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Abstract

Underwater crime sceneinvestigation and emergencyresponseare tasks typically carried out
by divers constituting part of a specialist team. Operating in such dynamic environments,
often with poor visibility and risk of concealedhazards, can be time consuming and dan-
gerous. Autonomous uncrewed vesselswith underwater acoustic imaging sensorshave been
used for similar purposes in other fields (e.g. hydrography, naval mine countermeasures,
etc) but havenot beenadopted in this specific application domain.
The Police Robot for Inspection and Mapping of underwater Evidence (PRIME) is an au-
tonomous uncrewed surface vessel(USV) that is being developed for this purpose. It is a
novel application of existing robotic technology that is intended to be usedwithin an end-to-
end police and emergency underwater search process. It aims to enhance the effectiveness,
efficiency, and safety of divers by autonomously locating and highlighting target objects or
regions of interest, aswell as benign regions, thereby reducing their time spent underwater.
Side-scan imaging sonars are used to sensethe underwater environment using techniques
leveraged from the similar application domain of naval mine counter-measures. The sys-
tem autonomously generatesactionable intelligence in the form of simplified coverageand
anomaly maps for easy interpretation by the dive team. These are communicated to shore
in real-time and geo-referencedon satellite maps.
This paper details the PRIME systemprototype and presentsresults from initial field exper-
imentation. The prototype hasbeenoperated in various urban, shallow-water environments.
The experimental results shown here were collected in Bristol Harbour (UK) with a water
depth of approximately 5m. In the experiment, a clothed mannequin resembling a human
body was deployed on the muddy floor. Autonomous searcheswere executed and the body
was detected successfullyas an anomaly against the background, illustrating the feasibility
and viability of the system as an autonomous robotic aid for locating missing personsin a
representative, unstructured, and dynamic real-world environment.
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Figure 1: Examples of police underwater searchoperations and outcomes: (a) NYPD divers searchingHarlem
Meer following a murder in the area (McGrady, 2019); (b) officer from the North West Police Underwater
Search& Marine Unit, UK, shown retrieving a discardedfirearm (Hemans, 2012).

1 Introduction

1.1 Underwater Search and Recovery

Police and emergencyunderwater search teams are generally comprised of highly skilled, specialist divers
(Becker et al., 2013). In the UK, dive teams exist as part of civilian police forces,such as the Metropolitan
Police Service (MPS) or North West Police Underwater Search& Marine Unit, as well as private groups
suchasSpecialist Group International (SGI). Mission types vary, but typically involve: body recovery (e.g.,
in missing personscasesinvolving accidental or intentional death); finding and retrieving items of evidence
(e.g., weapons or narcotics thrown into a body of water in an effort to be concealedor destroyed); and
mitigating dangerousobjects such as improvised explosive devices(IEDs). Somephotographs from example
casesare shown in Figure 1. The duration of a mission can vary from hours to weeks depending on the
mission parameters and condition of the underwater environment. The environment is typically an inland
waterwayor lakewith low to zerovisibility andmay becluttered with obstructions or hazardousobjects. Dive
teams consist of specially trained memberswith a significant responsibility for the timely discovery, proper
documentation, and recoveryof any items consideredto haveevidentiary value (Erskine & Armstrong, 2021;
Kelly, 2010;Wylie, 2019). Therefore, they are under very high demanddue to their limited human and time
resources. Searching for missing persons for example requires a considerable amount of human resources,
with a single dive team consisting of a minimum of 3 to 5 personnel. Requirements vary depending on each
case,and can sometimesrequire multiple teams, boats with associatedcrew, and cadaver dogs(Becker et al.,
2013; Ruffell, 2014; Schultz et al., 2013).

1.2 Current Approaches and Problems

Modern robotic and acoustic imaging technologiesexist that can aid dive teams in underwater searchoper-
ations such as remotely operated vehicles (ROVs) scanning sonar devices, sub bottom profilers, and water
penetrating radar (Becker et al., 2013;Decker, 2007;Erskine & Armstrong, 2021;Parker et al., 2010;Ruffell,
2014; Schultz et al., 2013). Towed side-scan sonar has been used to aid searchesin missing persons cases
(Erskine & Armstrong, 2021;Ruffell, 2014;Schultz et al., 2013). However, the useof suchequipment can be
troublesome. Firstly, tethered devicessuch as ROVs and towed sonar are challenging to operate due to the
risk of entanglement in cluttered environments or with underwater foliage (Schultz et al., 2013), snagging
when close to shore (Ruffell, 2014), as well as risk of damage to equipment or loss. Secondly, such devices
require significant operator training and experiencefor optimal operation, as well as interpretation of the



gathered data, which can accumulate rapidly (Decker, 2007; Erskine & Armstrong, 2021; Schultz et al.,
2013). In practice, this results in officers reverting to more familiar and trusted manual techniquesinvolving
tight, raster style searchpatterns suchasthose illustrated in Figure 2, which are very time consuming. These
require that divers are tethered for systematic searching,aswell as to ensuresafety, with dives typically lim-
ited to durations of 15 to 20 minute shifts (Becker et al., 2013; Erskine & Armstrong, 2021;Ruffell, 2014).
When employed appropriately, side-scansonar is a highly effective tool in searchingand locating of missing
persons(Schultz et al., 2013). A requirement therefore exists for an autonomoussystemwith the ability to
rapidly survey underwater regionswith minimal operator oversight,whilst automatically providing a simple
interpretation of the collected data, thereby improving performance and safety.

(a) Linear (jackstay) searchpattern (b) Circular searchpattern

Figure 2: Illustrations of manual searchpatterns (Southwood, 2011). (a) A jackstay searchpattern allows
oneor more divers to searchlarge areasthoroughly and efficiently. The divers traverse a searchline (jackstay)
rigged on the bottom (left-right). When the diver(s) reach the end of the line, it is advancedby a certain
distance (up-down) and the diver(s) searchback along the line. (b) A circular searchpattern can be efficient
when the position of a target is approximately known. Diver(s) searchin concentric circles around a central
point where a rope is fixed. A constant radius is achievedby maintaining tension on the rope; the radius is
extended by a certain distance eachrevolution by increasing the length of the line.

1.3 Current Research

Researchon autonomous human body detection using sonar is limited, but similarities can be drawn with
navalmine counter-measures(MCM) operations. Target features in sonar imagescanbeenhancedwith image
processingtechniques such aswavelet filtering (Hunter & van Vossen,2014), whilst seafloor characterisation
and complexity mapping areusedto evaluateperformanceof automatic target recognition (ATR) algorithms
(Fakiris et al., 2013; Geilhufe & Midtgaard, 2014; Williams, 2015). Effective scanning of a given area can
be enhancedby using appropriate searchpatterns (Hunter et al., 2018), and scanning multiple times from
different orientations can improve the detection and classification performanceof ATR algorithms (J. Fawcett
et al., 2010;Zerr et al., 1997). Although objects being searchedfor in MCM operations are typically sound-
hard scatterers asopposedto a relatively soft human body, human bone hasa similar reflective coefficient to
sandstoneand concrete (Erskine & Armstrong, 2021), allowing for detection using sonar basedapproaches.
Autonomous detection of a mannequin, used as a proxy for a human target, has been demonstrated using a
convolutional neural network (CNN) trained with multibeam sonar images(Nguyen et al., 2019) but these
were gathered manually and processedoffline.

