-hard, and cannot be solved directly.

To make (P1) solvable, we propose a GS-based scheme to
solve (P1), as shown in Algorithm 1, which gives the following
advantages: 1) The total number of iterations can be reduced to

 1

0

N

i
N i




 ; 2) The GS can guarantee a near-optimal solution

to (P1); 3) The feasible solutions to ,0iP and ,0iL can be easily

obtained by judging whether (14b) is satisfied. Therefore, each
USN greedily selects a UCL to maximize its CC, which yields
the optimal ,0iL

 
,0

UL UA RF
,0 ,0 ,0 ,0arg max , , .

i

i i i i
L

L R R R  (15)

Similarly, the optimal ,0iP is expressed as

 
,0

UL UA RF
,0 ,0 ,0 ,0arg max , , ,

i

i i i i
P

P R R R  (16)

where ,0iP
 is given by the following proposition.

Proposition 1: The optimal transmit power of USN i is given

by  ,0 10

min10 iLP


, where  1
min 0 0iP N I   depends on the

minimum SINR threshold  , noise power 0N , and interference

power 0I .

Proof: Following (14b) and (15)-(16), the optimal ,0iR can be

obtained when USN i transmits its data to the USV and the
remaining USNs stop data transmission, i.e., the optimal SINR

is   ,0

1
10

,0 010 iL

i iP N
 

. However, considering the benefit of

USN k (k≠ i), USN i cannot transmit its data with its maximum
transmit power. That is, we need to determine the best tradeoff
between the gain ( SINR i ) and the interference power to other

nodes ( iI ), which is equivalent to simultaneously maximizing

SINR i and minimizing iI . Given the minimum received power

 1
min 0 0iP N I   , the optimal transmit power of USN i can

be determined by comparing the relationship between 1SINR i


and iI . As shown in Fig. 2, minimizing 1SINR i
 contradicts

minimizing iI . Therefore, to obtain the best tradeoff point, iI

decreases until  ,0 10

min ,010 iL

i iP I P


  , which clearly proves the

proposition. Furthermore, given the lower bound of ,0iP , iE is

minimized accordingly.
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Fig. 2. Interference power versus the reciprocal of SINR.

Using Proposition 1, (16) can be rewritten as
  ,0

,0

10

,0 ,0 minarg max 10 .i

i

L

i i
P

P R P


  (17)

In addition, given the fact that USN i has a certain possibility
to disconnect from the USV, the outage probability of USN i is
introduced into (P1) as a constraint [33]

 min 10 ,0 ,0,0
out

10 log
1 ,

i i ii
P P L



   
  
 
 

  (18)

where  ,0 UL UA RF
out ,0 ,0 ,0, ,i

i i i    and  is the standard deviation.

To guarantee the continuity and quality of data transmission,
given (14b), (18), and the threshold of ,0

out
i , denoted by ε, we

can relax (P1) as follows
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(19b)

 UL UA RF UL UA RF, , 0,1 , 1, ,i i i i i i i           (19c)

   14b 18 , \ , ,i             (19d)

where , , and  denote the sets of USNs selecting UL, UA,

and RF links, respectively, and (19c) ensures that just one type
of channel is selected by USN i. Given the relaxed (P1), the set

of USNs in ERM 1 can be obtained by traversing all USNs in,

as shown in Algorithm 1.

Algorithm 1 Algorithm for Relay Detection

1: Input: Set of USNs 
2: Output: Set of USNs in ERM 1
3: Initialize: 
4: for i do

5: Calculate ,0iL
 , ,0iP

 , and ,0
out
i using (15), (16), and (18)

6: Update UL
i , UA

i , and RF
i subject to (19c)

7: for \j i do

8:  UL UA RF
,0 ,0 ,0 ,0max , ,j j j jR R R R  and select the optimal

UCL for USN j
9: end for

10: if  
 ,0 10

,0,0
out

0 0

10
1

iL

i ii P

N I


 

 
   
 
 

   then

11: Add i to 
12: end if
13: end for
14: return 

In Algorithm 1, we first determine the optimal link for USN
i using Proposition 1 (steps 5-6). Second, the variable of
interference power is obtained using (19b) (steps 7-9). Finally,
a potential RN can be identified by judging the value of (19a)
(steps 10-12). Since the main loop of Algorithm 1 depends on
steps 4-13, the computational complexity can be denoted by

 \ i   , and  controls the convergence rate.

