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ABSTRACT
This article focuses on passive self-management of the umbilical of a Remotely Operated Vehicle
(ROV) for underwater exploration. The goal is to give a predictable shape to the umbilical, using
moving ballasts and buoys to stretch the umbilical and so to avoid entanglement of the cable itself
or with surrounding obstacles. The ballasts and buoys move by themselves to maintain the cable
taut without a motorized system. A model of the umbilical is proposed. The presence of waves, as
well as the cases with and without currents are considered. Three configurations of the umbilical
are proposed, each one to be the most adapted to ROV exploration missions: near the surface, sea
exploration, and diving in presence of large obstacles.

1. Introduction
The underwater umbilicals are used to link an underwa-

ter Remotely Operated Vehicle (ROV) to a control unit or
a Human-Machine Interface usually placed on a boat. This
umbilical, or tether, can have three objectives: first the trans-
mission of data in real time in both directions, i.e. real-time
video feedback, control inputs, instrument measurements...
(see [5, 19]), seconds provide energy to the ROV, third to
avoid losing the robot during the exploration [17]. Umbili-
cals have however many drawback like collision with obsta-
cles, umbilical inertia and drag forces impacting the maneu-
verability of the ROV, entanglement, cable breakage due to
the vehicle’s mass, etc... The umbilical’s design is therefore
a trade-off between the umbilical constraint, battery power
and real-time feedback in the ROV performance [6].

The knowledge of the umbilical’s shape has two main
interests. First, designing the umbilical’s parameters before
the dive allows to avoid problems of weight, and to limit the
risk of entanglement for example by avoiding the use of a
cable unnecessarily too big or too long. Second, knowing
the umbilical shape in real time during the dive allows an
operator to prevent the self entanglement or with an obsta-
cle already known in a mapped environment or detected by
sensors (sonar, vision...). So in the literature, the umbilical
has been modeled and instrumented to provide a feedback
on its position and shape. Two main categories of methods
exist in the literature: the detection of the umbilical using vi-
sion [15, 14, 16] and/or sensor placed directly on/in the um-
bilical to obtain a feedback on its shape [10, 7], or a direct
modeling of the umbilical using only boat and ROV position
[11, 12, 9], sometimes including an a-prior knowledge of the
sea current. The main advantage of the first category is the
accuracy of the estimated shape, often in real time. How-
ever, these strategies require specific umbilical equipments
often expensive with a complex sensors’ setup, making the
modeling methods very attractive for a cheap obstacle avoid-
ance. This second category of methods have also the advan-
tage of being implementable for all kinds of umbilicals, but
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are often less accurate and cannot always provide results in
real-time.

Several methods exist to model the cable’s shape and dy-
namics, from simple geometrical models like catenary curve
[20] to chains of segments with geometrical constraints like
in [11]. These methods are perfect to simulate a large num-
ber of segments in real-time and are memory efficient when
an accurate physical model is not necessary. When an accu-
rate knowledge of the cable dynamic is required, the Lumped-
mass-spring method [4, 12, 13] and the segmental method
[8, 9, 2] are mostly used. The first method models the um-
bilical as mass points joined together by massless elastic ele-
ments, the second describes the cable as a continuous system
and numerically solves the resulting partial differential equa-
tions.

The umbilical can also be equipped. A TMS (Tether
Management System), a subsea winch controlled by a hu-
man operator and attached to the ROV cage [1], can so be
used to regulate the amount of tether cable and thus keep
the umbilical taut. This system is however heavy for the ca-
ble, and its operation can be a complex task. Some works
try to automate or replace it by another vehicle like a USV
[21], secondary ROV or several ROVs [16] or a motorized
plug/float assembly [3]. However, all these systems require
to be managed by an operator in real time, using the knowl-
edge of several ROV’s parameters, like the position.

This paper proposes a passive self-management of the
umbilical of an ROV for underwater exploration using mov-
ing ballasts and buoys, withoutmotorization. Since the shape
of the umbilical can be complex to predict when it moves
freely, we propose to add ballasts and buoys to introduce ten-
sion inside the cable and to stretch it, and so make its shape
assimilated to predictable straight lines. In this perspective,
this paper proposes:

• three equipments of the umbilical for three typical ROV
missions: ship hull inspection and close-surface oper-
ation, exploration of seabed, and diving exploration in
presence of large obstacles.

First Author et al.: Preprint submitted to Elsevier Page 1 of 22



Short Title of the Article

• to use ballasts and buoys to tend the umbilical and so
to obtain a quasi-static equilibrium model of the um-
bilical, simple to compute in real time, and helping
the operator to prevent collisions with environmental
obstacles,

• the delimitation of areas where, thanks to the ballasts
and buoys, the ROV can evolve without risk of cable’s
entanglement even in presence of currents,

• a method to choose the ballasts and buoys’ parameters
to counteract the waves’ effects,

• a passive self-management of the umbilical without
motorization or TMS.

In opposite with [3], the ballast and buoys are not mo-
torized and move by themselves to maintain the cable taut
using only weight and Archimedes’ force. The umbilical is
then modeled using geometrical relations and the fundamen-
tal principle of static, for an approach faster and lighter to
compute than the lumped-mass-spring method or the seg-
mental methods studied in [4, 12, 9, 8]. In absence of cur-
rent, the only required knowledge is the ROV’s position and
a limitation of its acceleration in some directions. Cases with
currents will require the knowledge of their force and their
orientation to evaluate the shape of the umbilical, but this
knowledge is are not required to evaluate areas where the
absence of entanglement in the umbilical is guaranteed.

Section 2 exposes the related work. The problem’s state-
ment and the assumptions are described in Section 3. The
management of the umbilical for surface exploration is pre-
sented in Section 4. Themanagement of the umbilical for sea
exploration without horizontal currents is exposed in Sec-
tion 5. The subsections 5.2 describes the geometrical and
static model. Restricted areas guaranteeing that the umbil-
ical is always taut are also described in this section. The
stiffness of the umbilical is studied in Section 5.5.1. The
two-dimensional case with horizontal current is exposed in
Section 6, followed by the three-dimensional case with hor-
izontal current in Section 7. The last management case of
the umbilical, for diving exploration in presence of large ob-
stacles is shortly described in Section 8. The presence of
waves is studied in Section 9, and Section 8 extends the ob-
tained results to quasi-static equilibrium. Section 12 discuss
of the validity of the chosen model and assumptions, based
on pool experimentations. Finally, the Section 13 concludes
this work.

2. Related work
2.1. Cable modeling

Several methods exist to model the cable’s shape and dy-
namics. The simplest model is the catenary curve [20], refer-
ring to a non-rigid flexible cable whose weight the in water
is greater than the buoyancy force. Nevertheless, when the
cable is very long or heavy, more parameters like bending
stiffness must be taken into account. In other methods like

[11], neutrally buoyant cables are considered, allowing to ig-
nore gravity and buoyancy forces. The umbilical is modeled
as a long chain of segments, with geometrical constraints be-
tween them, to consider umbilical’s stiffness. Although they
are not necessarily physically accurate, and they do not con-
sider the dynamics of the cable, these geometrical models
allow a fast calculation and are memory efficient.

To obtain a dynamical and physically accurate cablemodel,
twomain kinds ofmethods exist [2]: the lumped-mass-spring
method [4, 12, 13] and the segmental method [8, 9]. The first
method models the umbilical as mass points joined together
by massless elastic elements. This approach is very useful
for elastic cables but requires large computational resources.
The segmental method describes the cable as a continuous
system and numerically solves the resulting partial differen-
tial equations. These twomethods focus on the cable dynam-
ics in simple environments with few forces: gravity, buoy-
ancy, hydrodynamic drag, environment inertial force, axial
tension, twisting force and bending force. In [9], a three-
dimensional ROV-cablemodel is presented using Euler-Bernoulli’s
beam theory, modified to allow the compression of the cable.
The model is verified experimentally.
2.2. Cable instrumentation

The umbilical can be equipped and instrumented to pro-
vide a feedback on its position and shape. Two main cate-
gories exist in the literature: the detection of the umbilical
using vision [15, 14, 16], and the use of sensors placed di-
rectly on/in the umbilical [10, 7]. These methods allow an
accurate model, often in real time, but requires specific um-
bilical equipment, often expensive and complex to install.

In [10], a method named “Smart Tether” gives the shape
and the motion of the cable in real time using IMU sensor
nodes embedded in the umbilical itself. The main inconve-
nient of this method, in addition to its price and the difficulty
to set up the sensors, is that these nodes induce an irregular
shape along the cable, causing problems for winding. In [7],
optic fibers are braided within the umbilical and use the in-
terferometry properties to monitor the curve of the whole
cable in 3D in real time. Again, this solution has a very high
cost again (about 200 000 euros for 50 m length).

For exploring shallowwaters, [16] proposes an umbilical
composed of mini-ROVs following each other. The shape of
cable is controlled by i) the detection of the cable shape’s us-
ing cameras behind the ROV through a color segmentation,
see [15, 14], ii) the tracking of a constant distance between
the successive ROVs. Umbilical 3-D shape parameters are
estimated in real-time thanks to a curve fitting procedure
based on the Gauss-Newton algorithm, then used inside the
cable model based on a catenary model or a straight line.

Additional components such as TMS, ballasts, buoys or
intermediate cables can also be used as dampers to avoid
undesired forces on the ROV due to waves/currents or to
the umbilical weight. For deep and ultra-deep-water oper-
ations for example, [18] proposes alternative configurations
for minimizing the tension in the umbilical and reducing the
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risk of snap, like installing a serie of floaters along the um-
bilical. Three different configurations are numerically in-
vestigated and compared. However, the floaters increase the
offset of the ROV by making the cable more sensible to cur-
rents. The most classic equipment is the TMS, a kind of
underwater winch attached to the ROV’s cage which regu-
lates the amount of tether [1]. It allows the robot to move in
the working area while keeping the umbilical taut. When the
TMS is placed underwater, it acts as a ballast to reduce the
ROV offset due to current and wave. Finally, TMS cannot
handle umbilicals equipped with buoys or ballasts.

Since the operation of a TMS is a complex task which
can be similar to control a secondary ROV, some works try
to automate it or to replace it by an other vehiche (USV, sec-
ondary ROV... see [16, 3, 21]). In [3], a motorized plug/float
assembly moves on the umbilical to change the buoyancy of
this one, even drops the ROV to become temporary an AUV.
Awinch on the boat regulates the cable length. If this system
is efficient and allows an important adaptation, it is huge, ex-
pensive and can not be adapted for all kind of ROVs’ appli-
cations. In [21], the system is composed of an USV with an
embedded winch, an umbilical and an ROV, to offer several
ways to manage the cable. The distance between the USV
and the ROV is adapted to stretch or loose the umbilical and
so to avoid collision between the umbilical and underwater
obstacles. A method to model its mechanical behavior is
proposed, based on a segmental method.

3. Problematic and hypothesis
Let us define the referential  of origin O = (0, 0) cor-

responding to the coordinates of the boat where the first ex-
tremity of the umbilical is attached. R = (x, y) are the coor-
dinates of the ROV, corresponding to the second extremity
of umbilical. The vertical axis is oriented downwards, so for
two (y1, y2

), y1 > y2 means y1 is deeper than y2 and y = 0corresponds to the sea surface.
In absence of tension between its two extremities, a cable

takes an irregular shape only limited by its length and its
stiffness. In most of the shallower dives, a ballast is hung on
the umbilical at a defined length to stretch the cable between
the boat and the ballast. When the ROV is too close to the
ballast, the cable between them floats/falls freely, taking the
shape of a bell, subject to entanglement. To pull the cable
taut independently of the ROV position, we propose to add
another item on the umbilical.

Since the buoys and ballasts move in opposite direction,
alternating the attachment of buoys and ballasts on the ca-
ble is a good solution to stretch it. However, a ballast/buoy
linked to several cables (two parts of the same umbilical in
our case) at fixed distances can only taut one of them in most
cases, or several, but only in particular configurations. In op-
posite, a ballast/buoy which can move freely along the cable
will always stop its position at the lowest/highest point where
it stretches the both parts of the cable simultaneously.