Commercial and researchplatforms employing low cost, commercially available sonar deviceshavebeenused
to accurately survey shallow water marine environments using towed or hull-mounted side-scanor multibeam
sonar (Kaeser et al., 2013; Kebkal et al., 2014). Uncrewed surface vessels(USV) for autonomous long term,
or large scaleexploration operations havebeendevelopedbasedaround vesselsranging from basic catamaran
assemblies(Girdhar et al., 2011) to instrumentation of commercially available kayaks(Moulton et al., 2018).



1.4 System Requirements and Proposed Solution

There are both cost and operational barriers that impede the uptake of modern underwater acoustic imaging
technologies. This hasmotivated the desirefor a low-cost, untethered, and integrated system for aiding police
divers during underwater crime sceneandaccident investigations that canoperate autonomously and requires
minimal operator training and intervention. It is further motivated by the potential to increasediver safety
as a by-product of reducing their time in the water and by giving them prior intelligence on underwater
hazards. The University of Bath has beenworking together with representativeswithin the UK police and
emergency services to develop and deliver such a system.

The system requirements and use caseswere determined following consultation with stakeholders. The key
requirements are:

1. Effective and Safe – The system should enhance the search capabilities of the divers without
causing interference or harm;

2. Simple – It should gather and interpret data autonomously beforepresentingmeaningful and easily
understandable information to the operator without needfor specialist training;

3. Compact – It should fit easily inside a standard-issuepolice 4×4 sports utility vehicle (e.g., Mit-
subishi Shogun) and be deployable by no more than two personnel;

4. Low Cost – It should cost roughly an order of magnitude lessthan existing ocean-gradesolutions
usedby the commercial and military sectors, i.e., on the order of tens of thousands of pounds.

The system is intended to be used at times when a dive team is on site but would not normally enter
the water. Possible time windows include during mission briefing and preparation (approximately 1 hour)
and outside regular working hours (approximately 8 hours overnight). The first use casefor consideration
is the search for objects that resemblehuman bodies. In this context, resemblancerelates mostly to the
approximate dimensions of an object, since a body could be in any poseor it could be concealed. Moreover,
it was identified as the simplest first step due to the large sizeof the target object in comparison to those in
other use cases(i.e., weapons, packages,or IEDs).

Our prototype solution is the Police Robot for Inspection and Mapping of underwater Evidence (PRIME).
The systemhardware is basedaround acustom-built USV with off-the-shelf electric propulsion, sonarsensing,
navigation, and computing hardware. The software is basedupon the Robotics Operating System (ROS)
(Quigley et al., 2009) using amixture of existing open-sourcepackagesand custom-built nodes. PRIME can
autonomously execute searchpatterns, acquire and processdata, and communicate its gathered intelligence
on the underwater environment to a computer on shore in real-time. It cannot currently avoid obstacles,
but has a manual remote-control override for safety. The information communicated to shore is in the form
of a simplified “heat map” that doesnot require significant training or experienceto interpret. A satellite
map of the surveyed area is overlaid with the cumulative sonar coveragearea using a simple two-colour
scale indicating regions in blue that are benign and featureless versus areas in red where the features could
indicate the presenceofa body. The originality lies in the real-time, autonomousgenerationof this actionable
intelligence to aid human dive teams in missing personsscenarios,by indicating where to prioritise efforts
during a search.

This paper presentsthe design, implementation, field deployment, and testing of the PRIME system proto-
type. The interested reader can find comprehensivedescriptions of the design and implementation details,
covering the physical platform, sensinghardware, and electronics in Section 2 and control, perception, and
autonomy algorithms and software in Section 3. These technical sections can be skipped without impacting
on the interpretation of results from the field experiments, which are presentedin Section 4. The outcomes
are discussedin Section 5 and a final summary is provided in Section 6.



2 Hardware Design

2.1 Platform

A USV was selected as the robotic platform in preference over an uncrewed underwater vehicle (UUV).
This is a well established autonomous vessel configuration, with the design developments and challenges
well documented, (Z. Liu et al., 2016; Manley, 2008) and has been chosen for several reasons. A USV
operating from the surface has easyaccessto Wi-Fi and global navigation satellite systems (GNSS), which
greatly simplifies communication and navigation. It is visible to the dive team and usersof the waterway
at all times and vice versa. It is simpler to deploy and recover, it doesnot needcomplicated trimming and
ballasting, and requires lower standards of waterproofing.

The PRIME USV is custom-built and has been designedand developed over multiple iterations of rapid
prototyping. It hasa catamaran hull with dimensionsof approximately 1.2m in length, 0.6m in width, and
0.4m in height. The total weight of the vehicle and its typical payloads is around 20kg. Earlier iterations
(PRIME-1, 2, and 3) explored variations on the hull design. These were constructed from pairs of foam
pontoons, reinforced with coatings of epoxy and fibreglass. Aluminium sheet and extrusions were used to
assemblethe two pontoons together and to provide a frame for attaching further hardware. Two T200 DC
brushlessthrusters (Blue Robotics Inc. (USA), 2021b) are mounted at the rear of the USV for propulsion.
The differential drive provides good maneuverability and a maximum speedin still water of approximately
3m/ s.

The latest design iteration, PRIME-4, is shown in Figure 3 and the previous iteration, PRIME-3, is shown
in Figure 10a. PRIME-4 hasa moulded catamaran hull constructed from carbon fibre (C12 CompositesLtd.
(UK), 2020). It travels at an operating speedof approximately 1.2m/ s. It also features hinged components
to allow for hardware that is submergedduring operation, suchas the sensorsand thrusters, to be raised for
easy transport and storage.

Modular payloads can be mounted to the aluminium frame, with the electronics and batteries being housed
in IP68-rated waterproof enclosures. This allows flexibility for experimenting with different operational
concepts. Although commercial USVs with similar capabilities readily exist, (Kebkal et al., 2014) a custom
USV was built in the interest of researchflexibility and cost saving.

Figure 3: PRIME-4 USV with carbon-fibre hull, showing the sonar transducers partially deployed.



(a) Imaging geometry

(b) Raster image

Figure 4: A side-scansonarmakesacoustic reflectivity measurementsfrom fan-shapedbeamsas the platform
movesalong a track. These are stacked to form a 2-D raster image. Changesin the composition of the floor
appear as variations in the image intensity (e.g., stronger for hard materials like gravel and weaker for soft
materials like mud). A low intensity strip at close range corresponds to the water column between the
sensorand floor, including objects in the water column (e.g., fish). Objects on the floor appear ashighlights
followed by acoustic shadowsand objects cast longer shadowswith range (e.g., the boulder).