2) Optimal Relay Selection: Given the distribution of RNs,

we further divide\ into  and , where a USN in  selects a

USN in  as its RN. Following [35], it is proved that the ERT

and EC of an AUV are much greater than those of a USN. Thus,

we need to maximize the number of USNs in , by which jT

and jE can be minimized accordingly. Given (19b)-(19d), our

optimization problem can be expressed as follows

(P2):
 

    
,

,
out ,

, \

max
k i

k i
i k i

P k i

R R 
 

  
   

   (20a)

    maxs.t. 0,1 , 1, , ,i i
i

i C i 


    


 (20b)

where  1

,0 , \ 1\ ...k kR R R


      , 1i
i







means that

USN k only communicates with one RN, maxC is the maximum

capacity threshold that equals the number of sub-channels, and

  maxi C ensures that the number of USNs connected with

RN i cannot exceed maxC .

Since (P2) is a dynamic programming problem (DPP), it is
challenging to solve (P2) using traditional algorithms, such as
ant colony optimization (ACO). Thus, we aim to create a solver
to maximize the number of USNs in ERM 2, maximize CC, and
minimize the outage probability between USN k and RN i.
Fortunately, since RL, such as Q-learning, state-action-reward-
state-action, and deep Q-network (DQN), heuristically explores
solutions from a system state space and continuously updates
policies using environmental feedback (rewards), RL-assisted
algorithms can provide near-optimal solutions to (P2), yielding
a roadmap to optimal or suboptimal solutions [35].

Before determining the optimal RN for a USN, the system
state, action, and reward are first defined as follows.

1) State: The set of states at time slot t is defined as
UL UA RF UL UA RF
, , , , , ,, , , , , , \ , ,t k i k i k i k i k i k iR R R k i    s       (21)



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

where USN k only selects an RN to maximize its CC and
minimize its outage probability.

2) Action: The set of actions at time slot t is expressed as

,..., , ,t i i    a   (22)

where ta is the set of RNs’ indexes whose entry denotes

the 3D location of RN i, and RN i cannot be repeatedly
selected by USNs when   maxi C .

3) Reward: The reward at each time slot t is given by

      UL UL UA UA RF RF
, , , , , ,max , , .t k i k i k i k i k i k ir R R R          

(23)
Then, given (21)-(23), USN k selects an action t ta a using

the current policy  and then updates the policy  using the
generated reward tr , as shown in Algorithm 2, where ta and ts

are updated and recorded in a Q-table

         
       

1

1

1 1

1 1

, , max , ,

1 , max , ,

t

t

t t t t t t t t t
a

t t t t t
a

a a r a a

a r a

 

  





 

 

   

   

a

a

Q s Q s Q s Q s

Q s Q s

(24)
where  ,t taQ s denotes the value of the Q-table storing system

actions and states, α is the learning rate, β is the discount factor,
and 1ts is the next state derived from the current state ts via

the selected action ta . To avoid the problem of local optimality,

the ℓ-greedy scheme is used to select an action [36], i.e.,

  

 

arg max , , if 1 ,

random , otherwise,
t

t t t
a

t t

a a q

a
 

    
 

a
Q s

a


(25)

where ℓ is a relatively small probability and q is a threshold.
However, with the increase of USNs as well as the length of

state vector ts , it is inefficient to update and retrieve the Q-table,

and the computational complexity increases dramatically. To
address this problem, a DQN-based relay selection algorithm is
proposed in Algorithm 3, which trains a convolutional neural
network (CNN) to approximate  , ,t t ta Q w . The architecture

of DQN comprises 2 convolutional layers (Convs) and 2 fully
connected layers (FCs) [37], where the depths of Conv 1, Conv
2, FC 1, and FC 2 are 20, 40, 180, and ta , respectively, and

the main training steps are summarized as follows.
1) Input  ,...,t t W t s s into Conv 1, where  t  denotes the

reshaping layer that converts  ,...,t W ts s into a two-

dimensional image with a size of 9×9.
2) Store the transition, denoted by  1, , ,t t t ta r   , in memory

replay pool  for generating training samples and labels.