This paper proposes several configurations alternating
ballasts and buoys, fixed or moving freely along the umbil-

ical to stretch it. Its shape can so be assimilated to config-
urations of predictable straight lines, where the rigidity of
the cable can be modeled by minimal angles between lines.
The main advantage of this method is the umbilical is self-
managed without motorization and without TMS, using only
gravity and Archimedes’ force, with a shape predictable at
the equilibrium.

Some parameters and particular configurationsmust how-
ever be considered. A ballast heavier than a buoy can makes
it dives, and opposite. The action of the ballast on the um-
bilical becomes equal to a pulley if it is in contact with the
seabed, same remark with the buoy reaching the surface.
Since a large number of configurations exist (different num-
bers of ballasts, buoys, distances fixed between them or slid-
ing, difference of weight...) and most do not guarantee to
stretch the umbilical satisfactorily, this paper focuses on three
chosen configurations with good performances for three dif-
ferent missions: ship hull inspection and close-surface ex-
ploration, sea exploration, and diving exploration in pres-
ence of large obstacles. These configurations will be ex-
posed in the next sections and are briefly illustrated in Fig-
ure 1.

The following assumptions are considered in all the study:
A1) The ratio mass/buoyancy of the umbilical is negli-

gible compared to the ballasts’ weight and the buoys’ buoy-
ancy used in the configuration.

A2) The length of the cable is such that it is reasonable
to neglect the length variation of the umbilical, considered
as constant.

A3) When the umbilical is taut, its geometry can be as-
similated to straight lines between defined points, here the
ballasts, the buoys, the boat and the ROV. The rigidity of
the cable can be modeled by a minimal angle �min betweenthem, described in Section 5.5.1.

A4) The ROV is enough strong and controllable to com-
pensate action of the ballasts and buoys and so the ROV’s
position (x, y) is perfectly fixed when ROV is not moving.

A5) Let P = mmg −
(

�waterVmg + Fcy,m
) be the force

exerted by the ballast M used in our system, with mm the
mass of the ballast, g is the gravity constant, �water the vol-umetric mass of the water, Vm the volume of the ballast, and
Fcy,m be the force exerted by the vertical current applied to
the ballastM where Fcy,m < 0 pushes down to the seafloor
and Fcy,m > 0 pushes up to the surface. One assumes that
P > 0, i.e. the ballast’s weight is strong enough to dive.

A6) Let Fbi =
(

�waterVbi − mbi
)

g + Fcy,bi be the force
exerted by the buoy bi used in our system, with mbi the mass
of the buoy, Vbi its volume, �water the volumetric mass of
the water, and Fcy,bi the force of the vertical current appliedto the buoy where Fcy,bi < 0 pushes down to the seafloor
and Fcy,bi > 0 pushes up to the surface. One assumes that
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(a) Surface Exploration (b) Sea Exploration (c) Diving exploration

Figure 1: Methods exposed in this works. Square: ballast. Cir-
cle: buoy. "x": fixed ballast/buoy. "o": slidding ballast/buoy.
Other parameters will be exposed in futur sections.

∀i ∈ [1…N], Fbi > 0, i.e. the buoy’s buoyancy is stronger
than its weight and the vertical current force.

A7)When a ballast/buoy is considered to move freely on
the umbilical, one assumes that there is no friction between
the umbilical and the ballast/buoy.

The validity of these assumptions in practical cases, specif-
icallyAssumptionA4 andA7, will be discussed in Section 12.
Remark: if hypothesis A5 or A6 are not respected, the bal-
last/buoy cannot act on the umbilical.

4. Umbilical for surface exploration
This section exposes a simple strategy of self-management

of the umbilical to explore close to the surface, such as ship
hull inspection, navigation under uniform ice floe, etc... In
this configuration, the umbilical remains taut and below the
ROV to not disturb it. This configuration is not adapted for
seafloor exploration: next sections will proposed strategies
for these cases.

Consider in this configuration an umbilical of length L
with a sliding ballastM which can move freely between the
two extremity of the umbilical, i.e. the ROV and the boat.
Let � and � be respectively the oriented angle between the
sliding ballast and the boat, and between the sliding ballast
and the ROV. The parameters are illustrated on the Figure 2.
In a configuration where the ballast is not in contact with the
seabed or an obstacle, the umbilical is taut and the system
can be expressed such

x = l1 sin (�) − l2 sin (�) (1)
y = l1 cos (�) − l2 cos (�) (2)

with L = l1 + l2 where l1 = ||OM|| and l2 = ||MR||.
If the environment is free of obstacles, the ROVcanmove

in the area corresponding to the half circle  (O,L) of radius
L and center O, so x ∈ [−L,L] and y ∈ [0, L]. The ROV
must however pass through the position (0, L) to switch from
the areas [−L, 0] and [0, L] without creating an entangle-
ment around the ballastM which would block its displace-
ment.
4.1. Configuration without horizontal current

Consider in a first time there is no horizontal current,
vertical current being considered by Assumption A5.

Figure 2: Parameters for Surface Exploration. M : sliding
ballast. Black dash line: area where the ROV can move with
its umbilical of length L. Black line: ellipse of centers O and
R. Green dash line: longest diameter of the ellipse.

The ballastM is sliding freely on the umbilical of fixed
length L, link to the boat and the ROV: due to the umbilical
limitation, the ballast can be only inside the ellipse 1 of cen-
ters O and R and radius r1 = L

2 and r2 =
√

(

L
2

)2
− x2+y2

4 ,
and the umbilical is stretched only when the ballast is on the
ellipse periphery, as illustrated in Figure 2. Considering As-
sumption A5 and A7, in absence of horizontal current and
since the ballast is sinking, the ballast position is the lowest
position and ellipse properties show that

� = −� (3)
Using (3), (1)-(2) becomes
x = L sin (�) (4)
y =

(

l1 − l2
)

cos (�) . (5)
Since x ∈ [−L,L] and y ∈ [0, L], one can deduce from

(4)-(5) that
� = asin

( x
L

)

(6)

l1 =
1
2

⎛

⎜

⎜

⎜

⎜

⎝

L +
y

√

1 −
(

x
L

)2

⎞

⎟

⎟

⎟

⎟

⎠

(7)

l2 = L − l1 (8)
Proofs of (6)-(8) are provided in [22, Appendix A.1].

Minimum seafloor depth or ROV diving
Let note yfloor theminimumdepth inside the circle (O,L)

due to the environment, in most case the seafloor or a rock
put on the sea floor. The system (4)-(5) is valid only if the
ballast stretches the umbilical, so if the ballast has no con-
tact with the seabed or with an obstacle. This condition is
always satisfied if yfloor ≥ L. In other case, since the ballast
is always lower than the ROV level, let define the limit depth
ylim (x) for a given position x which guarantee the ballast is
always higher than yfloor if y ≤ ylim (x).In absence of current, following steps exposed in [22,
Appendix A.2], ylim (x) can be expressed such

ylim (x) = 2
(

yfloor − ℎM
)

− L

√

1 −
( x
L

)2 (9)
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Figure 3: Limit depth ylim which guarantee the ballast is not in
contact with the seafloor for Surface Exploration. M : sliding
ballast. The dash magenta line: ylim. Large black line: seafloor
yfloor. Red line: l1. Blue line: l2.

Figure 4: Parameters for Surface Exploration with horizontal
current. M : sliding ballast. Black dash line: area where the
ROV can move due to the umbilical length. Solid black line:

ellipse of centers O and R and radius L
2
and

√

(

L
2

)2
− x2+y2

4
.

where ℎM is the ballast height. (9) is illustrated in Figure 3.
Remark also if the position x is unknown, a simple condition
to guarantee its hypothesis is to take ylim = 2

(

yfloor − ℎM
)

−
L.
4.2. Configuration with horizontal current

Consider now the presence of horizontal current. Let
Fcx,m be the force exerted by the horizontal current applied
on the ballastM of mass m on the axisOx, where Fcx,m > 0
corresponds to a current in the direction O⃗x. Consider P
the force exerted by the ballast respecting Assumption A5.
Finally, let Ftp be the sum of force P and Fcx,m with  P ,x itsorientation such

Ftp =
√

P 2 + F 2cx,m (10)

 P ,x = atan
(Fcx,m

P

)

. (11)
Since the ballast M is still sliding on the umbilical, its po-
sition is on the ellipse 1 defined in Section 4.1 and so Ftpcreates in the umbilical two angles �̄ identical as illustrated
in Figure 4 such

�̄ = � −  P ,x (12)
�̄ =  P ,x − � (13)

leading to
� = 2 P ,x − �. (14)

Remark (14) is equal to (3) when Fcx,m = 0. Using (14)
and a rotation of the referential  as described in [22, Ap-
pendix A.3], one gets the new expression of the parameters:

� = asin
(

x cos
(

 P ,x
)

− y sin
(

 P ,x
)

L

)

+  P ,x

(15)

l1 =
1
2

⎛

⎜

⎜

⎜

⎜

⎝

L +
y cos

(

 P ,x
)

+ x sin
(

 P ,x
)

√

1 −
(x cos( P ,x)−y sin( P ,x)

L

)2

⎞

⎟

⎟

⎟

⎟

⎠

(16)

and l2 = L − l1, � = 2 P ,x − �.A new limit depth ylim noted ȳlim can be defined in this
configuration. However, since the current pushes the sliding
ballast upward, the new limit depth ȳlim is higher than ylimdescribed for case without current, i.e. ȳlim ≤ ylim. Since thecurrent can be irregular making the position of M varying
between its positions with and without current, it is recom-
mend to use only ylim as limit depth.

The same comment can be made for the 3 dimensions
case. The presence of a current Fcz,m perpendicular to the
plan (O, x, y) pushes the sliding ballast upwards: the limit
ylim is so still a sufficient requirement to guarantee the slid-
ing ballast will not touch the seafloor and so the umbilical
will stay taut. Note the 3D model is not trivial to solve even
for this simple configuration, but this sufficient requirement
avoids to solve it. Note also 2D model is applicable for 3D
case in absence of horizontal current by choosing the refer-
ential such O⃗x corresponding to the projection of O⃗R on the
surface, the ballast M being always inside (O, x, y) at the
equilibrium.

5. Umbilical for Sea exploration without
horizontal current
This section exposes a simple strategy of self-management

of the umbilical to explore the sea and the seafloor. In this
configuration, a ballast is fixed on the umbilical at a constant
distance of the boat, and a buoy can move freely between the
ballast and the ROV. The umbilical remains taut as long as
the ROV does not enter in a defined forbidden area. In op-
posite with the strategy proposed in Section 4, the ROV can
evolve close to the seafloor in a large area, but its movements
are restricted when it is close to the surface. In this section,
the problem is studied only for the two dimensional case (2D
case) and without horizontal current. The presence of cur-
rent will be added in Section 6 and three dimensional case
(3D case) will be studied in Section 7.
5.1. Introduction of the geometrical model and

restricted areas
Consider in this configuration an umbilical of length l di-

vides in two parts: a first part of length l1 betweenO and the
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Figure 5: Parameters for Sea Exploration. M is the fixed
ballast and B the sliding buoys. In the example here, P = 3Fb.
The blue, magenta, red lines correspond to l1, l2, l3. Black
dash line: area where the ROV can move with its umbilical
length.

ballastM fixed on the umbilical, i.e. ‖OM‖ = l1, and a sec-ond part of length L where the buoy B can move freely be-
tween the ballast and the ROV. Similarly to the problem stud-
ied in Section 4,L can be divided in two lengths l2 = ‖MB‖
and l3 = ‖BR‖ corresponding to the lengths of the left side
and right side of the buoy, where L = l2 + l3. Let 
 be
the oriented angle between the boat and the ballastM . The
oriented angles � and � are respectively the angle between
the ballast and the buoy, and between the buoy and the ROV.
Parameters are illustrated in Figure 5.