2.2 Underwater Acoustic Sensing

Side-scansonar is one of the most commonly used underwater imaging technologies (Blondel, 2009). It was
selectedfor useon PRIME due to its rapid area coveragerate and its cost advantageover more complicated
multi-beam systems. It is intended for the initial wide-areasurvey of the underwater environment to expose
areasof interest for the human dive team and / or to inform autonomous re-interrogation using other sonar
types or other sensingmodalities (e.g., optical, chemical, magnetic, or tactile) in the future.

Side-scan sonar operates by projecting an acoustic pulse or “ping” to the port and starboard sides of a
platform at regular intervals as it movesalong a nominally straight track at constant velocity. The acoustic
beamsare narrow in the direction of travel and wide in the vertical direction, as illustrated in Figure 4a.
Thus, each ping measuresthe intensity of acoustic reflections within the beam cross-section as a function
of acoustic travel time. These 1-D measurements are stacked to generate a 2-D raster image that is an
orthographic projection of the 3-D underwater environment. The axesof the image correspond to the port
and starboard rangesversus the position along the track, determined from the travel times and the known
speedof sound in water c ≈ 1450m/ s. In the range axis, the image resolution is constant and is determined
by the bandwidth of the acoustic signal. In the along-track axis, the resolution degradeswith range and
is determined by the horizontal beam-width. The vertical beam-width and declination of the transducers
determines the observableswath of floor and, typically, this leads to a blind spot directly below the vehicle
termed the nadir gap. In practice this gap can be filled using another sensor(e.g., a downward or forward-
looking sonar or camera) or by conducting surveys with overlapping coverage(Hunter et al., 2018). The
image formation processis illustrated in Figure 4.

Side-scansonar imageshave the appearanceof a top-down view of the floor with side illumination from the
track towards the port and starboard directions. The nadir gapmanifestsasa strip of low reflectivity in the
centre of the image, corresponding to the water volume between the vehicle and the first observable range
to the floor. A particular characteristic of side-scansonarimagesis that an object sitting proud on the floor
appears as a highlight due to the reflection from the object, followed by an acoustic shadow cast onto the
floor behind. Importantly, the orthographic projection preservesthe geometrical dimensionsof the object.
These image features are useful for object recognition.

PRIME is equipped with two side-scansonars from Blueprint Subsea(UK): a Starfish-450 and a Starfish-
990. These have centre frequencies of 450kHz and 990kHz and horizontal beamwidths of 0.5◦ and 0.3◦ ,
respectively. Both have vertical beamwidths of 60◦ . The lower frequency suffers less from attenuation and
canpropagate further with amaximum rangeof 100m at 450kHz comparedto 35m at 990kHz. However, the
higher frequency yields finer along-track resolution. The (constant) range resolution is ∆ r = 7.5cm in both
bands, but the (range-varying) along-track resolution is given by ∆ u450 ≈ 0.0087× r, at 450kHz compared
to ∆ u990 ≈ 0.0052× r at 990kHz. The two sensorshave complementary characteristics. Furthermore, there
is future potential to usespectral differencesbetween the images from eachband to aid pattern recognition.
During operation, the 450kHz and 990kHz transducers are deployed at depths of 20cm and 15cm below
the water surface, respectively, and at a declination angle of 30◦ .

2.3 Navigation Sensing and Communications

PRIME usesan SBG Ellipse inertial navigation unit (France) with an IMU and external GNSS antenna,
both of which are mounted externally, as shown in Figure 3. This gives a positioning accuracy to within
2m and provides accurate timing. The IMU produces pitch and roll measurements,but its main purpose
on PRIME is to measureheading using its magnetic compasswith accelerometerand gyroscopeaiding. The
headingaccuracyis within 0.8◦ , but must calibrated with the platform fully poweredand running to account
for any electromagnetic interference (EMI) from platform electronics.

A Wi-Fi hub and antenna on the shore is usedto facilitate communication betweenall of the computers in
the system – both onboard the USV and on the shore for monitoring and control.



Figure 5: PRIME-4 hardware architecture.

2.4 Electronics and Computing

The hardware architecture is illustrated in Figure 5. The rear electronics box housesthe control hardware
and the front box housesthe sensingand autonomy hardware.

The rear box contains two electronic speedcontrollers (ESC) (Blue Robotics Inc. (USA), 2021a) for driving
the thrusters. Theseare interfaced through an Arm Mbed NXP LPC1768 microcontroller. The microcon-
troller arbitrates thruster control signals from either a 2.4GHz remote-control receiver during emergency
override by a human operator or via remote procedure calls over USB from an Odroid XU4 single board
computer (SBC) during normal autonomousoperation. The Odroid runs a Linux operating system(Ubuntu
MATE 18.04) and acts as a bridge to the computing hardware in the front box over Wi-Fi. The reason
for this separation is to electrically isolate the sensitivedata acquisition hardware in the front box from the
noisy thruster control hardware in the rear box, which was found to causeproblematic interference during
development of the system.

The front box contains the sonardata acquisition hardwareand two SBCs. At the time of this work, software
drivers for the Starfish side-scansonarswereonly available for the Microsoft Windows operating systemand
this necessitated the use of an Intel Compute Stick SBC running Microsoft Windows 10. The Compute
Stick interfaces with the Starfish hardware via USB and broadcasts the sonar data and settings via the user
datagram protocol (UDP) over ethernet. A MinnowBoard Turbot Quad-CoreSBC with Ubuntu Linux runs
the core autonomy software. It executes the autonomous control of the USV, sending forward/backward
thrust and left/right yaw velocity demandsto the Odroid in the rear box. It alsoperforms the sonarcontrol
and data processingand communication of status and data products to the computers on the shore.

The current prototype usesfive lithium-polymer (LiPo) batteries for separatelysupplying the two thrusters
(21V fully chargedfor a specifiedoperating range of 7V to 20V), the two sonar data acquisition units (25V
for a rangeof 9V to 28V), and the SBCs in the front and rear boxes(25V and 12V, respectively, converted
to 5V).



Figure 6: PRIME-4 software architecture, represented as a simplified ROS node graph. Ellipses represent
nodes, rectangles represent topics, and arrows represent the publishing and subscribing relations; the nodes
and topics in white are custom-built whereasthe others are standard or from existing packages.Note that
in this early prototype there is closed-loop reactive feedback and control, but the deliberative control is
open-loop.



3 Software Design

PRIME usesthe Robot Operating System (ROS) (Quigley et al., 2009). ROS runs distributed over Wi-
Fi across the two SBCs on the USV as well as any number of monitoring and control computers on the
shore. The majority of the ROSnodesrun on the MinnowBoard SBC, with only a bridging node for relaying
thruster demandsignalsrunning on the Odroid, and monitoring and control nodeson the shore. A simplified
node graph is shown in Figure 6. The architecture consists of a combination of existing and custom built
packages.