3) Extract B training samples from  at random and update

CNN parameters by gradient descent algorithms, as shown
in Fig. 3.

Following (24), the loss function can be defined as

       
1

2

1 1 1max , , , , ,
t

t t t t t t t t
a

r a a  


  

 
   

 a
w Q w Q w 

(26)
where tw is the parameter vector, which can be updated by

       
 

1
1 1 1max , , , ,

, , .

t
t

t

t t t t t t t t
a

t t t

r a a

a

  




  

    
 

w
a

w

w Q w Q w

Q w

 

(27)
In Algorithms 2, we introduce one constraint   maxi C to

reduce interference power from sub-channels, which changes
the length of action set ta during the training process (steps

6-8), so the computational complexity of Algorithms 2 relies on

 tLT a . By contrast, Algorithm 3 trains a CNN to evaluate

 , ,t t ta Q w , which addresses the issue of high dimensionality

and reduces the computational complexity to  LTB . Further,

integrating Algorithms 1-3 realizes the optimal mode selection.
As shown in Algorithm 4, it begins with Algorithm 1, which

yields a set of potential RNs (). Second, the optimal RN of a

USN in /  can be given by Algorithms 2-3. Based on the

above, the computational complexity of Algorithm 4 can be

denoted by  \ \i LTB     , suggesting that the

convergence rate of Algorithm 4 depends on  ,  , and ta .

Fig. 3. Comparisons of two popular optimizers, including root mean square
propagation (RMSProp) and stochastic gradient descent (SGD).

Algorithm 2 Algorithm for Q-learning-based Relay Selection

1: Input: Set of RNs 
2: Output: Optimal RN of USN k, \k  
3: Initialize: Number of episodes L , number of epochs

T , and   0,i i   
4: for 1,...,l L do
5: for 1,...,t T do

6: if   maxi C then

7: Remove i from ta

8: end if
9: Select an action ta using (25)
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10: UL UA RF UL UA RF
, , , , , ,, , , , ,t k i k i k i k i k i k iR R R   s   

11: Calculate 1ts and tr using (21) and (23)

12: Update  ,t taQ s using (24)

13: 1t ts s and     1i i  
14: end for
15: end for
16: return RN i

Algorithm 3 Algorithm for DQN-based Relay Selection

1: Input: Set of RNs  and number of state vectors W

2: Output: Optimal RN of USN k, \k 
3: Initialize: Number of episodes L , number of epochs

T , number of training samples B ,   0,i i    ,

and 
4: for 1,...,l L do
5: for 1,...,t T do

6: if   maxi C then

7: Remove i from ta

8: end if
9: if t W then
10: Select an action ta at random

11: else
12: Use t to yield  , ,t t ta Q w

13: Select an action ta using (25)

14: end if

15: UL UA RF UL UA RF
, , , , , ,, , , , ,t k i k i k i k i k i k iR R R   s   

16: Calculate 1ts and tr using (21) and (23)

17:  1, , ,t t t ta r    
18: for 1,...,b B do

19: Sample  1, , ,b b b ba r   from  at random

20: Label   
1

1 1max , ,
b

b b b b b
a

y r a 


 
 

a
Q w

21: end for
22: Update tw using (27) and     1i i  
23: end for
24: end for
25: return RN i

Algorithm 4 Algorithm for Optimal Mode Selection

1: Input: Set of USNs 
2: Output: Sets of USNs in ERM 1, ERM 2, and ERM 3
3: Initialize:  ,  , and 
4: Generate using Algorithm 1

5: for \k  do
6: Select the RN of USN k using Algorithms 2-3 and yield

the index of RN i by  ,arg max k i
i

R

7: if    ,
out , 1k i

k iR R      then

8: Add k to 

9: end if
10: end for
11: \ \   
12: return , , and 

B. Optimal AUV Deployment

Using Algorithm 4, I-USNs located far away from the USV
are identified. To effectively collect data returned from I-USNs,
we jointly optimize the locations and controls of AUVs, which
simultaneously minimizes ERT and EC. In addition, as shown
in (8)-(13), it is observed that the EC of AUV j shows a linear
relationship w.r.t. dt and mt , meaning that minimizing dt and mt

yields the minimum EC.
1) AUV Location Optimization: The problem of optimizing

,l j
dt can be defined as

(P3): , ,,

,,

min ,
j

l j l jl j
d g a

l jl j

p d
t t t

R 
   

u
(28)

where    2 2AUV USN AUV USN 2
, ,l j j l j l l jd x x y y h     is the

distance between USN l and AUV j and AUV USN
,l j j lh z z  .

