
 1

Unity Underwater ROV Simulator
Kun Seng Vu

Macau Anglican College, Macao SAR
(rickyvu189@gmail.com)

Abstract— The purpose of this paper is to describe an array
of tools for simulating underwater vehicles in the virtual
reality software platform Unity. The advantage of using
Unity is that it provides a helpful interface to modify an
object’s attributes and its scripts easily. This allows the user
to change and adapt the simulator to different
environmental situations.

The concept consists of using functionality scripts for
control and add-on scripts to compute water physics. The
add-on scripts can be used to test ideas that extend the
capability of the pre-existing rigid ROV body system. There
are two basic scripts needed; one for buoyancy and another
for drag. Unity’s rigid body system does contain a primitive
option for adding drag to an object. However, it is a rough
estimate only providing a force that counteracts the velocity
of a moving object at its center of mass. This would be
acceptable for a simple 3d shape but not for the complex
shape of an ROV. Therefore, a more intricate drag script
algorithm is required.

The main purpose of developing accurate simulation scripts
that are true to nature is to keep the simulation close to
reality. The main constraint that needs to be considered is
to maintain computational complexity at a reasonable level
that allows the average computer to run the simulation at
60fps.

The end result is an easily accessible simulated environment
for testing the system software and the design of ROV and
AUV. A model of the vehicle can be added into the
simulation. By using Unity’s sockets feature, camera footage
of the simulated environment can be sent to the main system
software where calculations can be done. The results of the
calculations can be sent back to the simulation to adjust the
movement of the vehicle. By adding simple models for
props, it is possible to also test computer-vision related tasks
with this simulation.
This paper specifically details the simulations used to test the
2019 Macau Anglican College ROV in the Unity Software in
preparation for competitions.

Keywords: ROV, AUV, Simulation, Unity Software, Unity
Scripts, C#

I. INTRODUCTION

Simulation software is software that models the design and/or
performance of products under different conditions [1]. It is the
imitation of the performance of an object experiencing known
conditions over time [2]. It is extensively used in the fields of
engineering, physics, chemical science, biology and medicine
[1]. Simulation modeling helps engineers and designers to
understand the performance of applied designs without actually
performing any physical operation [3]. Given that the testing
environment can also be part of the simulation, there can be
considerable savings in costs, manpower and time.

It is important to mention that a simulation is usually based
upon a set of mathematical equations that are representative of
the equipment being observed, the surroundings and the
environmental conditions the equipment is being tested for. It
is only an imitation [4]. It does allows repeatability a very
important aspect of science and in this case the analysis and
further collection of data.

Simulation software has been used to design and test equipment
like buildings, bridges, cars, aircraft and space vehicles. It has
also been used to assess the performance of equipment and
materials in specific situations.

The main purpose is for us to test the system software of our
ROV and potentially a future AUV. Since this simulator is
accessed through Sockets, it is a completely isolated system
capable of running on its own. This means we can connect any
system programs to it as long it has the appropriate socket
connection. This is the most important aspect as this means we
can easily reuse the same simulator to assess the system
software of other ROVs/AUVs.

It can also be used to do a variety of different tests. The setup
of the underwater vehicle is a major concern. We can know if
the thruster setup and directions will affect the movement
stability. By assembling the vehicle’s thrusters, ballasts and
floats in simulator, it is possible to identify the best
combination between mobility and stability for our design.

Another thing we can find out is the speed the ROV/AUV can
achieve. By experimenting with a real thruster, gaining data and
input it into the simulator, we can have a general idea of the
maneuverability of the underwater vehicle. This is especially
important as both fine precision control and fast mobility are
crucial in a task completion competition setting.

As mentioned before, the repeatability of a simulator can be
used to generate large amounts of useful data. This means we
can create many scenarios to test out our computer vision tasks.
For example by changing the shades of color and/or adding
slight shadows to test the robustness of our computer vision
programs.

Another useful aspect of the simulator is that it can potentially
be a tool for pilot training. Since every in-water test is time
consuming and halts most of the team development/production
time. By completely isolating pilot training from water/tool test
can improve team efficiency.