3.1 Autonomy

A basic level of autonomy has been implemented that allows the USV to conduct a pre-defined survey
pattern, whilst simultaneously processing the sonar data and reporting the mission status and underwater
intelligence to the shore in real-time.

The designis basedon a layeredhybrid deliberative / reactive architecture (Gat et al., 1997),with behaviours
organised into the four broad categoriesof the observe-orient-decide-act(OODA) model (Boyd, 1987;Proud
et al., 2003). In the reactive layer of the architecture, the USV acquires data from its sensorsand processes
these into useful data products. It usessomeof these products directly for reactive control and some for
higher-level perception. In the deliberative layer, the data products are fused into a useful world model.
The represents the robot’s situational awarenessof itself and the environment, and is used to inform the
deliberative planning and execution of the mission goals. Components of the world model relating to the
mission status and, importantly, the underwater intelligence are communicated to human operators on shore.

In the current implementation, the reactive layer contains behaviours relating to navigation, guidance, and
thruster control for executing straight survey lines betweenwaypoints and the acquisition, processing,and
automated interpretation of sonar data. These are detailed in Sections 3.2 to 3.4. The deliberative layer
contains a simple path planner with pre-defined survey waypoints and a basic world model comprised of a
situation map with geo-referencedoverlaysfor the various sonar data products, including the heat map for
the human dive team. These are detailed in Section 3.6 and 3.7, respectively.

3.2 Guidance, Control, and Navigation

To ensure the collection of good-quality side-scansonar data, the platform must travel in straight lines at
a consistent speed. This speeddependsmainly on the ping repetition frequency of the sonar, which varies
depending on several factors such aswater depth, maximum range, and reverberation from the environment
(Blondel, 2009). Uniformity of the path ensuresthat the raster image is undistorted and slownessensures
that the acoustic beams from subsequentpings adequately sample the floor without leaving gaps. However,
travelling too slowly makescontrol of the platform more difficult, particularly in currents or cross-winds.
An illustrative example is shown in Figure 7 for a straight path followed by a turn, where the sonar image
generatedalong the straight portion is better quality than the distorted and under-sampledportion during
the turn.

The two thrusters mounted at the rear of the USV provide a differential drive. Activation of both thrusters
equally in the samedirection producesforward or reversemotion (surge) while dissimilar activation results in
a changein orientation (yaw). The USV has an additional degreeof freedom in the direction perpendicular
to the vehicle heading (sway). This results in an under-actuated control systemwith more degreesof freedom
than control inputs. Various line-of-sight (LOS) control algorithms have been developed for this problem
(Chaos et al., 2009; Furfaro, 2012; T. Liu et al., 2017; Shin et al., 2017).

The guidance system achievesstraight survey tracks using the LOS method of (Furfaro, 2012). Figure 8
illustrates the geometry for the LOS algorithm. The location of the USV is denoted by xp and an ideal



(a) (b)

Figure 7: The effect of path linearity on side-scansonar image quality. During the straight portion of the
track (A), the sonar beamsproduce a uniform raster coverageof the floor. However, during a turn the beams
are bunched and spread on the inside and outside of the turn, respectively, leading to image distortion (B
and C) and under-sampling (C).

straight path is defined betweenwaypoints xa and xb. The perpendicular distance of the USV from the
ideal path is given by

d = (xa − xp) −
S
(xa − xp) ·

xa − xb

∥xa − xb∥

S
xa − xb

∥xa − xb∥
, (1)

and the closestpoint on the ideal path to the USV is given by

x⊥ = xa + (xp − xa) ·(xb − xa) . (2)

A lookaheadpoint
x ′ = x⊥ + h

xb − xa

∥xb− xa∥
, (3)

is introduced on the path at a distance h ahead of x⊥ , which advancesalong the ideal track as the USV
progresses. A LOS vector

n̂ ′ = x ′ − xp

∥x ′ − xp∥
, (4)

is defined to provide a target heading for the USV. The heading error

β =
S

n̂ ′ × n̂
∥̂n ′ × n̂∥

· ẑ
S
arctan2(∥n̂ ′ × n̂∥, n̂ ′ · n̂) (5)

is establishedbetweenthe USV heading θ and the target heading θ′ , wherearctan 2(y, x) is the four-quadrant
inverse tangent function. The speederror

v′ = v − ẋp ·
xb − xa

∥xb− xa∥
(6)

is established as the difference betweenthe desired target velocity v and the component of the USV velocity
along the ideal path. The heading error β and speederror v′ are inputs to proportional, integral, derivative
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Figure 8: Geometry of the line-of-sight (LOS) control algorithm usedby the USV to traverse straight tracks
between waypoints.

(PID) controllers which operate the thruster inputs and hence control the USV speedand heading with
forward/backward thrust and left/right yaw velocity demands.

Two PID controllers are used to control thrust and yaw independently. Thesewere implemented from the
open-sourceROS Control framework (Chitta et al., 2017), asPI controllers using the following gain values
for thrust, KT,P = 0.5,K T,I = 0.2, and yaw, KY ,P = 3.0,KY ,I = 0.1. The gainswereselectedthrough useof
the autotune algorithm available within the ROSPID package,which is basedon the Ziegler-Nicholsmethod
(Ellis, 2012). Autotuning was carried out whilst executing a demand trajectory along a 5m x 5m square.
The processwas repeated on different bodies of water, including a canal stream, a still lake in both calm
and windy conditions, and a working harbour with passingtraffic. The valuesobtained were then manually
averagedto provide a common set of gain parameters acrossall environments tested. The output range for
both controllers is normalised in the range − 1 to 1.

As the USV movesalong its path the location of the lookahead point x′ advances,and the USV is guided
as if being pulled towards the sliding lookahead point. The distance d can be adjusted by the choice of
lookaheaddistance h, with a shorter lookahead reducing d and hencethe path following error. A lookahead
distance of h = 2 m was found to give good performance for path tracking in the environments tested.

In situations when the heading error is large, for example immediately after a waypoint has been reached,it
is advantageousto prioritise heading error reduction over forward velocity. This is achievedby disabling the
thrust controller and halving the yaw controller gains when the magnitude of the heading error β exceedsa
user defined value σ, that is,

K ′
T , K ′

Y =

(
K T , KY , ∥β∥≤ σ
0, KY

2 , ∥β∥> σ
. (7)

A value of σ = 30◦ was found to give good performance.

The PID controller outputs are fed to a thruster arbitration algorithm, which maps the thrust and yaw
velocity demandsto the port and starboard thruster ESC commands,

Tport =
√
a2 + b2√
2

· cos
S
arctan 2(b,a) + π

4

S

Tstbd =
√
a2 + b2√
2

· sin
S
arctan 2(b,a) + π

4

S
, a,b∈ [− 1,1]

, (8)

which are functions of the orthogonal yaw and thrust velocity demands, representedasa and b, respectively,
and normalised between − 1 to 1. The same algorithm is used to arbitrate control commands from the



manual override. This algorithm is based on a method for mapping orthogonal commands such as those
from a joystick input to a differential drive, or skid-steer system, commonly usedon tracked vehiclessuchas
tanks (Taylor, 2010). It improvesoverbasicaddition/summation methodswhich can causethrust commands
of oneside to saturate when turning, thus limiting the maximum yaw rate.