To optimally solve (P3), this study proposes the following
proposition to jointly maximize ,l jR and minimize ,l jd .

Proposition 2: Optimizing (P3) is equivalent to minimizing

,l jd .

Proof: Given (8), (17), and (19b)-(19d), we first redefine (P3)
as follows

 ,

,

10

,
, 2

0 0 ,

10 1
max log 1

l j

l j

L

l l j
l j

d
l j

P
B

N I d

  
  
 
 

(29a)

       s.t.   8 , 17 , 19b 19d , , .jl j      (29b)

Next, we regard ,l jd as an independent variable in ,l jL and

derive the first derivatives of UL
,l jL , UA

,l jL , and RF
,l jL , respectively
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(31)

RF
.

.

8.686 ,l j

l j

L
f

d






(32)

where ,l js is the horizontal distance between USN l and AUV j.
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Since (31) and (32) are both greater than 0, we can optimize
UA
,l jL and RF

,l jL by minimizing ,l jd . However, following (30),
UL
,l jL decreases monotonously w.r.t. ,l jd . To optimize UL

,l jL , we

introduce the practical constraint on the communication range,
i.e.,  , min max,l jd d d , which yields the lower and upper bounds

of UL
,l jL

  
    

  
    

max RecUL
min 10 2

max , 0

min RecUL
max 10 2

min , 0

exp
=10log ,

2 cos 1 cos

exp
10log ,

2 cos 1 cos

T R

l j

T R

l j

c d A
L

d

c d A
L

d

  

  

  

  

  
  
    


 
 

   

(33)

where    1
. , , . 0 0cos , ,l j l j l j l js d       .

Given (33), UL
,l jL can be approximated by polynomial curve

fitting over ,l j , subject to      0 ,cos cos cos 0 1l j    ,

which converts the original curve of UL
,l jL into a linear function

w.r.t. ,l j . As shown in Fig. 4, the three-order fitting gives the

best performance, indicating that minimizing ,l jh yields the

minimum UL
,l jL . Therefore, (29a) is equivalent to the following

optimization problem

 
 

1 1
, , ,

1 1
, , ,

max , if a UA or RF link is selected,

max , if a UL link is selected,

j

j

l j l j l j

l j l j l j

L d d

L h d

 

 

 






u

u

(34)

subject to  , min max,l jd d d and    0 ,cos cos 1l j   , which

clearly proves that ,l jR can be obtained by minimizing .l jd .

Following Proposition 2, the optimal location of AUV j is
obtained. Further, to effectively solve (P3), we use clustering
algorithms to solve the minimum distance between an I-USN
and an AUV [38], such as K-means clustering (KMC) [39].

(a) Lower and upper bounds.

(b) Polynomial curve fitting.

Fig. 4. Approximation of UL
.l jL .

2) AUV Control Optimization: The problem of optimizing
j
mt is equivalent to

(P4): ,0

,
min ,

j j

jj
m

v
j

d
t

vu
(35)

where      2 2 2AUV USV AUV USV AUV
,0 0 0j j j jd x x y y z     is the

distance between USN j and USV 0 and jv is the velocity of

AUV j.
To effectively reduce the time for underwater movement, we

jointly optimize ,0jd and jv , subject to energy constraints (9)-

(13). First, the optimization problem w.r.t. ,0jd is defined as

, ,0min .



j

j

l j j
l

d d
u 

(36)

Similar to (28), (36) can be also solved by KMC. In addition,
to speed up the convergence of KMC, we initialize the locations
of centroids (AUVs) as

 AUV AUV AUV
,

, ,

arg min .
j j j j

l j
x y z l

d




(37)

Second, jv can be optimized by the following proposition.