Since the ROV can not go higher than the sea level and to
avoid node between l1 and L, the ROV can move in the area
corresponding to the quarter of the circle  (O, l) of radius
l = l1 + L and center O, so x ∈ [0, l] and y ∈ [0, l] (the
area x ∈ [−l, 0] will be discussed later in the section). In a
configuration where the umbilical is taut, the system can be
expressed such

x = l1 sin (
) − l2 sin (�) + l3 sin (�) (17)
y = l1 cos (
) − l2 cos (�) + l3 cos (�) (18)
L = l2 + l3. (19)

where l1 and L are fixed and known, L ≥ l2 ≥ 0 and L ≥
l3 ≥ 0.Similarly to the problem studied in Section 4, the buoy
finds its position on the ellipse 2 as long as it does not touchthe surface (this condition will be studied below). M and R
are the centers of 2, with the two radius L

2 and
√

(

L
2

)2
− (x−xM )

2+(y−yM )2
4 where (xM , yM

) are the co-
ordinates of the ballastM . In absence of horizontal current,
ellipse properties show that

� = −�. (20)
In function of the ROV position, six areas corresponding

to specific umbilical configurations can be observed, illus-
trated in Figure 6:

• Area A: standard behavior of the system. The umbili-
cal is perfectly taut by the action of the ballast and the
buoy with 
 > 0, l2 > 0, l3 > 0.

• Area B: the buoy is on the surface but the ballast can
still taut the cables l1 and L, with 
 ≥ 0, l2 > 0,
l3 > 0. Note Area B does not exist if L < l1.

• Area C: two cases are possibles
– if L ≥ l1, the buoy is on the surface and ballast

can not taut the cable L,
– if L < l1, the cable l1 is not taut because the

ROV is too close to the surface for the ballast can
stretch l1 and L (the only solution of the system
(17)-(19) is 
 < 0 for x > 0, impossible in prac-
tice without horizontal current). Moreover, the
buoy is in contact with the ROV.

• Area D1: the umbilical is taut and the buoys is in con-
tact with the ROV, so l2 = L and l3 = 0.

• Area D2: the umbilical is taut and the buoys is in con-
tact with the ballastM : l2 = 0 and l3 = L.

• Area E: area inaccessible due to the length l.
The system is considered to be inside an area if the ROV
coordinate (x, y) is inside this area. The ROV must not en-
ter in area C because the umbilical cannot be taut inside,
making the model (17)-(19) invalid and allowing the appear-
ance of entanglements. In case where this strategy of self-
management of the umbilical is used without need to model
the umbilical in real time, the operator only need to know
areas C and E. All areas are required only to model the um-
bilical, its shape being different in each area.

Following steps described in in [22, Appendix B.6], the
boundaries between area A and the others areas can be ex-
pressed as
yareaB (x)

=

⎧

⎪

⎨

⎪

⎩

max

(

L−l1
√

1+(Λ2−1) sin(
A(x))2
√

1+Λ2 tan(
A(x))2
, 0

)

+ ℎB

ℎB

if L ≥ l1,
else.

(21)

yareaC (x)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

l21 − x2 − L + ℎB
√

L2 − x2 − l1 + ℎB
ℎB

if
(

|x| <
√

l21 − L2
)

&
(

l1 > L
)

,

if
(

|x| <
√

L2 − l21

)

&
(

L > l1
)

,

else.
(22)

yareaD1 (x) = max

⎛

⎜

⎜

⎜

⎝

l1
√

1 +
(

Λ2 − 1
)

sin
(


A (x)
)2 − L

√

1 + Λ2 tan
(


A (x)
)2

, 0

⎞

⎟

⎟

⎟

⎠

(23)
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(a) Classic configuration of the
umbilical for L = 2l1

(b) Classic configuration of the
umbilical for l1 = 10L

(c) Buoy on the surface with l1 still
stretch (
 > 0).

(d) Buoy in contact with the bal-
last (l2 = 0, l3 = L) or the ROV
(l2 = L, l3 = 0)

Figure 6: Different areas for Sea Exploration. Green dash line:
area C. Red dash line: area B. Blue dash lines : areas D1 and
D2. Black dash line: area E. Note area B does not exist in
sub-figure b.

yareaD2 (x) = max

⎛

⎜

⎜

⎜

⎝

l1
√

1 +
(

Λ2 − 1
)

sin
(


A (x)
)2 + L

√

1 + Λ2 tan
(


A (x)
)2

, 0

⎞

⎟

⎟

⎟

⎠

(24)

yareaE (x) =
√

l2 − x2. (25)
where 
A is the evaluation of 
 inside area A, as it will be de-
scribed in Section 5.3, and ℎB is the height of the submerged
part of the buoy when the buoy floats freely on the surface
without constraints.

Area B converges to area C when the ration P
Fb

increases,
and area C increases with the discrepancy between l1 and L,to not exist if l1 = L. Note areas C and E depend only of l1,
L and x, so can be modeled easily.
Minimum seafloor depth

The previous areas show the minimum depth where the
ROVmust dive to guarantee the umbilical stay taut due to the
presence of the buoy, but assumes that the depth is sufficient
in all cases. In practice, conditions on the minimum deep
yfloor must also be respected.

Let note yfloor theminimumdepth inside the circle (O, l).
The system (17)-(18) is valid only if the two following con-
ditions are respected

1. The ballast has no contact with the seabed or with
an obstacle during its displacement, so yfloor must be
lower than the circle of center O and radius l1,

2. The ROVdoes not go inside area C defined previously,
so yfloor (x) ≥ yareaC (x).

Thus, for a given position x, the minimum seafloor depth
yfloor (x) can be expressed as

yfloor (x) ≥max
([

yareaC (x) , yballast (x)
]) (26)

where
yballast (x) = ℎM +

√

l21 − x
2 (27)

with ℎM is the ballast height. Note (26) is always satisfied
if the seafloor respects the following condition

yfloor ≥ℎM + max
([

l1, L − l1
])

. (28)
5.2. Static model

In this section, the ROV is supposed to be inside area A.
Results exposed are not valid in others areas, which will be
studied in next sections.

In system (17)-(20), the unknown parameters are l2, l3,
�, � and 
 . Since the system (17)-(20) provides 4 equations,
a last one must be found. Let define P and Fb the force ap-plied on the umbilical by the ballast and the buoy, follow-
ing assumptions A5 and A6. Moreover, suppose the ballast
and the buoy are chosen respecting the following Assump-
tion A8:

Assumption A8) The masses and buoyancy of the bal-
last and the buoy are chosen such

P ≥ Fbmax
([

1, 1
2

(

l1
L
+ 1

)])

. (29)

This constraint will be shown and used in the appendices,
and are only used in this section and Section 6 (case with
horizontal current).

ConsideringAssumptionsA1 toA8, let perform the Fun-
damental Principle of Static (FPS) onM andB, as illustrates
in Figure 5:

ΣM F⃗ = P y⃗ + T⃗1 + T⃗2 (30)
ΣBF⃗ = −Fby⃗ − T⃗3 − T⃗2 (31)

where T⃗1, T⃗2 and T⃗3 are the tension of the umbilical applied
on the ballast and the buoy.

Following steps described in [22, Appendix B.2], one
can show that

tan (�) = Λ tan (
) . (32)
where Λ = 2 PFb − 1 and remark Λ ≥ 1 because P ≥ Fb.

Adding (32) to (17)-(20), One now has enough equations
to solve the system inside area A.
5.3. Umbilical model solved in area A

In this section, let’s consider the ROV is inside area A.
The Theorem 1 describes the value of parameters 
 , �, �, l2and l3. For this section and the following ones, let not 
A the
evaluation of 
 inside area A, as described in the following
theorem.
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Theorem 1. Consider the system (17)-(19) with (x, y) ∈ [0, l]2
and where (x, y) is inside area A, i.e. l2 > 0, l3 > 0. Consid-
ering also the Assumption A8 and the absence of horizontal
current, i.e. (32) and (20). The angle 
 can be expressed

 = 
A such

a) if x = 0, the only geometrical solution without current
is 
A = 0,

b) if P = Fb, one has Λ = 1 and 
A can be expressed as

sin
(


A
)

= x
l
. (33)

c) if P > Fb and x > 0, 
A can be expressed as

sin
(


A
)

= min
i∈[1,2,3,4]

(

|

|

Xi
|

|

) (34)
where

⎧

⎪

⎨

⎪

⎩

X1 =
√

U− 23A−
√

ΔY 1
2

, X2 =
√

U− 23A+
√

ΔY 1
2

if ΔY 1 ≥ 0,
X1 = ∞, X2 = ∞ else,

(35)
⎧

⎪

⎨

⎪

⎩

X3 =
−
√

U− 23A−
√

ΔY 2
2

, X4 =
−
√

U− 23A+
√

ΔY 2
2

if ΔY 2 ≥ 0,
X3 = ∞ X4 = ∞ else,

(36)

with ΔY 1 = −

(

U + 4
3
A + 2B

√

U− 23A

)

,

ΔY 2 = −

(

U + 4
3
A − 2B

√

U− 23A

)

and

A = − x
2

2l21
−

(

L2Λ2 − l21
)

l21
(

Λ2 − 1
) (37)

B = −
l21 + L

2Λ2

l31
(

Λ2 − 1
)x (38)

C = x4

16l41
+
x2

(

l21 − L
2Λ2

)

4l41
(

Λ2 − 1
) (39)

U =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

− q
2
+
√

q2

4
+ p3

27

)1∕3

+
(

− q
2
−
√

q2

4
+ p3

27

)1∕3

if ΔU > 0,

2 cos
⎛

⎜

⎜

⎝

1
3
acos

⎛

⎜

⎜

⎝

− q

2

√

− p3
27

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

√

− p
3

if ΔU < 0,

√

− p
3

if ΔU = 0

(40)
and ΔU = q2

4 + p3

27 , p = −4C − A2

3 and q = 2A3
27 +

(

4AC − B2
)

+ −4CA
3 . Moreover, other parameters can be

expressed such

� = atan
(

Λ tan
(


A
)) (41)

l2 =
L
2
−
y − l1 cos

(


A
)

2 cos (�)
, (42)

and l3 = L − l2, � = −�.

The proofs of Theorem 1 are described in [22, Appendix B.3
and B.4]. If several configurations must be considered to
evaluate 
 in Theorem 1, a solution always exists and the
solution is analytic, so can be evaluated quickly.

The Theorem 1 is evaluated for x ≥ 0. Since the sys-
tem (17)-(19) is symmetric for [0, x] and [−x, 0] in absence
of horizontal current, the following corollary can be made.
Corollary 1. In absence of horizontal current, the system (17)-
(19) is symmetric for [0, x] and [−x, 0], and the Theorem 1
can be extended to the case x < 0 by taking |x| instead
of x inside the Theorem 1 and take the solution sin

(


A
)

=
mini∈[1,2,3,4]

(

|

|

Xi
|

|

)

sgn (x).

If Corollary gives a solution for areas (x, y) ∈ [0, l] × [0, l]
and (x, y) ∈ [−l, 0] × [0, l], the ROV must however pass
through the position (0, L) to switch from the two areas to
avoid entanglement around the buoy B, which would block
its displacement.
5.4. Umbilical model solved for all areas

The different areas must be considered because they rep-
resent particular geometrical configurations. In areas D1 or
D2 for example, angle � or � does not exist because the dis-
tances l2 or l3 are equal to zero. Let first define 
D the value
of 
 outside area A:

1) If y ≠ 0, 
D can be expressed as

sin
(


D
)

=
aDbD −

√

a2Db
2
D −

(

1 + b2D
) (

a2D − 1
)

(

1 + b2D
) (43)

with aD = x2+y2+l21−L
2

2yl1
and bD = x

y .2) else, y = 0, 
D can be expressed as

sin
(


D
)

=
x2 + l21 − L

2

2l1x
. (44)

Note one has x ≠ 0 because the ROV can only be inside area
A or C if x = 0, so 
D does not exist if x = 0.

The following Theorem 2 exposes the evaluation of the
parameters 
 , �, �, l2 and l3 in function of the area where
the ROV is located.
Theorem 2. Consider the system (17)-(19) for (x, y) ∈ [0, l]2
and y < yareaE (x). Considering the assumption A8 and the
absence of current, i.e. (32) and (20), one gets

(1) if y < yareaC (x), the model is not valid and the sys-
tem (17)-(19) cannot be solved.