Navigation is necessaryfor providing feedback to the guidance and control system. For this purpose, state
estimation of the USV’s 2-D location and velocity is achieved using an unscentedKalman filter (UKF)
with fusion of input from the GNSS, INS, and regularisation with an assumedmotion model. A UKF
implementation has been used from the open-source robot localisation packagefor ROS, which in general
is more stable and accurate than an Extended Kalman Filter (EKF) (Moore & Stouch, 2016;Wan & Van
Der Merwe, 2000). Other localisation algorithms exist, but these have not been evaluated (Dhariwal &
Sukhatme, 2007).

3.3 Side-Scan Sonar Image Processing and Analysis

The side-scansonarsproduce imagesfrom eachtrack in two frequency bands on the port and starboard sides
of the vehicle, i.e., 4 images per track. These are processedand analysed to generate simplified heat maps,
which are fused over multiple tracks and geo-referencedinto a world model for the situational awarenessof
the USV and human operators.

The reader is referred to Section 4.1 of the results to find representative examplesof the sonar images,which
will aid in understanding the sonar image processingand perception algorithms described in the following
sections.

3.3.1 Image Conditioning

Raw side-scanimagesare typically generatedwith 8-bit greyscalepixel intensity values,where echostrength
is represented in the range 0–255. Equivalently, this can be represented on a normalised scale of 0–1. Use
of the entire range is rarely achieved, as the minimum value corresponds to the absenceof any signal and
the maximum value corresponds to saturation or clipping. This tends to result in a low contrast image,
with pixel intensities not making full useof the available dynamic range. Contrast stretching has beenused
to expand this range thus enhancing image characteristics (Yang, 2006), as the initial stage of the image
processing chain.

Consider a raw greyscale image
iraw (u, r) ∈ [0,1], (9)

where u and r are along track and range directions, respectively, and pixel intensity values have been
normalised between0 and 1. The image after contrast stretching and normalisation is given by

i(u, r) =

S
SS

SS

0, i′ (u, r) < 0
1, i(′ u, r) > 1
i′ (u, r) elsewhere,

(10)

where
i ′ (u,r) = ( iraw(u,r) − IL + I0) /(IU − IL ) . (11)

The distribution of intensity valuesis shifted by I0, rescaledbetweenthe lower and upper bounds IL and IU ,
and clipped to remain within the range 0–1. The shift is selectedso that the expected median value of the
resulting image lies in the middle of the range. Using lower and upper bounds corresponding to the 15th and
99th percentiles of the expected raw intensity valueswasfound to provide good contrast with sufficient detail
in the highlights, and good depth in the water column and shadows. It is common in someimplementations
of contrast stretching to compute the parameters dynamically from the histogram of raw pixel intensities
(Young et al., 1998). However, fixed values of I0 = 0.2, IL = 0.4, and IU = 0.75 have been used to ensure
consistencywhen fusing results collected from multiple tracks.



3.4 Object Detection

For automated detection of targets, an approach based on 2D wavelet filtering and complexity mapping
(Geilhufe & Midtgaard, 2014) is used. Wavelet filtering is applied to emphasiseobjects with scalesthat are
consistent with the target body-like objects. The wavelet filtered imagesare then simplified using an image
contrast metric to quantify the feature complexity at these scales. Regions of high complexity are thereby
associatedwith high likelihood for the presenceof target objects (Fakiris et al., 2013;Williams, 2015).

3.4.1 Wavelet Filtering

The images can be represented by their wavelet decompositions,

I (u, r,s) = W
S
i(u, r) . (12)

The operator W
S
· performs the wavelet transform using a chosenmother wavelet function and produces a

multi-resolution set of sub-images. These contain wavelet coefficients (weightings) corresponding to resam-
pled image coordinates and are organised according to a hierarchy of wavelet scalesand orientations,

s =
h
s(1),s(2),··· ,s(N )

i
, (13)

where
s (n) =

h
s(n)A , s(n)H , s(n)V , s(n)D

i
. (14)

The superscript n ∈ [1,N ] denotes the integer scale level, and the maximum level N (corresponding to
the largest scalesand lowest spatial frequencies) is limited by the number of pixels in the image and the
chosenwavelet. The subscript m ∈ {A, H, V,D} denotesthe approximation (low-pass) coefficient and detail
(high-pass) coefficients for the horizontal, vertical, and diagonal orientations, respectively (S. G. Mallat,
1989).

Wavelet filtering canbe applied to retain only coefficientsat scalesconsistentwith the expecteddimensionsof
the target object. Thus, a wavelet filtered image is obtained by applying a scale-dependentwindow function,
followed by the inversewavelet transform,

ĩ(u, r) = W− 1SI (u, r,s) · fW(s) , (15)

where fW (s) is the window function.

A rectangular “band-pass” window,

fW(s) =

(
1, n1 ≤ n ≤ n2
0, otherwise

(16)

is usedto retain the scalesbetweenlevelsn1 and n2. The choiceof wavelet function is not critical (F. Adamo
et al., 2013), but the Daubechies 5-tap wavelet was found to provide satisfactory emphasis of the target
objects in the side-scan imagery with cut-off values of n1 = 5 and n2 = 7. Wavelet transforms have been
implemented using the PyWavelets library (Lee et al., 2019).

3.4.2 Image Complexity (“Heat”) Map

Regions of interest, containing potential target objects, are identified automatically by computing a com-
plexity map from the wavelet filtered image. The root-mean-square (RMS) contrast metric has been used
(Fortune et al., 2001;Peli, 1990) to quantify feature complexity, evaluatedover a sliding rectangular window.



The resulting complexity map is given by

c(u,r) =

vuuuuuut

P
p,q

ĩ (u + p∆u, r + q∆r)2

P
p,q

ĩ (u + p∆u, r + q∆r)

! 2 , p∈
S
− P
2

,
P
2

S
, q∈

S
−Q
2

,
Q
2

S
, (17)

This procedure is applied independently to both low and high frequency imagesand then averaged.

A window with dimensionsP = 48 and Q = 96 waschosenwith an aspect ratio of 2, roughly corresponding
to the dimensions of the target object. Sliding stepsof ∆ P = 4 and ∆Q = 8 wereusedasa trade-off between
smoothnessof the resulting complexity map and computational load. These simplified data products are
communicated to the end users instead of the more complicated sonar images. They are referred to as “heat
maps” due to the choice of colour scale, which usesred to represent regions of high complexity, indicating
likelihood of a target object, and blue for low complexity regions that are likely to be benign.