Proposition 3: The optimal jv is given by

 1
,0 maxmin , ,j e j jv a d A v  (38)

where max
j j j j

j r b l sA E e e e e     ,   , 10,
, 10 l j

j

Lj l j
r d l l j

l

e t P 






,

and maxv is the upper bound of velocity.

Proof: From the perspective of the energy-efficient control,
we need to minimize mt subject to a given set of velocity and

energy constraints, so the optimization problem is defined as
follows

min
j

j
v

v (39a)

max maxs.t. ,0 , .j j
r m je E E v v j      (39b)

Obviously, since (39a) is a convex optimization problem, its
Lagrangian function can be expressed as

       1
1 2 3 1 ,0 2 max 3, , , ,j j e j j j j jv v a d v A v v v            

(40)
where max 0j j j j

j r b l sA E e e e e      , 1 , 2 , and 3 denote
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three Lagrange’s multipliers, and Karush-Kuhn-Tucker (KKT)
conditions satisfy

  2
1 2 3 1 ,0 2 3, , , 1 0,

jv j e j jv a d v           (41)

 1 1
1 ,0 1 ,00, 0, 0,e j j j e j j ja d v A a d v A       (42)

 2 max 2 max0, 0, 0,j jv v v v      (43)

 3 30, 0, 0,j jv v      (44)

where (41) means the necessary condition of a feasible solution
and (42)-(44) denote complementary slackness conditions. By
solving (41)-(44), we consider the following eight cases, where
case 3 and case 7 clearly prove the proposition.

1) Given 1 2 3 0     , (41) does not hold.

2) Given 1 2 0   and 3 0  , (41) does not hold.

3) Given 1 3 0   and 2 0  , we have maxjv v  , which

holds iff 1
max ,0e j jv a d A .

4) Given 2 3 0   and 1 0  , (41) does not hold.

5) Given 1 0  , 2 0  , and 3 0  , (43) contradicts (44).

6) Given 2 0  , 1 0  , and 3 0  , (42) contradicts (44).

7) Given 3 0  , 1 0  , and 2 0  , we have maxjv v  ,

which holds iff 1
max ,0e j jv a d A .

8) Given 1 0  , 2 0  , and 3 0  , no jv simultaneously

satisfies the inequalities in (41)-(43).

By solving (P1)-(P4), variables , , ,  ju ,  ,0iP , and

 .k iP have been optimized. In the next section, AC-MEA is

introduced to optimize  and  ,l jP .

C. Optimal Time-Energy Balancing

Following the basic framework proposed in [40], a modified
MEA is proposed to determine the number of AUVs and the
transmit power of I-USNs, by which the best tradeoff between
ERT and EC is obtained, as shown in Algorithm 5. Specifically,
considering (P1)-(P4), we cannot simultaneously minimize the
maximum ERT and the total EC, i.e., increasing the number of
AUVs definitely reduces ERT but increases EC, which yields a
contradiction between (7a) and (7b). Motivated by this, we can
rewrite (OP) as follows

          
,

min max , , ,i k l j
x

T T T T
y

   (45a)

 
,

min i k l j
x

i k l j

E E E E
   

 
   

 
   

y    
 (45b)

         s.t. 7a 7h , 8 , 19b 19d ,  (45c)

 , 10

min max10 0, 0, ,l jL

l l lP y y P y


     y (45d)

    ,
out38 , 39b ,0 , ,l j l     (45e)

max1 , 0, ,jx E E j       (45f)

where x denotes the number of AUVs, y denotes the transmit
power of I-USNs, x   indicates that the maximum number

of AUVs is  , and the number of I-USNs served by AUV j

cannot exceed maxC .