II. GENERAL PROGRAM STRUCTURE
The code was written completely in Microsoft’s C#
programming language, version 8. There were a total of 6
objects set up in the Unity software for the simulation. 3 were
for the ROV and 3 were for the environment. Note that two
environmental objects were set up even though their use would
depend upon the simulation being carried out. These have been
listed below:

 2

i.Objects in the simulator

1. ROV
• Main body
• Thrusters
• Camera

2. Environmental
• Floor
• Pool side walls (Optional)
• Props for testing the vehicle (Optional use)

All of these objects are quite obvious and were set up and
configured in the software. This all forms the software versions
of the ROV hardware and the environment.

A total of 6 scripts were then written to act or influence the
objects that had been set up as listed above in section A [5].
These had to do with the movement of the ROV; Movement and
Thrusters. Scripts were also written for the forces that could
influence the ROV movement; Buoyancy and Drag. Two
scripts were dedicated for the software use; Camera recording
and a Socket Server. The latter is an interface into the
simulation software for data flow in either direction. A detailed
description for each software script is included below.

ii. Software Scripts

• Movement
• Socket server
• Thrusters
• Camera recording
• Buoyancy force
• Drag force

a. Movement
This script is used to move the simulated vehicle directly
through simple key bindings allowing the simulated ROV to
be controlled directly from the computer keyboard. This was
added for testing the simulator without needing to connect to
the entire ROV/AUV system. Hence, this script was designed
to be as simple as possible.

b. Socket
The simulator program needs a way to connect with the
ROV/AUV system. This is done through the use of socket I/O
[6]. The simulator and control program can act as clients to
connect through an external socket server.

The socket feature offers many possibilities. It provided a way
to test our control programs. The control program is used to
send commands to the simulator to move the simulated vehicle
and to interact with the simulated environment. A simulated
camera recording can also be sent through the socket.
Programs can then decompress and process the data just like
camera feeds from real life cameras. This enables the testing
of computer vision programs.

c. Thruster

This script was designed so that each thruster could be
assigned an address. The control program then only has to send
a command that consists of a target address and power level to
operate a thruster. All thrusters receive these commands and
the thruster object code checks the received address data for a
match. If an address match is confirmed, then the thruster uses
the power level to set the thruster speed.

Figure 1. A screenshot showing 45 degree thruster angle on
two thrusters

Physically in the simulation, the thruster will apply the force
towards the direction it is facing. So each thruster pointing
direction is angled manually when assembling the virtual
vehicle. This is an important consideration since real, non-
simulated, ROVs have thrusters aimed at slight angles for
stability and to ensure the ROV will travel along a straight
trajectory. Figure 1 shows a screen shot of a simulated vehicle
with a thruster angle of 45 degrees on the two rear thrusters.

d. Camera Recording
The camera recording script is fundamental for testing
computer vision tasks. This allows for re-runs of what the
simulated ROV “sees” as it moves about in the simulated
environment.

Most of the code is standard, used in Unity in-game cameras.
[7] However, after acquiring the photo, we will encode it and
store it as a variable. It is compressed to PNG format to
improve data transfer when the image is transported through
sockets to the ROV/AUV system.
e. Buoyancy
The buoyancy of the simulated ROV had to be calculated and
the value depends upon several factors.
Usual formula in physics
Traditionally the calculation uses a simple formula as shown
below.

 Fb = ρgV

Where:
Fb - Buoyancy force that is acting on the object
V - Submerged volume of the object
ρ - Density of the fluid the object is submerged in
g - Acceleration due to gravity

Figure 2. Demonstrating how buoyancy affects an object in water

However, in this case, Density and gravitational acceleration
are preset values from the user. This means we only need to
find the volume of the object to acquire the buoyancy.

 3

There are two options here. One is to measure or calculate the
volume of the object in real life. The other method is to calculate
mass over density for the object.