(2) else if yareaB (x) ≠ 0 and yareaC (x) ≤ y ≤ yareaB (x),
then (x, y) is inside area B and one has 
 = 
D (x), l2 =
L − l3 and

cos (�) =
y + l1 cos

(


D
)

L
(45)

l3 =
Ly

l1 cos
(


D
)

+ y
. (46)
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(3) else if yareaD1 (x) ≠ 0 and yareaC (x) ≤ y ≤ yareaD1 (x),
then (x, y) is inside area D1 and one has l2 = L, l3 = 0,
� = 0, 
 = 
D (x) and

� = −acos

(

−y + l1 cos
(


D
)

L

)

. (47)

(4) else if yareaD2 (x) ≤ y, then (x, y) is inside area D2
and one has l2 = 0, l3 = L, � = 0, 
 = 
D (x) and

cos (�) =
y − l1 cos

(


D
)

L
. (48)

(5) else, then (x, y) is inside area A and one has the pa-
rameters defined in Theorem 1 such 
 = 
A (x), � = −�, l3 =
L − l2 with tan (�) = Λ tan

(


A
)

and l2 =
L
2 −

y−l1 cos(
A)
2 cos(�) .

The proofs of previous results are described in [22, Appendix
B.7]. Note if Theorem 2 (1) is true, the ROV must dive to
y = yareaC (x) to make the system valid. Remark also case
y > yareaE (x) is not physically possible due to the umbilical
length.

The Theorem 2 is evaluated for x ≥ 0. Again, since
the system (17)-(19) is symmetric for [0, x] and [−x, 0] in
absence of horizontal current, the following corollary can
be made.
Corollary 2. In absence of horizontal current, the system (17)-
(19) is symmetric for [0, x] and [−x, 0], and the Theorem 2
can be extended to the case x < 0 by doing the following
changes :

1) take |x| instead of x in Theorem 1 and (43) for the
evaluation of 
A and 
D,

2) take the solution sin
(


A
)

= mini∈[1,2,3,4]
(

|

|

Xi
|

|

)

sgn (x)

in Theorem 1 and sin(
D) =
aDbD−

√

a2Db
2
D−

(

1+b2D
)(

a2D−1
)

(

1+b2D
) sgn (x)

in (43),
3) take the value � = �sgn (x) for cases (2)-(4) in Theo-

rem 2.

5.5. Practical case
5.5.1. model of umbilical rigidity and security angle

In practice, the umbilical has a rigidity which does not
allow angles |�|+ |
| and |�|+ |�| to become smaller than a
minimum value. This rigidity can lead to collisions between
the different part of the umbilical, as illustrated in Figure 8.
To guarantee the absence of collision with the cable itself,
this rigidity can be taken into consideration by introducing
conditions |�| + |�| ≥ �min and |�| + |
| ≥ �min, or a mini-
mum distance xmin to respect such x > xmin.

Let defineRcurve the cable rigidity, suchD = 2�Rcurve isthe perimeter of the smallest circle which can be performed
with the umbilical, see Figure 7. To guarantee the absence of
collision in the umbilical, the distance xmust allow the cable
to perform two half circles around the ballast and the buoy,
and a quarter of circle at the connection between the ROV

Figure 7: Characterization of umbilical rigidity

(a) Collision due to umbilical rigid-
ity

(b) Absence of collision

Figure 8: Umbilical shape considering its rigidity. Black line:
shape of the umbilical due to cable rigidity. Blue: l1. Magenta:
l2. Red: l3. In the example here, Rcurve = 0.4m and l = 15m.

and the umbilical, as illustrated in Figure 8. It is consid-
ered the umbilical drops straight without problem of rigidity
problem at the boat level. Thus, the distance xmust be larger
than

xmin = 5Rcurve. (49)
From (32) and Theorem 2, one has |
| ≤ |�| in all cases.

The minimum angle �min = |�| + |�| = 2 |�| guaranteeing
the absence of collision can so be defined such that

�min = 2asin
(

4Rcurve
L

)

. (50)

(50) is shown in [22, Appendix B.1] and �min is respectedif x ≥ xmin. Note the value of �min can be oversize for safetyor for taking into account some other constraint, for example
the presence of an optical fiber inside the umbilical requiring
a larger curve to not break.

The parameter �min will be more used in future sections
in presence of horizontal currents.
5.5.2. Forces applied on the ROV

This section exposes the forces applied by the umbilical
on the ROV, to choose the ballast and the buoy in the capa-
bilities of the ROV. Let F⃗cable→ROV be the force applied by
the umbilical on the ROV and T⃗3 = −F⃗cable→ROV where T⃗3is exposed in Section 5.2. Then, one has from (31)

ΣBF⃗ .x⃗ = 0 (51)
−T2 sin (−�) + T3 sin (�) = 0 (52)
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T3 sin (�) = −T2 sin (�) . (53)
Since � = −�, one has T3 = T2. Moreover, sinceFcable→ROV =
T3 and T2 = Fb sin(�)sin(2�) =

Fb
2 tan (�) from [22, Appendix B.2],

one gets

Fcable→ROV =
Fb

2 cos((�)
. (54)

Deduce from (54) and Theorem 2 that Fcable→ROV in-
creases with the distance d = √

x2 + y2. Since � is inde-
pendent of y in area A (see Theorem 2), one deduces that
Fcable→ROV increases only with x in area A.
5.5.3. Choice of umbilical length

Previous sections describe the umbilical shape and ar-
eas in function of predefined parameters like the umbilical
length l. In practice, an operator searches the best umbilical
length to explore an area approximately known. This section
proposes a simple method to choose the parameters l, L and
l1 in function of several environmental constraints. More
elaborate algorithms are proposed in [22, Appendix H], and
others choices can be made.

Let’s define [ymin, ymax
] the desired minimum depth and

maximum depths for the ROV exploration, where ymax ≤
yfloor − ℎM . Let’s also define [xmin, xmax

] the desired mini-
mum and maximum horizontal distances for the ROV explo-
ration, where xmin has been defined in Section 5.5.1. Com-
promises must be made because not all the parameters xmax,
ymin, ymax will be respected simultaneously. In this perspec-
tive, since the boat can move on the surface, the respect of
parameters [ymin, ymax

] is favored over [xmin, xmax
].

To go the deepest possible without the ballast touching
the seafloor, take l1 = yfloor − ℎB . Then,

• if ymin is favored over ymax, take L = l1 + ymin, and
l = L+ l1. To respect ymin for all x ≤ xmax, one takes
xmax =

√

l2 − y2min and has ymax(x) =
√

l2 − x2.
• if ymax is favored over ymin and respected for all x ≤

xmax, takesL ∈
[

√

y2max + x2max − l1, 2l1

]

with xmax =
√

9l21 − y
2
max. One has ymin(x) = yareaC (x).

The umbilical respected simultaneously ymin and ymaxfor x ∈ [

xmin, xmax
] if there exist L such

√

y2max + x2max − l1 ≤ L ≤ l1 + ymin, (55)
which is possible iff

xmax ≤
√

(

2l1 + ymin
)2 − y2max (56)

where xmax ≥ 0 because here l1 = yfloor − ℎB ≥ ymax.

6. Umbilical for Sea exploration with current
This section extends results of the configuration stud-

ied in Section 5 by adding presence of horizontal current.
The presence of currents makes the system asymmetric and
changes the position of the ballast and buoy, as well as the
shape of areas exposed in the previous section.
6.1. Influence of current on the geometrical model

Consider the same configuration exposed in Section 5,
and remind the presence of a vertical current is considering
inside P and Fb, see Assumption A5 and A6. Let Fcx,m and
Fcx,b be the forces of the current horizontal applied on the
ballast M and buoy B on the axis O⃗x such Fcx,m > 0 cor-
responds to a current in the direction O⃗x, same for Fcx,b, asillustrated on Figure 9. Let also define Ftm,x and Ftb,x such

Ftm,x =
√

P 2 + F 2cx,m (57)
Ftb,x =

√

F 2b + F
2
cx,b (58)

with their incidence angles

tan
(

 P ,x
)

=
Fcx,m
P

(59)

tan
(

 B,x
)

= −
Fcx,b
Fb

. (60)

Since the buoy is still moving freely on the umbilical and
does not touch the surface (not inside areas B and C), its
position is still on the ellipse 2 described in Section 5. In
presence of horizontal current, ellipse properties shows that
two angles �̄ identical are created by the force Ftb,x such �̄ =
� −  B,x and �̄ =  B,x − �, illustrated on Figure 9. This
property leads to

� = 2 B,x − �. (61)
Remark (61) becomes equal to (3) when Fcx,b = 0.

6.2. Static model with horizontal current
In this section, the ROV is supposed to be inside area A.

Results exposed here are not valid in others areas, which will
be studied in next sections.

Let perform the FPS on M and B with the presence of
horizontal current as illustrated in Figure 9 (a):

ΣM F⃗ = F⃗tm,x + T⃗1 + T⃗2 (62)
ΣBF⃗ = F⃗tb,x − T⃗3 − T⃗2 (63)

Following [22, Appendix C.1], one gets
Ftm,x

sin (Γ)
sin

(

Γ + B + Δ x
) = Ftb,x

sin (B)
sin (2B)

. (64)

and

tan (B) =

(

2Ftm,xFtb,x
− cos

(

Δ x
)

)

tan (Γ) − sin
(

Δ x
)

cos
(

Δ x
)

− tan (Γ) sin
(

Δ x
) .

(65)
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(a) Fcx,m > 0 and Fcx,b > 0

(b) Fcx,m < 0 and Fcx,b < 0

Figure 9: Parameters for Sea Exploration with current. M is
the fixed ballast, B is the sliding buoys, such P = 3.4Fb and
Fcx,m = Fcx,b = 0.5Fb. The blue, magenta, red lines correspond
to l1, l2, l3. Black dash line: area where the ROV can move
due to the umbilical length.

with Γ = 
 −  P ,x, B = � −  B,x and Δ x =  P ,x −  B,x.Note if Fcx,m = 0 and Fcx,b = 0, one has  P ,x = 0 and
 B,x = 0, so (65) is equal to (32).
6.3. Boundaries of areas

As illustrated in Figure 10, the six areas defined in pre-
vious Section 5 still exist. However, since the ballast and
the buoy are pushed in the same direction than the current,
the areas are not symmetric, and area C does not exist the-
oretically when L > l1 because the umbilical can always
be taut by the current. Following step from [22, Appendix
C.2.1] and in presence of horizontal current, yareaC (x) canbe expressed as
yareaC (x) =

⎧

⎪

⎨

⎪

⎩

√

l21 − x
2 − L + ℎB if

(

|x| <
√

l21 − L
2
)

&
(

l1 > L
)

,

ℎB else
(66)

It is however recommended to use area C described in Sec-
tion 5 for the case without horizontal current in practice,
specifically if the current is weak.

Due to the strong non-linearity of the relation (65), only
a numerical approach has been found to find a boundary of

(a) Classic configuration, L = 2l1 (b) Classic configuration, l1 = 10L

(c) Buoys on the surface with l1
still taut.

(d) Buoys in contact with ballast
M : l2 = 0 and l3 = L.

(e) Buoys in contact with ROV:
l2 = L and l3 = 0.

(f) Cables l1 and l3 crossed. and
action of the current.

Figure 10: The different areas for Sea Exploration with current.
M : fixed ballast, B: sliding buoys. P = 3Fb, and Fcx,m =
Fcx,b = 0.5Fb. Black dash line: area where the ROV can move
due to the umbilical length. Note area B does not exist in sub-
figure b where L < l1 and area C does not exist in sub-figure
where L > l1.

areas B, D1 andD2, described in [22, Section 6.3]. However,
the evaluation of boundaries of area B, D1 and D2 are not
necessary to consider their influence in the model (17)-(19):
using �A, �A and l3A whichwill be evaluatedwith Theorem 3
in Section 6.4, one can deduce

• if y ≥ l3A cos
(

�A
), the ROV is inside area B,

• if y ≤ l1 cos
(


A
)

− L cos
(

�A
), The ROV is inside

area D1 Then, the current value of � and 
 can be eval-
uated using Theorem 2 (3),

• if y ≥ l1 cos
(


A
)

− L cos
(

�A
), the ROV is inside

area D2. Then, the current value of � and 
 can be
evaluated using Theorem 2 (4).