Using the Tchebycheff’s decomposition, (45a)-(45f) can be
further simplified as follows

    min , max i i if z  
v

v λ z v (46a)

   s.t. 1 2, 45c 45f ,i   (46b)

where v is  ,x y , 1 2,     z zz is the reference vector that can

minimize (45a) and (45b), iz
 is the optimal value of objective

function i,  1 2, λ is the weight vector, and the interval

between  , v λ z and  , v λ z is minimized to yield the

following set of non-dominated solutions

  1
,i

 v  (47)

where iv is the solution to objective function i and   is the

function value.
Given the results derived from the PF, we need to determine

the best tradeoff point. To this end, based on the basic idea of
compromise programming [41], we select EE as a performance
indicator to evaluate the optimality of nondominated solutions,
which can be expressed as the reciprocal of the weighted sum of
normalized ERT and normalized EC, i.e.,

       
       

           

   

, , , ,

, , ,

1

max max , , ,
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j i k l

j i k l

i k l j
T T T T

E E E E

i k l j
i k l j

T T T T

E E E E






   




  
          

   

  

 
   

 



(48)
where  is the priority weight that equals 0.5, indicating that

saving ERT is as important as reducing EC.
Finally, by solving (48), the optimal number of AUVs and

the optimal transmit power of I-USNs can be obtained, which
simultaneously minimizes (45a) and (45b), and the EE of the
UECN can be improved accordingly.

Algorithm 5 AC-MEA
1: Input: MOP (45a)-(45b), number of subproblems X,
population size Y, weight vector  1 ,..., Yλ λ , and number of

neighbourhood weight vectors Z
2: Output: 
3: Initialize:  1,..., Zi i ,  1,...,i Y ,  

1
,...,

Zi iλ λ ,

 1,..., Yv v ,  1 ,..., Xz z  , 1F  , and 
4: for 1,...,i Y do

5:    1Genetic Operato ,, , , ...,rs m n Zm n i i   v v v

6:  Repair and Improve v v

7: while 1F  do
8: Generate u groups  1,..., u  using KMC

9: for  1,...,v u   do

10: if maxv C then

11: Update v , 1u u  , and 1F 
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12: break
13: else
14: 0F 
15: end if
16: end for
17: end while
18: for 1,...,j X do

19: if  j jz f  v then

20:  j jz f  v

21: end if
22: end for
23: for  1,..., Zk i i do

24: if    , ,k k k
  v λ z v λ z  then

25: k v v and    k v v 
26: end if
27: end for
28: Remove all vectors dominated by  v from 
29: Add v to  if no vectors in  dominate  v
30: end for

31: return 

In Algorithm 5, steps 5-6 first generate the initial solution to
(OP). Next, an adaptive KMC loop is performed to repair and
improve v , which also speeds up the convergence rate of AC-

MEA. Then, variables z , kv , and  kv are updated using

steps 18-27. Finally, we remove all dominated solutions from 
and add non-dominated solutions to . Since 1,..., u  changes

with u (steps 8-17), the computational complexity of Algorithm

5 depends on   max vXYZ  , and the convergence rate is

controlled by the population size.

IV. SIMULATION RESULTS AND DISCUSSIONS

In our simulations, the number of USNs belongs to {50, 100,
150, 200, 250, 300}, and USNs are randomly distributed over a
1000×1000 m geographic area. The simulation parameters are
presented in Tables Ⅱ-Ⅳ, where the upper bounds of transmit
power are from [8]-[42] and the parameters of environments
and AUV performance are given by [14] and [34], respectively.
Moreover, the used optimizer is RMSProp, where the learning
rate is 0.01, the discount rate is 0.9, and the memory-pool size is
2000. To verify the effectiveness of our approach, we compare
the following benchmark schemes: 1) Acoustic scheme [14]:
use acoustic links to transmit data without deploying AUVs; 2)
Optical scheme [43]: a modified Kuhn-Munkres algorithm is
used to assign RNs for USNs over optical links without using
AUVs; 3) Hybrid scheme [44]: utilize acoustic and optical links
for uplink and downlink communications, respectively. By
contrast, we first determine the optimal ERM for a USN.
Second, the locations and velocities of AUVs are optimized to
minimize ERT and EC. Finally, the best time-energy balancing
is achieved using AC-MEA. Note that all simulation results in

this section are averaged over a large number of independent
experiments.