 V = m/ρo

Where:
V - Submerged volume of the object
M - Mass of the object
ρo - Density of the object

The first method is relatively simple at first glance, especially for
the cases when the single object may be composed of a couple
different materials. However, the drawback is that it is difficult
to measure the volume for objects with irregular geometry.
Measuring by water displacement is possible, but not an ideal
solution.

Alternative formula
An alternative method of calculating buoyancy exists that
requires the density and mass of an object. Mass of the ROV
can be measured using an electronic balance. Density can be
searched up online. An example would be this: [8]

 Fb = gmρf /ρo ,

Where:
Fb - Buoyancy force that is acting on the object
ρf - Density of the fluid the object is submerged in
ρo - Density of the object
m - Mass of the object
g - Acceleration due to gravity

We can use this formula to calculate the buoyancy force. Then
multiply this force to a vector pointing upwards. Then add this
force to the object constantly.

Figure 3. A ROV working with buoyancy. The 4 gray boxes on top
of the ROV are the floats. Green lines represent the buoyant force
of the float.

f. Drag
Usual formula in physics

 Drag force = ½ CρAp (v²)

Where:
C - Drag coefficient
AP - Area of the object facing the fluid
ρ - Density of the fluid
v - Velocity of the object

In this case, we can simplify this slightly since the density of
fluid remains the same. All the constants can be grouped
together as one.

Modified formula

 Drag force = CAP(v²)

Where:
C - Drag coefficient (which includes ½ and ρ)
AP - Area of the object facing the fluid
v - Velocity of the object

This simplifies the tweaking process since only one value
needs to be changed instead of two. The calculation for drag
also requires the surface area of the object. However, Unity
doesn’t provide this information to users, therefore, an
indirect method must be used. This method involves using
meshes.
Explanation of Meshes

A mesh consists of triangles arranged in 3D space to create the
impression of a solid object. Each triangle is defined by its
three corner points or vertices.

Figure 4. A visual mesh showing the position of the vertices and
edges.

Mesh Calculations

By using the vertices of each mesh, we can calculate the
center point of each individual mesh triangle. Suppose we
have 3 coordinates, each one for one corner of the mesh
triangle. We can call them V1, V2 and V3.

(x1, y1, z1) ...V1
(x2, y2, z2) ...V2
(x3, y3, z3) ...V3

The center point will then be adding up their components
individually and dividing by 3.

 x1+x2+x3 , y1+y2+y3 , z1+z2+z3

 3 3 3

Vector for the edges can be found by subtracting V2 from V1
and V3 from V1

VA = V1-V2 = (x1-x2, y1-y2, z1-z2)
VB = V1-V3 = (x1-x3, y1-y3, z1-z3)

By using the cross product on the 2 edge vectors (a & b), the
result is another vector, a normal vector, that is orthogonal to
vectors a and b. The magnitude of this normal vector is the area
of a parallelogram formed by vectors a and b. Dividing this by
2 will give us the area of the mesh triangle. See the formula
below:

 V A×V B
 2

VN =

()

 4

Figure 5. Visual representation of cross products between two
vectors

The Unity software has some inbuilt functions that can be used
to calculate several parameters from mesh vectors. From these
functions it is possible to determine the direction the mesh
triangle is moving in.

Projected area can then be found by evaluating the dot product
between Velocity and cross product of the two edges. This can
be represented by the following formula. The visual
representation is in Figure 6.

 AP = V ·V N

Figure 6. Visual representation of dot product between vectors a &b
Dot product is the length of a1 multiplied by the length of b (scalar)

The drag coefficient (C) comes from user input. So this means we
have all the required data for calculation of drag.

 FD = CAP |V |2

Drag is merely a value; we still have to apply it as a force onto
the correct position. Since drag is the force against velocity this
force will be in the opposite direction as velocity.

Last step, because we measured velocity at the center of each
mesh triangle, the drag force is applied to its respective mesh
center. This last step makes the model complete.