An additional area F can be defined in presence of hori-
zontal current, corresponding to the area where cables l2 and
l3 or l1 and l3 are crossed, i.e. lines associated to � = � and
� = 
 . The crossing of cables can lead to an entanglement,
or simply obstruct the displacement of the buoy on the ca-
ble, making the umbilical self-management strategy invalid.
Area F must therefore be avoid by the ROV like area C. As
illustrated in Figure 10, area F is superposed with the other

First Author et al.: Preprint submitted to Elsevier Page 11 of 22



Short Title of the Article

areas A, B, C, and D2: area F has priority over the other ar-
eas to avoid cables crossing, except area D2 where l2 = 0
and so no entanglement can happen.

There are two boundaries between the areas A and F, the
first corresponding to |� − �| = 0, the second |� − 
| = 0.
To take into account the rigidity of the umbilical and con-
sider a safety margin, area F is evaluated for |� − �| = �minand |� − 
| = �min, where �min ≥ 0 is the value defined in
(50) in Section 5.5.1. Figure 11 illustrates area F for �min =
10◦.

Following step from [22, Appendix C.2.2], the ROV is
inside area F if yarea F1 ≤ y ≤ yarea F2 where yarea F1 and
yarea F2 can be expressed such
yarea F1 (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

l1 cos
(


F
)

−
(

L − l33
)

cos
(

 B,x +
�min
2 s

)

+l33 cos
(

 B,x −
�min
2 s

)

if 0 ≤ l33 ≤ L

l if l33 > L
0 else,

(67)

yarea F2 (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

l1 cos
(

 P ,x +
�min
2 s

)

− l22 cos
(

 P ,x +
�min
2 s

)

+
(

L − l22
)

cos
(

2 B,x −  P ,x −
�min
2 s

)

if 0 ≤ l22 ≤ L

l if (l22 < 0
)

&
(

l33 ≥ L
)

0 else
(68)

where 
F can be evaluated using (65) with � =  B,x− �min
2 s,

and

l22 =
l1 sin

(

 P ,x +
�min
2

)

+ L sin
(

2 B,x −  P ,x +
�min
2

)

− x

sin
(

2 B,x −  P ,x +
�min
2

)

+ sin
(

 P ,x −
�min
2

)

(69)

l33 =
x − l1 sin

(


F1
)

+ L sin
(

 B,x +
�min
2
s
)

sin
(

 B,x +
�min
2
s
)

+ sin
(

 B,x −
�min
2
s
) (70)

with s = sign( B,x
) if  B,x ≠ 0, s = −sign (x) else.Remark if there is no current, i.e. Fcx,m = Fcx,b = 0, and

�min > 0, area F corresponds to [

−xmin, xmin
], where xminis evaluated using (49) exposed in Section 5.5.1. Finally,

remark area F stops always when it reaches area D2, because
no entanglement can be made between l2 and l3 or between
l2 and l1 when l2 = 0.
6.4. Numerical solution of umbilical model

In opposite with the case without current studied in Sec-
tion 5.3, the strong non-linearity of the relation (65) makes
the system (17)-(19) too complex to be solved analytically.

Theorem 3 proposes a numerical solution of system (17)-
(19) and values of parameters 
 , �, �, l2 and l3 inside areaA. Let note �A, �A,
A, l2A, l3A the evaluations of �, �, 
 , l2,
l3 inside area A described in the following theorem.

(a) Fcx,m = Fcx,b = 0.5Fb (b) Fcx,m = Fcx,b = 0

Figure 11: Area F with �min = 10◦. The plain magenta line
corresponds to area F with �min = 10◦ and the dash magenta
line to area F with �min = 0.

Theorem 3. Consider the system (17)-(19) with (x, y) such
|x| ≤ l and 0 ≤ y ≤ l and suppose (x, y) are inside area
A. Considering also the assumption A8 and presence of hor-
izontal current, i.e. (65) and (61). The parameters 
 = 
A
and l3 = l3A where 
A ∈

[

−�
2 ,

�
2

]

and l3A ∈ [0, L] are the
solutions of the system
{

x = l1 sin
(


A
)

− l2 sin
(

�A
)

+ l3A sin
(

�A
)

y = l1 cos
(


A
)

− l2 cos
(

�A
)

+ l3A cos
(

�A
) (71)

with

�A =  B,x+ (72)

atan

⎛

⎜

⎜

⎜

⎝

(

2 Ftm,x
Ftb,x

− cos
(

Δ x
)

)

tan
(


A −  P ,x
)

− sin
(

Δ x
)

cos
(

Δ x
)

− tan
(


A −  P ,x
)

sin
(

Δ x
)

⎞

⎟

⎟

⎟

⎠

(73)
and l2 = L − l3A, �A = 2 B,x − �A.

Consider now the system inside area B. Since the buoy
reaches the surface, one has y = l3 cos (�). Due to the cur-
rent, the umbilical can always be taut, but the relation (61)
does not hold because the buoy is not on the ellipse 2 in thisconfiguration.

Theorem 4 proposes a numerical solution of system (17)-
(19) and values of parameters 
 , �, �, l2 and l3 in all areas.
Theorem 4. Consider the system (17)-(19) with (x, y) and
such yareaE (x) > y, i.e. the configuration is possible. Con-
sidering also the Assumption A8 and presence of horizontal
current. Let �A,
A and l3A be the value of �, 
 and l3 esti-
mated using Theorem 3 for the couple (x, y). Consider the
following cases:

(1) if y < yareaC (x) , the ROV is inside area C, so the
model (17)-(19) is not valid.

(2) if y < l3A cos
(

�A
)

, the ROV is inside area B and
� = �B , � = �B , 
 = 
B where

�B ∈
[

−�
2
, �
2

]

(74)

�B ∈

{

[−�, 0]
[0, �]

if Fcx < 0
else.

(75)
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B ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

 P ,x,
�
2

]

[

−�
2 ,  P ,x

]

[

−�
2 ,

�
2

]

if
(

Fcx > 0
)

&(x > 0)
if
(

Fcx < 0
)

&(x < 0)
else.

(76)

are the solutions of the system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = l1 sin
(


B
)

− l2 sin
(

�B
)

+ l3 sin
(

�B
)

y = l3 cos
(

�B
)

0 = Ftb,x
Ftm,x

sin
(

�B −  B,x
)

sin
(


B − �B
)

− sin
(


B −  P ,x
)

sin
(

�B − �B
)

(77)

with l2 = l1
cos(
B)
cos(�B)

, l3 = L − l2.

(3) if y > l3A cos
(

�A
)

and y ≤ l1 cos
(


A
)

−L cos
(

�A
)

,
the ROV is inside area D1 with l2 = L, l3 = 0, � = 0 and
values of �, 
 can be evaluated using Theorem 2 (3).

(4) if y > l3A cos
(

�A
)

and y ≥ l1 cos
(


A
)

−L cos
(

�A
)

,
the ROV is inside area D2 with l2 = 0, l3 = L, � = 0 and
values of �, 
 can be evaluated using Theorem 2 (4).

(5) else, the ROV is inside area A with � = �A, 
 = 
A
and l3 = l3A, and other parameters can be evaluated using
Theorem 3.
Remark Theorem 4 is valid inside area F, this area pointing
only if the umbilical makes an entanglement or not. If the
ROV is inside area F and not inside area D2 simultaneously,
it is strongly recommended to leave it by the same side the
ROV is entered to avoid entanglement.
6.5. Forces applied on the ROV with current

This section extends results of Section 5.5.2 by consider-
ing the presence of currents. Excluding the ROV propulsion,
the sum FROV ,x and FROV ,y of the external forces applied onthe ROV on axis Ox and Oy can be expressed as

F⃗ROV ,x =
(

−T3 sin (�) + Fcx,ROV
)

x⃗ (78)
F⃗ROV ,y =

(

T3 cos (�) + Fcy,ROV
)

y⃗ (79)
where Fcx,ROV and Fcy,ROV are the forces of the horizontal
and vertical currents applied on the ROV and T3 has beenintroduced in Section 6.2.

Following step of [22, Appendix D] the forces FROV ,xand FROV ,y can be expressed as

F⃗ROV ,x.x⃗ = −

(

Ftb,x
cos

(

2 B,x − �
)

2 cos
(

� −  B,x
) − Fcx,b

)

tan (�)

+ Fcx,ROV (80)

F⃗ROV ,y.y⃗ = Ftb,x
cos

(

2 B,x − �
)

2 cos
(

� −  B,x
) − Fcx,b + Fcy,ROV .

(81)

7. Umbilical for Sea exploration: 3D case
In this section, the 3-Dimensionnal case with and with-

out presence of horizontal current is studied. This case is
more complex and can be solved only using numericalmethod.

7.1. 3-Dimensionnal case in absence of horizontal
current

In absence of horizontal current, the three dimensions
case can be simply solved using the two dimensions case.
Let define the 3D referential 3D = (x, y, z) of origin O =
(0, 0, 0), where y is the vertical axis oriented to the ground.
(x, 0, z) is the horizontal plan at the sea level. (x, y, 0) is the
vertical plan such O⃗R.z⃗ = 0, where O⃗R is the vector be-
tween the boat and the ROV. One observes the umbilical is
always at the equilibrium inside the planP = (O⃗R.x⃗, y, O⃗R.z⃗),
so the solution of the 3D case without current is the solution
of the 2D-case performed inside P .
7.2. 3-Dimensionnal case with horizontal current:

Geometrical model
The 3D case introduces new degrees of freedom, de-

scribed by parameters defined in the plans Poxy = (O, x, y)
and Pozy = (O, z, y). Let 
 and � be respectively the angles
between the boat and the ballastM in Poxy and Pozy, � and
� be the angles between the ballast and the buoy in Poxy and
Pozy, and � and � be the angles between the buoy and the
ROV in Poxy and Pozy. The length l1x and l1z are the pro-
jections of l1 on Poxy and Pozy, same for l2x, l2z, l3x and l3z.All these parameters are illustrated in the Figure 12.

In a configuration where the umbilical is taut, and us-
ing the coordinates of the ROV, the system can be expressed
such

x = l1x sin (
) − l2x sin (�) + l3x sin (�) (82)
y = l1x cos (
) − l2x cos (�) + l3x cos (�) (83)
z = l1z sin (�) − l2z sin (�) + l3z sin (�) (84)

with
l21 = l

2
1x + sin (�)

2 l21z (85)
l22 = l

2
2x + sin (�)

2 l22z (86)
l23 = l

2
3x + sin (�)

2 l23z (87)
L = l2 + l3 (88)

Let expressed (

xM , yM , zM
) the coordinate of the bal-

lastM , Lx = l1x + l2x and Lz = l1z + l2z. Since the buoy isstill moving freely on the umbilical, its position is on
• the ellipse 2 of centersM and R with the two radius

Lx
2 and

√

(

Lz
2

)2
− (x−xM )

2+(y−yM )2
4 in Poxy,

• the ellipse 3 of centersM and R with the two radius
Lz
2 and

√

(

Lz
2

)2
− (z−zM )

2+(y−yM )2
4 in Pozy.

Thus, since the buoy does not touch the surface (not inside
area B and C), these properties lead to

� = 2 B,x − � (89)
� = 2 B,z − � (90)

where  B,x has been defined in Section 6.1 in Poxy and  B,zis the orientation of the force Ftb,z, similarly to  B,x but in-side Pozy, which will be described in Section 7.3.
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Figure 12: Parameters for Sea Exploration with current in 3D
case, for (x, y, z) = (5, 2.5, 3). M : fixed ballast. B: sliding
buoys. The blue, magenta, red lines correspond to l1, l2, l3.
Black dash line: area where the ROV can move due to the
umbilical length. Red and green arrows: horizontal currents
Fcx and Fcz in direction O⃗x and O⃗z with Fcx = 3Fcz.

7.3. Study of the model
Let Fcx,m and Fcx,b be the forces of the horizontal cur-

rent applied on the ballast M and buoy B on the axis O⃗x,
as exposed in Section 6.1. Since they exist only in Poxy, theforces applied on the system in Poxy are similar to the 2D
case studied in Section 6.1 and 6.2.