3.5 Floor Detection

The location of the water-floor boundary must be determined to facilitate removal of the water column
and to estimate the depth for geo-referencing the sonar images and heat maps. Wavelet filtering has been
used to isolate features of appropriate scale that are parallel with the path by adjusting the parameters
of the procedure described in Section 3.4.1 accordingly. This is followed by edge enhancement, using the
Sobel edge-detector (Sobel, 1970) and peak detection to determine the boundary, which is smoothed using
a moving averagefilter. The wavelet filtered image is given by

˜̃i(u,r) = W−1 SI (u, r,s) · ffW(s) , (18)

where

ffW(s) =

(
1, m = V, n ≤ nf
0, otherwise

(19)

is a “high-pass” window that isolates only the vertical detail coefficientss(n)V for scale levels nf and below.
Empirically, a Daubechies 5-tap wavelet and a cut-off scale of nf = 4 was found to provide satisfactory
emphasis of the water-floor boundary. The edge-enhancedimage is given by

î(u, r) = S
S̃̃
i(u, r) , (20)

where S {·} is an edgeenhancement operator. The Sobel operator with a kernel sizeof 7 points was found
to provide satisfactory enhancementof the water-floor boundary in this application, and was implemented
via the functions available in the Python Open Computer Vision library (Bradski, 2000). The range to the
boundary is estimated for eachalong-track position x by finding the onset of the peak in the edge-enhanced
image

Rmin(u) = argmin
r

S
î (u,r) sign(ρ(u) − r) + 1

2
− A ρ(u)

S
∗h (u) , (21)

where
ρ(u) = argmax

r

Ŝ
i {u, r} (22)

is the range at which the peak occurs,A is a fraction, and h(u) is a smoothing filter. A value of A = 0.6
and a 30-point moving-averagefilter was found to work well.

The approximate depth of the floor is then estimated along the track using the range to the nadir Rmin , and
the known sonar geometry

Z(u) = Rmin(u) cos(ϕ+ ∆ ϕ/2) + D, (23)



where ϕ is the declination angle, ∆ϕ is the vertical beamwidth, and D is the depth of the sonar transducer.
A constant depth with range is assumed, i.e. a flat bottom. The depth estimate is used in the image
geo-referencing process, described in Section 3.7.

3.6 Survey Planning and Execution

Survey plans are currently pre-defined by an operator, but executed autonomously by the USV. The plan
is specifiedmanually as a list of waypoints in longitude and latitude. The waypoints are converted to local
Universal TransverseMercator (UTM) coordinates before being passedon to the LOS controller described in
Section3.2. The LOS controller requires two waypoints, xa and xb, to definea track, as illustrated in Figure
8. Upon initialising the controller, the current position of the USV is taken as xa (previous waypoint), and
the first waypoint in the list is taken as xb (current waypoint). The USV is guided towards xb and, once
reached,xa is replacedby xb, and xb is replacedby the next waypoint in the list. A waypoint is considered
to be reachedwhen the distance to the waypoint |x − xb| < T is below a user-definedtolerance T, for which
T = 2 m has been found to be a suitable value. The processrepeats until the waypoint list is exhausted and
the survey is complete.

A typical survey pattern is comprisedof several“lawnmower” patterns of multiple straight tracks similar to
a paired-track survey (Hunter et al., 2018), with eachpattern oriented at a different fixed angle. Multiple
orientations are used in order to observethe floor from different look angles, thus increasing the likelihood
of detection (J. Fawcett et al., 2010; Zerr et al., 1997). More orientations with smaller angular increments
provide a more thorough searchat the cost of a longer survey duration and this leads to a trade-off.

3.7 Situation Map

A world model is created and maintained as the USV collects and processesdata throughout its survey.
This is stored in the form of a layered situation map, which is updated and communicated in real-time. It
conveys information obtained from the survey (i.e., geo-referencedsonar images and heatmaps), the survey
plan and execution status (i.e., waypoints, planned and executed tracks), and USV state information (i.e.,
position, speed,and heading), all overlaid on a satellite map. Currently, the situation map acts as a high-
level interface to the operator. In the future, it will be the basis for feedbackinto a deliberative controller
for task planning, sequencing,and execution.

3.7.1 Geo-referencing

The sonar images and corresponding heatmaps from eachcompleted track are geo-referencedand presented
as layerswith adjustable transparency on the map. The geo-referencingis performed by splitting eachimage
(and heatmap) into multiple along-track sectionsof length L from uk to uk+1 = uk + L. Each section is
interpolated from local imagecoordinates (u, r) into the global coordinates (x, y) via a projective transform
to build a geometric map (Burguera & Oliver, 2016). Thus, a geo-referencedimage from a track comprised
of K sections is given by

i(x, y) =
KX

k = 1

Pk {i(u,r)} , (24)

where the projective transform for the kth section

P k { · } : u k,v k,u k+1,v k+1 → η k,ξ k,η k+1,ξ k+1 (25)
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Figure 9: Geometry for geo-referencingone section of a sonar image, illustrated for the port side.

is defined by mapping its corners (i.e., the minimum and maximum rangesat the beginning and end of the
section)

uk =
S

uk
Rmin(uk)

S
(26)

v k =
S

uk
Rmax

S
(27)

to the appropriate locations on the floor

ηk = xk ± Ymin(uk )
S
sin(θk )

− cos(θk)

S
(28)

ξk = xk ± Ymax(uk )
S
sin(θk )

− cos(θk)

S
, (29)

where the + or − are used for the port and starboard sides, respectively. This mapping is illustrated in
Figure 7 and described in Figure 9. The locations on the floor are determined from the measuredposition
xk and heading θk of the USV, together with the estimated distance along the ground to the observed
water-floor interface

Ymin(u) =
p
R(u)2 − Z(u)2 (30)

and the ground distance
Ymax(u) =

p
R2
max − Z(u)2 (31)

to the maximum observedrangeRmax .

Here, images are divided into sections of length L = 1m. Sections that are within the tolerance distance
T of the waypoint are also removed to exclude severelydistorted projections that occur during turning, as
demonstrated in Figure 7b.

3.7.2 Heatmap Fusion

The geo-referencedheatmaps produced from all of the tracks are collated at the end of the survey to
fuse processed information which has been gathered from multiple orientations. This concept has been



shown to improve performanceof ATR algorithms (J. Fawcett et al., 2010; Zerr et al., 1997). A simplified
implementation is usedhere, by firstly applying a minimum threshold Cmin to the individual heatmaps so
that only excessvalues of significance are accumulated

C(x, y) =

(
0, c(x, y) < Cmin

c(x,y) − Cmin, c(x,y) ≥ Cmin
. (32)

These are then averagedacross the tracks to produce an overall heatmap for the survey

H (x, y) = 1
M

MX

m
Cm (x, y) (33)

whereM is the number of tracks. A threshold of Cmin = 0.075wasfound empirically to provide good target
/ background discrimination.