 V
 |V |

Fig. 7 A simple ROV shown with drag. Green lines represents the
force of drag

III.LIMITATIONS
There are some drawbacks involved with this method. Drag in real
life applies to every point on the surface of an object. This
algorithm only applies drag to the center of the mesh triangles that
make up the object. The accuracy will heavily depend on the
number of triangles forming the object. In theory, 3D models with
more triangles should give a more accurate result. But this will also
requires more computational power. Therefore, shapes such as
cylinders are made into hexagons and small details are removed for
a smoother result in terms of viewing the simulation.

Another issue is with the simulation of the drag. This program
assumes that the object being tested is totally exposed and not
protected from any current producing drag. This applies to any
objects inside the object (ROV). This means that 3D models
cannot have much space inside them to help reduce the exaggerated
drag force calculated.

IV. FUTURE IMPROVEMENTS

Currently, the simulator considers the whole environment as
underwater. One refinement would be to define an area as
water and only apply the buoyancy calculation to the sections
of the ROV that are actually underwater. This would help
simulate the performance of the ROV at the surface, allowing
for more accurate simulations to be performed.

Another enhancement is to better utilize the Graphics
Processing Unit (GPU) for better performance. Currently this
simulation, using basic, relatively simple geometry can barely
reach the viewing update speed of 60 fps. The CPU may not be
an efficient enough method for simulating complex geometry.
Better use of the GPU may solve this problem.

V. CONCLUSIONS

This simulator is a useful tool for testing the movement of an
ROV. Moreover, it is an essential tool for the testing of
computer vision programs. The versatility and repeatability of
this simulator is the main advantage. It can greatly assist the
development of ROV and AUV.

The programming is in C#, and uses a simulation / game
platform, Unity, to model gain information and experience on
something that is essentially engineering.

It is an example of the application of vectors, dot product and
cross products as well as a direct theoretical application of the
formulas of forces, buoyancy and drag. This project allows
users to see how close simulations can be to the real thing.

VI.ACKNOWLEDGEMENTS

This project would not have been possible without the generous
support of the Macau Anglican College for providing me with
resources and workspace. The FDTC were generous with the
provision of funding for this project. My Mentor, Mr Andy Tsui,
for giving me support and guidance. Finally, the IEEE for the
chance to attend the HK IEEE CE/OES YE20 Conference. Thank-
you all.

FD × VD =

 5

VII. REFERENCES
[1] Pfluger, D., Valintin, J., Mehl, M., Lindner, F., Pfander, D., Wagner,

S., Graziotin, D., Wang, Y., (2016). The Scalability-
Efficiency/Maintainability-Portability Trade-Off in Simulation
Software Engineering: Examples and a Preliminary Systematic
Literature Review Retrieved from:
https://www.researchgate.net/publication/318224822. Accessed: 1st
Dec. 2020.

[2] Shannon, R.E., 1975. Systems Simulation – The Art and Science,

Prentice-Hall.

[3] Banks, Carson, Nelson & Nicol. “Introduction to Simulation”.

Retrieved from:
https://cs.wmich.edu/alfuqaha/Spring10/cs6910/lectures/Chapter1.pdf
Accessed 28th Nov. 2020.

[4] Ingalls R. G., (2008) Introduction to Simulation. Proceedings of the

2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L.
Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

[5] Technologies, Unity. “Creating and Using Scripts.” Unity. Retrieved

from:
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html.
Accessed 1st Feb. 2021.

[6] Karelz. “System.Net.Sockets Namespace.” Microsoft Docs.

Retrieved from: https://docs.microsoft.com/en-
us/dotnet/api/system.net.sockets?view=net-5.0. Accessed 1st Feb.
2021.

[7] Technologies, Unity. “Camera.” Unity. Retrieved from:

https://docs.unity3d.com/Manual/class-Camera.html. Accessed 1st
Feb. 2021.

[8] “Densities of Materials.” Engineering ToolBox..Retrieved from:

https://www.engineeringtoolbox.com/density-materials-d_1652.html.
Accessed 1st Feb. 2021.

[9] Technologies, Unity. “Mesh.” Unity. Retrieved from:

https://docs.unity3d.com/ScriptReference/Mesh.html. Accessed 1st
Feb. 2021.

View publication statsView publication stats

https://www.researchgate.net/publication/351747090