TABLE Ⅲ: UNDERWATER COMMUNICATION PARAMETERS

Parameter Description Value

T Optical efficiency of a transmitter 0.9

R Optical efficiency of a receiver 0.9

 c  Extinction coefficient 0.1514 [9]

RecA Receiver aperture area 0.01 m2

0 Laser beam divergence angle 68.0 °

0N Noise power -130.0 dBm

UL
maxP Maximum UL transmit power 1.0 W

UA
maxP Maximum UA transmit power 4.5 W

RF
maxP Maximum RF transmit power 3.0 W [21]

p Packet size 1.0 Mb

 Threshold of outage probability 0.01

 Threshold of SINR   1 

B Bandwidth 1 kHz

TABLE Ⅳ: ENVIRONMENTAL PARAMETERS

Parameter Description Value

 Spreading coefficient 1.5

s Shipping factor 0.5

w Wind speed 0.5 m/s

 Permeability factor 1.256e-6 H/m

 Electrical conductivity 0.01 S/m [14]

 Seawater density 1027.0 kg/m3

TABLE Ⅴ: AUV PERFORMANCE PARAMETERS

Parameter Description Value

B Engine efficiency 0.7

bm Mass of the net buoyancy 0.494 kg

g Gravity acceleration 9.8 m/s2

maxD Maximum depth 200.0 m

0P Atmospheric pressure 101.325 kPa

lm Mass of the movable block 11.0 kg

la Linear system constant 0.1

L Linear system efficiency 0.85

sa Rotational system constant 1.0

S Rotational system efficiency 0.85

ea Electronic system constant 1.5

maxv Maximum velocity 1.0 m/s [35]

Fig. 5 shows the results of optimal mode selection. First,
Algorithm 1 increases the percentage of USNs selecting ERM 1
as compared to a hybrid UL-UA network, increasing by 30%,
31%, 40%, 34%, 19%, and 23%, respectively. This indicates
the advantage of using multiple channels and the effectiveness
of Proposition 1. Second, using RL schemes, the percentage of
USNs selecting ERM 2 can be increased by 18%, 7%, 4%, 5%,
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12%, and 7%, respectively, decreasing the number of I-USNs
served by AUVs. After relay detection and selection, therefore,
the number of I-USNs decreases by 24, 36, 66, 76, 78, and 87,
respectively. It should be noted that the percentage of I-USNs is
equivalent to the loss ratio caused by not using AUVs, meaning
that the USV cannot receive data returned from I-USNs without
the assistance of AUVs, and Fig. 5(c) illustrates an example of
node distribution with 50 nodes, where a USN selects an RN to
transfer data to the USV and an I-USN communicates with an
AUV.

(a) Hybrid scheme.

(b) Proposed scheme.

(c) Illustration of node distribution (N = 50)
Fig. 5. Optimal mode selection.

Fig. 6 shows the CC averaged over USNs selecting ERM 2.
First, Fig. 6(a) plots the convergence rates with different node
sizes, indicating that the increase inN also increases the number
of potential RNs. Thus, DQN needs to spend more time on relay
selection. Meanwhile, since the throughput of RN i is limited,
the length of action space a changes during the training process

of DQN, causing the perturbation of convergence. Second, Fig.
6(b) compares the performance of Q-learning, DQN, particle
swarm optimization (PSO), and differential evolution (DE). It
is observed that the four algorithms give similar performance
when N is relatively small and DQN achieves higher CC with
the increase in N. Here, the performance difference between RL
(e.g., Q-learning, DQN) and evolutionary algorithms (e.g., PSO,
DE) depends on two factors: 1) RL follows gradient descent to
update the value function, which guarantees the optimality of
solutions; 2) RL makes full use of all system states of samples
during iteration. Third, in terms of computational cost, the
computational time of DQN is longer than other solvers since it
needs to update CNN weights, as shown in Table Ⅵ. Finally,
Fig. 6(c) proves that our proposed algorithm outperforms the
other three benchmark schemes, indicating that integrating the
merits of multiple links can effectively mitigate the underwater
communication latency between a USN and an RN.

(a) Convergence rates of CC.

(b) Comparisons of relay selection algorithms.