4 Field Deployment and Testing

Field experimentation has been carried out at severaldifferent locations in the West of England, including
the Kennet and Avon Canal at Bathampton (Figure 10a) and Bristol Harbour (Figure 10b). These were
chosenas convenient, yet realistic locations for a police searchoperation. The water depth is approximately
1.5m at the Bathampton canal and approximately 5m at Bristol Harbour. The floor in both locations is a
muddy sediment. The results detailed hereare from an experiment conducted from Underfall Yard in Bristol
Harbour, UK, in July 2021,shown in Figure 10b. This is a representative test location, with severalhuman
bodies retrieved from Bristol Harbour in recent years (Brock, 2019; Gillespie, 2021; Gogarty & Mercer,
2021).

A plastic mannequin approximately 1.8m tall has been used as a test target to resemblean adult human
body. The mannequin hasbeenclothed, asshownin Figure 10c, to provide amore realistic acoustic scattering
signature. When deployed, it is weightedwith a small sand-filled plastic weight causing it to fill with water
and sink to the floor. A loose rope is also attached and tethered to the shore for recovery afterwards.

4.1 Representative Images from Bristol Harbour

Figure 11 showsan example of the raw and conditioned imagesproduced from a representative track during
the field experiment in Bristol harbour. The imagescanbe interpreted asexplained in Section 2.2 and details
of the conditioning are given in Section 3.3.1. The conditioned image in Figure 11d is the result of contrast-
stretching. It hasa sharper water-floor boundary, clearer textures, and the target object is more prominent.
The target is clearly visible on the port side as a highlight and shadow of the expected dimensions. The
floor is at a depth of approximately 4m and is predominantly soft sediment with a moderate and consistent
level of reflectivity. A sparsedistribution of small, bright features can be seenagainst the floor and theseare
likely causedby hard debris on the floor or possibly individual fish. The harbour wall can be observedat
longer rangeon the starboard side asa strong, roughly linear highlight. The region behind the wall doesnot
present any meaningful features, as it relates to areas the sonar signal cannot physically reach. A region of
floor with strong reflectivity extendsin front of the wall and this is causedby a changein material properties
from soft sediment to hard foundations.

Two bubble plumescan be seenin different parts of the images. The plume in the port-side water column has
beengeneratedby the USV thrusters from a previous track. The other plume, which cuts acrossboth images,
was generated by a larger vesselthat passedthrough the survey area earlier. The plumes are somewhat less
pronounced in the high-frequency, 990kHz image, most likely due to the sizeof the air bubbles more closely
matching the acoustic wavelength at 450kHz. A shoal of fish appears near the nadir gap on the starboard



(a) Bathampton Canal, with earlier PRIME-3 prototype (b) Bristol Harbour, with latest PRIME-4 prototype

(c) Clothed mannequin test target

Figure 10: Selection of photographs from the various field experiments.



side in the high-frequency image, while this has been mostly obscured in the low-frequency image by the
bubble plume.

The two frequency bands provide complementary image properties. The image resolution and contrast is
higher at 990kHz due to the more directive beam compared to 450kHz. This can be seenin the zoomed
imagesof the target in Figure 11. On the other hand, the higher frequenciesaremore heavily attenuated and
this limits their operating range. Consequently, systemnoisecan be seenappearing at longer rangein the 990
kHz image (i.e., beyond approximately 12m). The noise is exaggeratedwith range becausea time-varying
gain is applied to compensatefor the acoustic spreading and (frequency-dependent) attenuation loss.

There aresomefeatures in the imagesthat do not correspondto the underwater environment but are artefacts
of the system. A low-intensity strip is visible on the floor at closerange on both sidesin the 990 kHz image.
This is causedby a null and sidelobe of the vertical sonar beam, which is narrower at the higher frequency.
These beam patterns can be compensatedusing intensity correction techniques (Burguera & Oliver, 2014)
but, in this system, the region is coveredadequately by the low frequency band. Despite efforts to minimise
electrical interference, some cross-talk from out-of-band harmonics generated at 450kHz is present. This
manifests as a narrow noisy feature in the water column of the 990 kHz images that is symmetrical about
the port and starboard sides.

The wavelet filtered result of the 990kHz image is shown in Figure 12a. It demonstrates enhancement of
features corresponding to the target, whilst other details such as changesin the floor texture have been
reduced. Some non-target features are still retained, however, such as the shoal of fish due to its similar
dimensionsto the target. The subsequentheat map is shownin Figure 12b. While the heat map hascorrectly
highlighted the target object, it has also produced a falsepositive for the shoal of fish and the harbour wall.
Furthermore, it has resulted in a false negative in the view from a different track in Figure 12e due to an
unfavourable sonar viewing angle as well as another false positive. These issuesare mitigated by fusing the
information gathered over multiple views from the different tracks, as illustrated in the next section.

4.2 Autonomous Survey in Bristol Harbour

A pre-planned survey pattern was defined over a rectangular region of 50m × 30m, with its longest edge
adjacent to and aligned with the shore. Survey waypoints werearrangedwithin the region to form a sequence
of six overlapping “lawnmower” patterns of multiple tracks, with an averagepattern length of 550m each.
The spacing between tracks was 2.5m to provide overlap and nadir coverage. Each pattern was rotated by
stepsof 15◦ in the range from 0◦ –90◦ to provide multiple viewsof the floor (either from the port or starboard
side of the vehicle) distributed uniformly over the full range of 360◦. The cumulative length of the survey
was3.3km with a duration of 45minutes at the nominal vehicle speedof approximately 1.2m/s. The target
was deployed approximately 20m from the shore and 10m from the South-West edgeof the survey area.

The full survey plan of overlapping patterns is shownin Figure 13a. A single pattern from this plan is shown
in Figure 13b alongside the actual path executedby the USV. Someovershoot and recoverycan be seenat the
endsof the tracks and there is also an offset of approximately 1m causedby the LOS controller overcoming
the water current. Figures 13cand 13d showtwo other patterns from the survey with the emphasizedtracks
corresponding to the example images used in Figures 11 to 12.

The USV executed the plan and communicated the situation map to shore in real-time. Figure 14 shows
severalviews of the situation map throughout the survey.

The geo-referenced990kHz side-scan sonar images from one of the tracks (Figure 13c) is shown in Figure
14a,where it is overlaid asa layer on the satellite view. The features from the harbour wall and foundations
(shown in Figure 11 and describedin Section 4.1) can be seento align well with the satellite view. Moreover,
the target can be observedat the known deployment location. The correspondingheatmap layer (Figure 12b)
is shownin 14bwith the target highlighted clearly in red. However, the harbour wall hasalsobeenidentified



(a) (b)

(c) (d)

Figure 11: (a, b) Low and (c, d) high frequency side-scan images, before and after conditioning. The
mannequin target is indicated by the zoomed inset figures.



(a) (b)

(c) (d) (e)

Figure 12: Wavelet filtered imagesin (a) and (d) with corresponding heatmaps in (b) and (e), respectively,
resulting in a mixture of good and poor detection performance. The blue-white-red colour scalerangesfrom
0.075 to 0.2.