Let Fcz,m and Fcz,b be the forces of the horizontal current
applied on the ballast M and buoy B on the axis O⃗z such
Fcz,m > 0 corresponds to a current in the direction O⃗z, same
for Fcz,b, as illustrated on Figure 12. These ones exist only
in Pozy. Let also define the sums of forces Ftm,z and Ftb,zsuch

Ftm,z =
√

P 2 + F 2cz,m (91)
Ftb,z =

√

F 2b + F
2
cz,b (92)

with their incidence angles

tan
(

 P ,z
)

=
Fcz,m
P

(93)

tan
(

 B,z
)

= −
Fcz,b
Fb

. (94)

When the buoy does not touch the surface, the relation
(65) linking Ftm,x, Ftb,x, 
 and � are still valid in the plan
Poxy. Following the same steps than in Section 6.1, 6.2 and
[22, Appendix C.1], one may write

Ftm,z
sin (Φ)

sin
(

Φ +H + Δ z
) = Ftb,z

sin (H)
sin (2H)

(95)

and

tan (H) =

(

2Ftm,zFtb,z
− cos

(

Δ z
)

)

tan (Φ) − sin
(

Δ z
)

cos
(

Δ z
)

− tan (Φ) sin
(

Δ z
)

(96)
with Φ = � −  P ,z,H = � −  B,z and Δ z =  P ,z −  B,z.Note if Fcz,m = Fcz,b = 0, one has  P ,z =  B,z = 0, and
so (90) is equal to � = −� and (96) is equal to tan (�) =
(

2Ftm,zFtb,z
− 1

)

tan (�).

7.4. Numerical solution of umbilical model
The system (82)-(84) have 14 unknown parameters: l1x,

l1z,l2x, l2z, l3x, l3z, l2, l3, �, �, 
 , �, �, �. Enough equa-
tions must be found to solve the system, and a small number
of variables must be selected to obtain a numerical resolu-
tion with a reduced computing time. Using relations found
in previous sections and other presented in this section, the
Theorem 5 proposes a numerical resolution of system (82)-
(84) using only variables 
 , �, l3.Following steps described in [22, Appendix E.1], one
can obtain

l21x =
l21

(

1 + tan (�)2 cos (
)2
)

(97)

l21z =
l21

(

sin (�)2 +
(

cos(�)
cos(
)

)2
) (98)

and the same for l2x, l2z and l3x, l3z replacing l1, 
 , � by l2,
�, � and l3, �, �.Using (97)-(98) and their equivalent for l2x, l2z, l3x, l3z,the system (82)-(84) has now only 8 unknown parameters:
l2, l3, �, �, 
 , �, �, �. (88) solves l2 = L − l3 and (89)-(90)
express �, � with �, �, leaving 5 unknown parameters. (65)
and (96) provide two other relations to express �, � with 
 ,
�. The system (82)-(84) provide the last three equations, to
solve for the variables 
 , �, l3.
Theorem 5. Consider the system (82)-(84) with (x, y, z) such
|x| ≤ l, |z| ≤ l and 0 ≤ y ≤ l not inside the areas B and
C. Considering also the assumption A8 and presence of hor-
izontal current. The parameters 
 , �, l3 such


 ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

 P ,x,
�
2

]

[

−�
2 ,  P ,x

]

[

−�
2 ,

�
2

]

if
(

Fcx > 0
)

& (x > 0)
if
(

Fcx < 0
)

& (x < 0)
else.

(99)
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� ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

 P ,z,
�
2

]

[

−�
2 ,  P ,z

]

[

−�
2 ,

�
2

]

if
(

Fcz > 0
)

& (z > 0)
if
(

Fcz < 0
)

& (z < 0)
else.

(100)

l3 ∈ [0, L] (101)
are the solutions of the system

⎧

⎪

⎨

⎪

⎩

x = l1x sin (
) − l2x sin (�) + l3x sin (�)
y = l1x cos (
) − l2x cos (�) + l3x cos (�)
z = l1z sin (�) − l2z sin (�) + l3z sin (�)

(102)

with

� =  B,x+

atan

⎛

⎜

⎜

⎜

⎝

(

2Ftm,xFtb,x
− cos

(

Δ x
)

)

tan
(


 −  P ,x
)

− sin
(

Δ x
)

cos
(

Δ x
)

− tan
(


 −  P ,x
)

sin (Δ )

⎞

⎟

⎟

⎟

⎠

(103)
� =  B,z+

atan

⎛

⎜

⎜

⎜

⎝

(

2Ftm,zFtb,z
− cos

(

Δ z
)

)

tan
(

� −  P ,z
)

− sin
(

Δ z
)

cos
(

Δ z
)

− tan
(

� −  P ,z
)

sin
(

Δ z
)

⎞

⎟

⎟

⎟

⎠

(104)
where (�, �) are evaluated using (89)-(90), l2 = L − l3,
(

l1x, l1z
)

evaluated using (97)-(98), and
(

l2x, l2z
)

and
(

l3x, l3z
)

evaluated similarly to
(

l21x, l
2
1z
)

using l2, �, � and l3, �, �.

The Theorem 5 does not consider specific cases for the ar-
eas D1 and D2 because these configurations can be solved
by taking l3 = 0 or l3 = L if required. Since the Theorem 5
provides a solution only outside the areas B and C, the fol-
lowing Theorem 6 describes the solution of the system in all
cases. Let define l3xA and �A the evaluation of l3x and � by
Theorem 5.
Theorem 6. Consider the system (82)-(84) with (x, y, z) such
|x| ≤ l, |z| ≤ l and 0 ≤ y ≤ l inside area B. Considering
also the assumption A8 and presence of horizontal current.
If y < l3xA cos

(

�A
)

, the ROV is inside area B and �B , �B ,

B , �B , �B and �B where

�B ∈
[

−�
2
, �
2

]

, �B ∈
[

−�
2
, �
2

]

(105)

�B ∈

{

[−�, 0] if Fcx < 0
[0, �] else.

, � ∈

{

[−�, 0] if Fcz < 0
[0, �] else.

(106)


B ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

 P ,x,
�
2

]

[

−�
2 ,  P ,x

]

[

−�
2 ,

�
2

]

if
(

Fcx > 0
)

&(x > 0)
if
(

Fcx < 0
)

&(x < 0)
else.

(107)

�B ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

 P ,z,
�
2

]

[

−�
2 ,  P ,z

]

[

−�
2 ,

�
2

]

if
(

Fcz > 0
)

&(z > 0)
if
(

Fcz < 0
)

&(z < 0)
else.

(108)

are the solutions of the system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x = l1x sin
(


B
)

− l2x sin
(

�B
)

+ l3x sin
(

�B
)

z = l1z sin
(

�B
)

− l2z sin
(

�B
)

+ l3z sin
(

�B
)

0 = l2xcos(�B) − l1xcos(
B)
0 = l2zcos(�B) − l1zcos(�B)
0 = Ftb,x

Ftm,x
sin

(

�B −  B,x
)

sin
(


B − �B
)

− sin
(


B −  P ,x
)

sin
(

�B − �B
)

0 = Ftb,z
Ftm,z

sin
(

�B −  B,z
)

sin
(

�B − �B
)

− sin
(

�B −  P ,z
)

sin
(

�B − �B
)

(109)

where l3x =
y

cos(�B)
, l3z =

y
cos(�B)

, l3 =
√

l23x + l
2
3z, l2 =

L − l3,
(

l1x, l1z
)

evaluated using (97)-(98), and
(

l2x, l2z
)

evaluated similarly to
(

l21x, l
2
1z
)

using l2, �, �.

7.5. Evaluation of the areas in 3D
To evaluate the areas in 3D case in presence of horizon-

tal current, numerical approaches similar to those from [22,
Section 6.3] can be used. However, in order to obtain a fast
computation, approximations of the areas B, C, F are pro-
posed here. These approximate areas are sufficient require-
ments to guarantee the umbilical is taut and absence of en-
tanglement. Areas D1 and D2 are not studied because use-
less for Theorems 5 and 6 and the control of the ROV. Area
E is of course unchanged.

Let Fc,m =
√

F 2cx,m + F 2cz,m and Fc,b =
√

F 2cx,b + F
2
cz,b

be the sum of the horizontal currents applied on the ballast
and the buoy, associated to orientations �m = atan

(Fcz,m
Fcx,m

)

and �b = atan
(Fcz,b
Fcx,b

)

. Let define also " = atan
(

z
x

)

the ori-
entation of the ROV projected on the plan (O, x, z).

The lengths xz =
{

l1x, l1z, l2x, l2z, l3x, l3z
} are respec-

tively smallest or equal to l1, l2 and l3. When " = �m =
�b, the 3D case can be assimilated to a 2D case in the plan
(

O, O⃗R, O⃗y
)

with Fc,m and Fc,b as horizontal currents. In
the same way, when cos (" − �m

)

= cos
(

" − �b
)

= 0, the
horizontal currents push the ballast upward and the sliding
buoy downward perpendicularly to the plan, reducing val-
ues of xy without influencing their position in the direc-
tion O⃗R: the 3D case can so be assimilated to a 2D case
in the plan (O, O⃗R, O⃗y) without horizontal current and with
shorter lengths l1, l2 and l3.Considering previous points, 3D areas B, C and F can so
be upper-bounded by yareaB , yarea F1 and yarea F2 exposed in
Section 6.3 by replacing x by d = √

x2 + y2, and replacing
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Figure 13: Approximate areas F (magenta) and B (red) in the
3D case.. The red arrow: horizontal current Fc,m = Fc,b

Fcx,m and Fcx,b by F̄cx,m and F̄cx,b such
F̄cx,m = Fc,m cos

(

" − �m
) (110)

F̄cx,b = Fc,b cos
(

" − �b
)

. (111)
These boundaries provide sufficient requirements for the

umbilical to stay taut outside this area B and Fwithout entan-
glement. One can observe area F should theoretically exist
only in the plane  where " = �m = �b, else the projections
of cables l1, l2 and l3 are crossed on

(

O, O⃗R, O⃗y
)

but not
the true cables in the three dimensional space. However, the
ROV must bypass area F to not make an entanglement when
it wants to cross the plane  (ex: if  is the plan (O, x, y),
an entanglement is possible if the ROV takes the shortest
pass from coordinate z = 1 to z = −1). The area created
by the boundaries ȳarea F1 and ȳarea F2 allows to bypass areaF softly without risk of entanglement, as illustrated in Fig-
ure 13.

8. Umbilical for diving exploration in
presence of large obstacles
In the strategy exposed in previous sections, the pres-

ence of obstacles higher than the minimum seafloor level is
not considered. The operator must watch the model of the
umbilical and its knowledge of the environment to check if
the position of the umbilical does not coincide with the pres-
ence of an obstacle. In presence of large/high obstacles on
the seafloor, the angles performed by the umbilical can be
very restrictive for the navigation and lead to a contact be-
tween the umbilical and an obstacle, specifically when the
ROV is far from the boat, see Figure 14.

A strategy described in [22] can be defined, where the
umbilical stays close to the vertical behind the ROV in all

(a) Sea exploration strategy (b) Diving exploration strategy

Figure 14: Comparison between methods exposed in Section 5
and 8. For the same exploration area [0, 10]×[5, 10], the diving
exploration strategy allows to keep the cable l4 close to the
vertical and so avoid contact with obstacle.

situations, since it stays inside a defined area. This strategy
allows to dive vertically without risk of collision between the
umbilical and a possible obstacle.

9. Umbilical in presence of waves
9.1. Wave model

In presence of waves, the position O =
(

0, y0
) of the

boat can be modeled as

y0 (t) = − cos
( t
T

) ℎw
2

where T = tw
2� , with tw the time period of the waves, ℎwthe wave’s height, and t = 0 corresponds to the time of

the wave’s highest position. Since the axis y is oriented to
the seafloor, the highest position of the wave corresponds to
y0 = −ℎw

2 . The velocity and the acceleration of the waves
can be expressed as

ẏ0 (t) = sin
( t
T

) ℎw
2T

(112)

ÿ0 (t) = cos
( t
T

) ℎw
2T 2

, (113)

and their maximum values are respectively vw,max = ℎw
2T and

aw,max = aw (0) =
ℎw
2T 2 .The influence of waves is maximum at the surface and

decreases with depth, to become negligible. Since the cable
l1 links the ballast and the boat, the ballast is directly influ-
enced by the waves. When a wave rises, the cable is kept taut
because the action of wave and ballast are opposite. When a
wave falls, the cable stays stretched only if the ballast have a
weight allowing it to accelerate and fall faster than the wave.
A condition on the ballast’s mass to guarantee that the cable
stays taut is defined in Section 9.2.