(c) Comparisons of different schemes.
Fig. 6. Optimal relay selection.
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TABLE Ⅵ: COMPUTATIONAL TIME (S) PER ROUND OF DIFFERENT SOLVERS

N Q-learning DQN PSO DE

50 8.01 17.65 4.83 9.03

100 45.50 120.51 24.70 46.22

150 121.09 401.30 69.52 139.01

200 573.71 824.36 314.95 543.63

250 812.80 1327.26 517.87 781.08

300 1095.74 1782.65 903.67 1148.95

Fig. 7 shows the results of optimal AUV deployment. First,
we compare our deployment scheme with mean-shift clustering
(MSC) and density-based spatial clustering of applications with
noise (DBSCAN). It is observed from Fig. 7(a) that the optimal
numbers of AUVs given by our algorithm in the six scenarios
vary from 1 to 2, which suggests that our deployment scheme
effectively reduces the number of AUVs by jointly considering
the 3D locations of I-USNs and the overall time-energy tradeoff.
Second, Fig. 7(b) plots the maximum ERT in different working
modes, where the practical ERT relies on the maximum ERT of
system units. In addition, Figs. 7(c)-(d) prove that our proposed
deployment scheme simultaneously reduces the maximum ERT
and the total EC, decreasing average ERT and average EC by
19.4% and 31.4%, respectively.

(a) Optimal number of AUVs.

(b) ERT in different modes.

(c) Comparisons of ERT.

(d) Comparisons of EC.

Fig. 7. Optimal AUV deployment.

Fig. 8 shows the optimal solution to (OP). Since (45a) is an
MMP, the optimal ERT equals the maximum ERT of different
units, whereas (45b) is a minimization problem, so its optimal
solution depends on the cumulative sum of the EC of all system
units. To maximize the EE of the UECN, we need to determine
the optimal number of AUVs and the optimal transmit power of
I-USNs to simultaneously minimize the maximum ERT and the
total EC. First, as shown in Fig. 8(a), the PFs consist of many
sparse suboptimal points. Next, according to the convergence
of PFs, we can find out the best tradeoff point by maximizing
EE. As shown in Fig. 8(b), since saving ERT is as crucial as
reducing EC, we normalize ERT and EC to be between 0 and 1
and equate the priority weight to 0.5. Then, the corresponding
solutions to EE are shown in Fig. 8(c), where the best tradeoff
point is obtained when EE achieves its maximum. Finally, to
verify the effectiveness of AC-MEA, we compare the following
four algorithms: 1) non-dominated sorting genetic algorithm
(NSGA- Ⅱ ) 2) NSGA- Ⅲ 3) PSO and 4) adaptive geometry
estimation-based MEA (AGE-MEA). Fig. 8(d) shows that our
proposed AC-MEA outperforms the other four solvers in terms
of EE, achieving 2.19, 1.97, 1.95, 1.93, 1.88, and 1.85,
respectively, and Fig. 8(e) indicates that our proposed approach
increases average EE by 0.14, 0.15, and 0.49, respectively.
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(a) EC versus ERT.

(b) Normalized EC versus normalized ERT.

(c) EE ( 0.5  ).

(d) Comparisons of different solvers.

(e) Comparisons of different schemes.
Fig. 8. Optimal solution to (OP).

V. CONCLUSION

In this study, we built an energy-efficient UECN to collect
underwater emergency data. First, the optimal ERM of a USN
is determined using relay detection and selection. Specifically,
RNs were identified by GS, and the best relay selection policy
was given by RL, which strengthened network connectivity and
diminished the number of I-USNs served by AUVs. Second,
according to the distribution of I-USNs, AUVs were dispatched
to assist I-USNs in data transmission, which not only shortened
ERT but also saved EC. Finally, the best tradeoff between the
maximum ERT and the total EC was achieved by maximizing
EE. Numerical results proved the effectiveness of our proposed
approach.

However, there exist some issues not addressed in this study,
some of which are worthy of an in-depth discussion in our
future works. Motivated by [45], it is promising to combine
intelligent reflecting surfaces (IRSs) with our proposed system,
i.e., AUVs are equipped with IRSs to reflect impinging signals
with tunable reflection coefficients, including an amplitude and
a phase shift, which remarkably enhances the communication
throughput without the need for dispatching extra AUVs. Next,
to optimally coordinate the reflections of all IRS elements, RL
may provide near-optimal solutions without prior knowledge of
underwater environments. Furthermore, an IRS has advantages,
such as light weight and flexibility, so it becomes feasible to
deploy IRSs over the sea surface to support very long-distance
communications, leading to discussions about the placement of
IRSs and the shortest-path selection.
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