(a) Complete survey plan (b) Planned vs actual pattern

(c) Planned track in Figures 14a, 14b, and 14c (d) Planned track in Figure 14c

Figure 13: Survey plan and execution during the autonomous survey in Bristol Harbour, covering a 50m ×
30m searcharea with 6 overlapping “lawnmower” patterns with 2.5m inter-track spacing. The actual path
taken (b) showssomeoffset due to water current. The white boxes in (c, d) indicate the target location.



(a) Geo-referenced sonar image from Figure 11d (b) Geo-referencedheatmap from Figure 12b

(c) Overlaid heatmap from Figure 12e (d) Fusion of all geo-referencedheatmaps

Figure 14: Situation map through various stagesof the autonomous survey in Bristol Harbour. The dashed
white lines showplanned paths and the solid white lines showactual paths. The red-white-blue colour scales
in (b,c) and (d) range from 0.075–0.2and 0–0.015, respectively.

asa falsepositive. The heatmap from another track (Figure 13d) is shownoverlaid simultaneously in Figure
14c. In this case(Figure 12e) the target has not beenwell identified and there is another false positive. The
imperfections from the individual tracks motivates fusing the heatmaps from multiple tracks.

The final fusion of heatmaps from all of the tracks was generated at the end of the survey and is shown
in Figure 14d. The accumulation of true positives has led to a clear indication of the target location and
the various false negatives and positives have been suppressedthrough averaging. This is the key output,
produced autonomously in real time by the system, that provides actionable intelligence to the dive team.

5 Discussion

Results from field testing of PRIME have shown that the current prototype can autonomously navigate
a region defined by GNSS waypoints, map the underwater spacewith side-scan sonar sensors, and detect
and localise a human body shaped object located on the floor. The system presents actionable intelligence



to the user in a simple and meaningful manner as shown in Figure 14d. The fusion of results from six
survey patterns as illustrated in Figure 13, with an averagepattern length of 550m each, and total length
of 3.3km was produced in under an hour. In contrast, a single pattern would take over four and a half
hours if carried out manually by a professional diver swimming at a moderate speedof 0.5m/s (Wojtk´ow
& Nikodem, 2017). The heatmap effectively shows the target location, as well as benign regions, allowing
for the area to be more efficiently searchedby prioritising regions of interest. This outcome supports the
feasibility, viability, and utility of using an autonomous robotic aid for police and emergencyunderwater
search operations. Additional prior information of a search region increasesthe likelihood of a successful
outcome,and minimising the time spent in the water inherently increasesdiver safety (Erskine & Armstrong,
2021). In caseswhere a site requires revisiting, the georeferencedheatmap produced in Figure 16d allows
for the searchregion and featureswithin it to be accurately located.

Further development is required to produceamore robust and reliable system. For instance, the waypoint list
is generatedmanually for a given searcharea and time-frame, thus requiring the operator to understand the
sonar coveragerequirements and geography. Ideally, the searchpatterns would be generated automatically,
taking into account land-water boundaries and water depths, as well as user-defined mission parameters
such as areas of interest and exclusion zones. Furthermore, the system currently lacks the capability to
autonomously detect and avoid obstacles and thus requires monitoring by a user to implement a manual
override when necessary. This problem is a well documented area of research (Mousazadeh et al., 2018;
Polvara et al., 2018; Wu et al., 2017), and further tests are required to evaluate which approach is most
suitable for PRIME.

The path following controller described in Section 3.2 hasbeenfound to be robust enoughto give sufficiently
smooth, straight paths that provide good quality, undistorted imagery. However, since deviations from a
linear track causesimage distortion, in the future it may be desirable to include correction methods that
compensate for vesselmotion e.g. (Blondel, 2009; Burguera & Oliver, 2016) to ensure robustness under
heavy currents or winds. Open source versions of several of these processing techniques have been made
available (Buscombe, 2017).

A pragmatic approach has been taken to improve target detection quality and lessenthe impact of false
positives and negatives whereby multiple sonar images are analysed, taken from different positions and
orientations, and also from two frequency bands. However, performance has not been evaluated in heavily
cluttered environments, which may result in increased false positives during object detection using the
current methods described in Section 3.4. Nonetheless, the experiments shown in Section 4 prove the system
concept, as an end-to-end solution in a representative environment. Future work will evaluate more diverse
sitesand scenarios(e.g. varying water depths, bottom types, andmore cluttered environments). Autonomous
identification of smaller objects suchasweaponsor IEDs, and discrimination betweenmultiple object types,
including potential hazards (e.g., sharp objects, entanglement risks, etc) will require a more sophisticated
sensing and / or machine learning approach. However, any algorithms developed in the future can easily
integrated by virtue of the modular nature of ROS. Similarly, additional sensorscan be added to improve
target detection and classification capabilities.

Somefurther refinement is necessaryfor an end product. The current power electronics setup usesmultiple
batteries running at different voltages powering components independently. While this has been acceptable
during development,it would be impractical in an operational system. In future prototypes, all moduleswill
share a single battery bank (e.g., 6SLiPos at 25V), battery managementsystem, and regulated power rails
of 5V and 18V that is accessiblevia a common charging port but electrically isolated to avoid interface.

The current communications architecture relies on a single Wi-Fi network set up from a router situated
on the shore. This single-network architecture is simple and has been convenient for development, but its
weaknessis that critical communication between the onboard computers is disrupted when the channel is
blocked, e.g., when the vehicle travels out of rangeor is occluded. Future improvement to the communication
architecture will useseparatebridged networks onboard the USV and on the shore, and compatibility with
cellular networks. Furthermore, in operational missions, it will be crucial to use encrypted networks (and



onboard memory) for cyber security and data protection.

6 Summary

An autonomous robotic concept for aiding police and emergency service divers has been introduced and
demonstrated. This paper hasdocumentedthe designof the PRIME USV prototype and its field deployment
in a representative real-world environment for the relevant use caseof body recovery. The experimental
results have shown that the system can autonomously produce actionable intelligence on the underwater
situation and communicate this to the dive team in real-time (i.e., a simple geo-referencedmapdemarcating
areasof interest). This hasutility for enhancing the efficiency of underwater searchoperations by potentially
reducing the time wasted manually searching empty areas. Furthermore, it can enhancesafety in the same
way by reducing the time that divers need to spend in the potentially dangerousunderwater environment.
Theseoutcomessupport the feasibility and viability of the concept.

This is the groundwork for a future operational concept in human-machine cooperation within the police
and emergency services. Reaching this vision will require further researchand development to elevate the
prototype to a higher level of autonomy and technology readiness. To this end, future work will explore
the use of more advanced perception and control algorithms (e.g., deep learning, active learning, etc.)
to improve the quality of situational awarenessand autonomy. It is expected that this will enable more
sophisticated decision-making that allows the systemto carry out more challenging tasks, adapt to uncertain
environments and unexpected situations, and be trusted to operate safely and effectively with minimal
training and oversight.
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