When the ROV and the buoy stay deep under the surface,
the direct influence of wave on them can be neglected or ex-
pressed inside the term Fcy,m, already considered in previoussections. However, the buoy receives an indirect influence
from the ballast movement, which follows an amplitude pro-
portional to the wave’s height. When the ballast falls, the
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cable can stay stretched between the ballast and the buoy be-
cause their actions are opposite. When the ballast rises, the
cable l2 is loosen between the ballast and the buoy, which islike drop freely in the water. If the ballast is chosen such as
it falls at the same velocity than the waves, the cable l2 willstay stretched only if the buoy can rise faster than the wave’s
rising. A condition on the buoy’s volume to guarantee the
cable stays taut is defined in Section 9.3.

If the conditions on the ballast and buoy to guarantee
that the umbilical stays taut even in presence of waves are
respected, the models studied in previous sections are still
valid in quasi-static equilibrium and can be evaluated con-
sidering ȳ = y − y0 (t) instead of y in calculations, and
by extending the boundary yareaC of area C to ȳareaC =
yareaC + ℎw to guarantee that the buoy will not reach the
surface and so be directly affected by the waves.
9.2. Study of the ballast’s fall
9.2.1. Ballast’s fall velocity

When the umbilical is not taut between the boat and the
ballast, the ballast falls with only the drag force and the ac-
tion of the cable l2 to slow it. Consider the drag force F⃗fm =
−Kmv2m

v⃗m
‖v⃗m‖

, where vm is the ballast’s velocity, with v⃗m =
vm,xx⃗+ vm,yy⃗ and vm =

√

v2m,x + v2m,y, Km = 1
2�waterSmCx,

where Sm is the surface of the ballast and Cx is the drag co-efficient (Cx = 0.47 for a spherical ballast). Let mm, �m and
am be respectively the mass, the volumetric mass and the
vertical acceleration of the ballast. To find the weight of the
ballast which can compensate the wave’s action in all situa-
tions, we consider the worst case, where T⃗2 = −Fby⃗, i.e. themaximum force that the buoy can exert on the ballast.

Finally, we suppose here that the umbilical is sinking,
so its influence is not a constraint for the ballast’s fall and
its drag force can be neglected or considered to be included
in the drag force of the ballast. However, the ballast must
counter the inertia of the umbilical, so the mass mc of thecable l1 is added to the inertia of the ballast.

By performing the Fundamental Principle of Dynamics
(FPD) on the axis y, as exposed in [22, Appendix I.1], one
gets the relation between the velocity and the acceleration of
the ballast during its fall:

(

mm + mc
)

v̇m,y = B −Kmv2m,y (114)
withB = mmg−

(

�waterVmg + Fcy,m + Fb
). Due to the form

of the solution of (114), vm,y and am,y are respectively in-
creasing and decreasing because of the equilibrium, and one
has vm,y,max = vm,y,eq and am,y,max = am,y (0), respectivelythe maximum velocity and acceleration of the ballast.
9.2.2. Choice of ballast’s weight

To counter-balance the waves effect, one must have
vm,y,max > vw,max and am,y (0) > aw (0). According to

the proofs described in [22, Appendix I.1], these conditions
are respected if mm is chosen such that:

mm > max
([

m1, m2
]) (115)

with

m1 =
Km
g

(

ℎw
2T

)2
+

(

�waterVmg + Fcy,m + Fb
)

g
(116)

m2 =

(

�waterVmg + Fcy,m + Fb + mc
ℎw
2T 2

)

g − ℎw
2T 2

. (117)

Remark: if ℎw
2T 2 > g, the wave falls too fast for the ballast to

keep the umbilical taut.
Example 1. Consider a classic swell of time period tw = 8s
and height ℎw = 1m and suppose that there is no vertical
current, so i.e. Fcy,m = 0. Consider a spherical ballast of ra-
dius Rm = 0.025m, thus Sm = 4�R2m and Vm =

4
3�R

3
m with

Cx = 0.47. Finally, choose a buoy of force Fb = 1.275N,
i.e. which can lift a mass of 0.130kg, an umbilical of mass
mc = 0.1kg. Take g = 9, 81m/s. Using (115), one finds
mm > 0.2245kg with �m = mm

Vm
= 3430kg/m3. These con-

ditions can be respected for a sphere of volume Vm made in
cast iron (�m = 6800kg/m3), iron (�m = 7800kg/m3) or lead
(�m = 11350kg/m3). For a waves of time period tw = 4s
and height ℎw = 1m for the same other conditions, one gets
mm > 0.3115kg with �m =

mm
Vm
= 4759kg/m3.

Note that the ballast’s weight must also respect Assump-
tionA1, and can thus be chosen heavier than (115) to guaran-
tee A1, and can be evaluated depending on the buoy’s force,
which can also be affected by the waves, as described in the
next.
9.3. Study of the buoy’s rise
9.3.1. Buoy’s rise velocity

When the umbilical is not taut between the ballast and
buoy, the buoy is like dropped freely in the water. Consider
the drag force F⃗fb = −Kbv2b v⃗b

‖v⃗b‖
, where vb is the buoy ve-

locity with v⃗b = vb,xx⃗ + vb,yy⃗ and vb =
√

v2b,x + v
2
b,y, and

Kb =
1
2�waterSbCx where Sb is the surface of the buoy. Let

mb and ab be the mass and the vertical acceleration of the
buoy. In opposite with the ballast case, since the umbilical
is loosen, the buoy is not counter-balanced by the ballast or
the ROV to counter-balance. However, to satisfy assump-
tion A1, let’s introduce a force Fcable to design the buoy andso to guarantee that the action of the buoy is strong enough
(example : Fcable = mcLg, with mc2 the mass of the cable L
in water).

By performing the FPD on axis y, as exposed in [22,
Appendix I.2], one gets the relation between the velocity and
acceleration of the ballast:

−mbv̇b,y = Bb +Kbv2b,y (118)
withBb = mbg+Fcable−

(

�waterVbg + Fcy,m
). Consider here

that the mass mb can be approximated by mb = kb�waterVb,with 0 < kb < 1 a ratio between the Archimedes’ force and
the weight of the buoy, for example kb = 0.1. Thus, one can
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also expressBb such asBb = −
(

1 − kb
)

�waterVbg−Fcy,m+
Fcable.When the cable is loosen, the vertical velocity of the
buoy at the equilibrium can be expressed as

vb,y,eq =

√

1
Kb

(

�waterVbg + Fcy,m −
(

mbg + Fcable
)) (119)

and its acceleration at time t = 0 is:
ab,y (0) =

1
mb

((

�waterVbg + Fcy,m
)

−
(

mbg + Fcable
))

. (120)

Due to the form of the solution of (118), one has vb,y,max =
vb,y,eq and ab,y,max = ab,y (0), respectively the maximum ve-
locity and acceleration of the buoy.
9.3.2. Choice of buoy’s volume

To counter-balance the waves’ effect, one must have
vb,y,max > vw,max (121)
ab,y (0) > aw (0) . (122)

Following proofs described in [22, Appendix I.2], these con-
ditions are respected if Vb is chosen such as:

Vb > max
([

Vb1, Vb2
]) (123)

where:

Vb1 =
Kb

(

ℎw
2T

)2
− Fcy,b + Fcable

(

1 − kb
)

�waterg
(124)

Vb2 =
Fcable − Fcy,m

[

(

1 − kb
)

�waterg −
ℎw
2T 2 kb�water

] . (125)

From (125), it can be deduced that if �water−�air�air
g < ℎw

2T 2 ,the waves are too fast to be compensated by the buoy and the
umbilical cannot be taut. When the buoy is spherical, one
can express (124) as Vb1 = 4

3�R
3
b1, with Rb1 > X, where X

is the smallest real positive solution of aX3 + bX2 + c = 0

with a = − 43�, b =
2Cx�

(

ℎw
2T

)2

(1−kb)g
and c = Fcy,b+Fcable

(1−kb)�waterg
.

Example 2. Consider a swell of time period tw = 8s and
height ℎw = 1m. In this example, we suppose that there
is no vertical current and that the buoy is deep enough to
be away from the waves’ direct influence, i.e. Fcy,m = 0.
Consider a spherical buoy with a drag coefficientCx = 0.47,
an umbilical of massmc = 0.1kg, and take Fcable = mcg and
kb = 0.1. Using (123), one gets Vb = 0.173 × 10−3m3 =
0.173L and so Fb = 1.52kg. From Fb and the results of
Section 9.2 for the same parameters as in Example 1, one
gets a ballast of mass mm = 0.25kg with �m = 3817kg/m3.
For waves of time period tw = 4s and height ℎw = 1m,
under the same other conditions, one gets Vb = 0.789L,Fb =
6.97N, mm = 0.9kg and �m = 13776kg/m3.

10. Quasi-static equilibrium: ROV control
The systems presented in previous sections are studied

at the equilibrium. However, each time the ROV moves
down, up or back, a part of the umbilical becomes tempo-
rary loosen. Since a loosen cable can lead to an entangle-
ment and can be complex and/or heavy to compute, an al-
ternative approach is proposed here by controlling the ROV
to shorten the transitory phases and to decrease the discrep-
ancy between the models studied and the reality. Thus, the
ROV is controlled to move slower than the fall of the ballast
and/or the rise of the buoy. As long as their behaviors are
faster than the ROV’s velocity, the umbilical stays globally
taut.
10.1. Main idea and hypotheses

For this work, the ROV never makes a complete turn
on itself and goes backwards to come closer to the position
x = 0 : this assumption reduces the stress inside the um-
bilical and avoids the entanglement. The methodology de-
veloped below is dedicated to the sea exploration strategy
developed in Section 5, 6 and 7, but it is also valid for the
diving exploration strategy developed in Section 8, and can
easily be adapted for surface exploration in Section 4 by re-
placing the sliding buoy by a sliding ballast.

The three behaviors illustrated in Figure 15 can be ob-
served. When the ROV moves forward, the umbilical is al-
ways taut because 1) its displacement is in opposition with
the force created by the ballast, 2) the ellipse created by the
system ballast/buoy/ROV becomes flatter, so the force ex-
erted by the buoy is also opposed to the cable’s displacement.
During the ascent of the ROV or while it is moving back-
wards, the umbilical is temporarily loosen between the buoy
and the ROV, because the movement gives slack to the buoy.
Finally, during the ROV’s descent, the umbilical is temporar-
ily loosen between the ballast and the buoy because the bal-
last and the ROV pull in the same direction while the buoy
pulls in the opposite direction, keeping umbilical stretched.

When the displacement of the ROV slackens the umbil-
ical, the fall of the ballast and the ascent of the buoy try to
retighten it. However, the fall of the ballast is constrained by
the cable l1, making its displacement similar to a pendulum
attached to the boat. On its side, the buoy is as if released
freely in the water when the umbilical is not taut, only sub-
mitted to its weight and Archimedes’ force. Since the dis-
placement of the ballast is limited when it is close to the ver-
tical position, and so is its influence to retighten the umbili-
cal, the control of the ROV will be performed as if the buoy
was the only force able to stretch the umbilical during the
transition period. This hypothesis can only be taken when
the ROV is not inside areas B or C, i.e. when the buoy does
not touch the surface. Otherwise, the umbilical is stretched
by the ballast since 
 ≠  P ,x ( P ,x = 0 when there is no
current). Since a buoy on the surface can be subject to other
forces like wind or waves, one should better avoid working
inside area B in practice.
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(a) Move forward (b) Moves down (c) Moves up

Figure 15: The umbilical is temporarily loosen when the ROV
dives, moves up to surface or backs off. The umbilical is always
taut when the ROV moves straight ahead.

Thus, when the ROV rises, dives or goes back, its veloc-
ity and acceleration must be bounded by buoy’s velocity and
acceleration, as defined in the following Section 10.2.
10.2. Maximum ROV velocity and acceleration

Following the same steps as the ones described in Sec-
tion 9 for the waves, one gets the maximal vertical velocity
of the buoy inside the plan (O, x, y)

vb,y,max =

√

1
Kb

(

�waterVbg + Fcy,m −
(

mbg + Fcable
))

(126)
ab,y,max =

1
mb

((

�waterVbg + Fcy,m
)

−
(

mbg + Fcable
)) (127)

Thus, when the ROV moves up, dives or goes back in-
side the plan (O, x, y), its velocity and acceleration must be
bounded by vb,y,max and ab,y,max. Note that, since the ROVusually moves slowly when it explores the seafloor or a sur-
face, these conditions are not very restrictive.

If Fcy,b is unknown with Fcy,b > 0, (126)-(127) can be
lower bounded by taking Fcx,b = 0 or a known lower boundof Fcx,b, and so will be the velocity and acceleration of the
ROV. If Fcy,b < 0, an upper bound of ||

|

Fcy,b
|

|

|

must be known
to guarantee that (�waterVbuoy,i − mbuoy,i

)

g +Fcy,b > 0 (As-sumption A6): this upper bound can be used inside (126)-
(127). It is recommended to take Fb such that

(

�waterVb − mb
)

g > −Fcy,b
2 in practice.

During a displacement perpendicular to the plan (O, x, y),
i.e. along axis z⃗, the umbilical stays taut for the same con-
ditions since the ROV moves slower than vb,y,max. How-
ever, this does not guarantee that the proposed model cor-
responds to the real umbilical. Indeed, the buoy and the
ballast can take time before being realigned into a new plan
(O, x, y), because the displacement is not oriented along the
same direction as the force exerted by the buoy on the ca-
ble. Performing a very simplified FPD on axis z⃗, the veloc-
ity of the buoy can be approximated, in the worst case, by
vb,z,max =

√

FbΔz
L , where Δz is a small displacement of the

ROV. Remark that vb,z,max can be very small when the ca-
ble L is long. Since respecting vb,z,max on axis z⃗ can be a

restrictive condition, a dynamic modelling of the umbilical
will be considered in future works.

11. Reversed and transferred models
In the previous section, a model to inspect ship hulls,

seafloors or rocky seafloors have been proposed. However,
there exist some configurations where it is the surface which
is hilly, under the ice or in caves for example. There exist
also configurations where the seafloor is very deep, and so
the length l1 is too long to be approximated by a straight line.
To solve these problems and to explore new environments,
the previous models can be “reversed” or “transferred”.

In reversed model, an anchor is used as origin instead of
the boat, and ballasts are replaced by buoys and opposite, as
illustrated in Figure 16 (a) and (c). The same models can be
used, changing the buoyancy of the buoys by the ballasts’
weight and opposite. The y axis is also reversed, such that
O⃗y axis points to the surface, y = 0 corresponds to the depth
of the anchor yancℎor, and y1 < y2, means that y1 is deeperthan y2.In transferred models, the origin O is translated deeper
using an anchor at the end of a cable l0, not in contact with
the seafloor, as illustrated in Figure 16 (b). The anchor be-
comes the new origin, like the boat was before. The main
advantage of this technique is that the cable l0 linking the
anchor to the boat takes all the cable strain due to its length,
while cables l1, l2 and l3 can still respect Assumptions A1-
A7. Surface exploration and diving exploration strategies
can easily be transferred by evaluating the system for y − l0and by adding the distance l0 to the result. In the case of
the Sea Exploration configuration, the areas are impacted
and must be redefined. Areas D1, D2, E and F must be
lower than the value of l0, i.e. for U ∈ {D1, D2, E, F }
yareaU = yareaU + l0. Cases of areas B and C are more com-
plex. If L < l1, area C is also lower than the value of l0 (andarea B still does not exist). If L > l1 and L − l1 > l0 areasB and C must be elevated of l0, i.e. yareaU = yareaU − l0 for
U ∈ {B,C}, because there is more "space" until the buoy
reaches the surface. Else if l0 ≥ L − l1, the buoy cannot
reach the surface without loosing cable l0 or l1, so area B
does not exist and area C can be assimilate to a roof at level
yareaC = l0 + l1 − L.In all situations, the anchormust be chosen heavy enough
to make the forces exerted by the ballasts, the buoys and the
ROV, as well as the currents negligible compared to it.

12. Practical case and experimental results
This section discusses the validity of the assumptions

made in the paper, exposes some problems in practical cases
and provides some experimental results to illustrate the va-
lidity of the study.
12.1. Validity of assumptions taken and choice of

ballast and buoy
Consider first the assumptions made in this study. The

Assumptions A1, A4, A5, A6 and A8 can easily be respected
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(a) Reversed model surface ex-
ploration

(b) Transferred model sea ex-
ploration

(c) Reversed model diving explo-
ration

Figure 16: Examples of reversed model and transferred model.
An anchor is used as origin instead of the boat. Ballasts and
buoys are reversed in the reversed models.

by the choice of the ballast’s mass and the buoy’s volume.
However, AssumptionsA2 andA3 can be satisfied onlywhen
the umbilical is short enough (50m or less between each
points). In case of deep dives where cable l1 is too long to re-spect these assumptions, the problem can be solved using the
transferred model exposed in Section 11: the additional ca-
ble l0 takes all the cable deformation due to its length, while
cables l1, l2 and l3 can respect A2 and A3.Assumption A7 considers that the friction between the
umbilical and the sliding ballast/buoy is quite negligible to
allow the ballast/buoy to reach its theoretical equilibrium po-
sition. A pulley has been used in practice to let the buoy slide
with little friction, as illustrated in Figure 17. Other tests
have been performed using karabiner or ring, but the perfor-
mances obtained are insufficient to correspond to the theory,
because of a too strong friction making the equilibrium posi-
tion strongly dependent of the starting position. Tests show
that Assumption A7 can be mostly respected, but cannot be
taken neglected, see next section. Note that the radius of the
pulleyRp must be taken larger than the radius created by ca-
ble’s rigidity, involving to takeRcurve = Rp and so the valueof angles �min and xmin exposed in Section 5.5.1. The pulleyshown in Figure 17 has been produced to respect perfectly
the diameter of our umbilical, but first tests performed us-
ing commercial pulleys provided also very good results: the
method can so be easily adapted for all kinds of umbilicals.
The buoy is linked to the pulley by a mechanical ball joint to
avoid twist torque on the umbilical because of the buoy.

The choice of the ballast and buoy can be more com-
plex. First, a ratio P

Fb
must be chosen such 1) Assumption A8

is respected, 2) P and Fb are taken such as the umbilical’s

Figure 17: Pulley to obtain a sliding buoy. 1: pulley. 2:
umbilical. 3: ball joint to reduce twist effort between the
buoy and the pulley. 4: additional buoy and ballast to give a
neutral buoyancy to the pulley assembly (without considering
the buoys in 5). 5: buoys Fb for the self-management strategy.

(a) BlueROV during test in pool.
Umbilical for diving exploration
with presence of large obstacles.
P = 80g, Fb1 = 80g, Fb2 = 280g,
l1 = l4 = L = 1.5m, so �max = 10°.

(b) BlueROV during test at sea.
Umbilical for sea exploration, the
boat is replaced here by the or-
ange buoy. P = 255g, Fb = 135g,
l1 = 2.5m and L = 3.5m.

Figure 18: Materials for experimental tests in pool and sea.

weight/buoyancy is negligible compared to it and can be de-
formed by them, 3) the waves are considered. The biggest
P and Fb are, the fastest the dynamics of the system is but
the strongest the force applied on the ROV by the umbilical
is too: the choice of the ballast and buoy is a trade-off be-
tween disturbances on the ROV, its maximum velocity and
the cable’s parameters.
12.2. Materials and experimentation

As illustrated in Figure 18 for the sea exploration and
diving exploration, the three configurations have been tested
in pool and at sea, in absence of current. To allow accurate
measures, the results exposed in this section have been per-
formed in a pool of size 3m × 4m, with a depth of 3m, for
the sea exploration strategy, but similar conclusions can be
taken for the two others strategies. To obtain a configuration
during the measurements, the ROV has been replaced by an
anchor immersed at a controlled distance and depth from the
origin (0, 0). Let us however call it “ROV” in the text below.
The measurements have been made with a measuring tape.

The force exerted by a buoy is evaluated in grams, cor-
responding to the maximum mass it can lift. One takes P =
255g and Fb = 135g. The umbilical is floating with the fol-
lowing parameters: diameter 4mm, Rcurve = 18mm. One
takes the lengths l1 = 2.5m and L = 3.5m. The mass for
6m of umbilical is 85g. The pulley has an internal radius of
Rp = 20mm.

Let us define EB , the discrepancy between the measured
position (xB,m, yB,m

) and its theoretical position (xB,tℎ, yB,tℎ
)
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of the buoy B for a ROV position (xROV , yROV
) such as:

EB
(

xROV , yROV
)

=
√

(

xB,tℎ − xB,m
)2 +

(

yB,tℎ − yB,m
)2. (128)

Since the movements of the buoy are larger than the ones
of the ballast, the accuracy of the method is studied using
EB .

The Figure 19 (a) shows the difference between the mea-
sured and theoretical areas B and C. One can observe both
results are similar. Themost discrepancies between the mea-
sured and theoretical areas are mostly due to the measure-
ment error. Indeed, the boundary between areas B and C, i.e.
the beginning of the umbilical release, is not always simple
to observe in practice. During our experiments, the bound-
ary has been measured when the ballast reaches its resting
position (

0, l1
) or when the umbilical starts to twist due to

the lack of tension between the ballast and the buoy. Remind
that the height of the buoy (element 5 in Figure 17) must be
taking into account in the evaluation of areas B and C.

The Figure 20 illustrates two examples of the difference
between theory and practice, and Figure 19 (b) shows the
discrepancy EB for several positions (xROV , yROV

). These
figures show that the discrepancy between the theoretical
model and the experimental results is small when the ROV is
close to the origin and becomes larger when it moves always.
The first reason of this discrepancy is the difference between
the angles �, �, 
 of the model and the curves performed
by the umbilical in practice. Moreover, tests show that the
frictions cannot be totally neglected, and so the stabilization
of the buoy’s position is not always identical depending on
the buoy’s starting point and the movement performed by
the ROV. Results exposed in Figure 19 (b) are so the mean
of three measurements. The maximum error measured be-
fore averaging was 0.38m for (xROV , yROV

)

= (3.5m, 2m).
Note that this problem of friction is proportional to the hor-
izontality of the cable, and so is negligible when the ROV is
close to the origin and increases with the distance, like the
discrepancy. Moreover, since the problem of friction slows
down the buoy when it approaches its equilibrium position,
the measured error is probably independent of the cable’s
length, making the relative error smaller for longer cable,
even if tests would be required to confirm this hypothesis.

Despite the gap between theory and practice, the umbili-
cal remained perfectly taut during all the tests, since the ROV
was outside area C, even during the transition phases, and its
shape was predictable with a margin error. Note also that the
ballast and the buoy used were small, inducing small forces
on the cable. Finally, the hypothesis of quasi-static equilib-
rium has been tested and confirmed: since anchor respected
the maximum velocity defined in Section 10.2, when the an-
chor was moved, the buoy was moving simultaneously, and
it stopped moving as soon as the anchor was kept static.
12.3. Other practical problems

To perform the model of the umbilical in real time, this
work assumes that the position of the ROV is known. To

(a) Areas B and C. Plain lines: theoretical areas. Dots: experi-
mental measurements.

(b) Error EB

Figure 19: Experimental discrepancy EB and areas B and C.
Each point is the mean of three measurements for the same
position

(

xROV , yROV
)

.

Figure 20: Comparison between theoretical umbilical (colored
plain lines) and measured umbilical (large dash black lines).
Small black dash lines: poolside. Left: EB = 0.107m. Right:
Eb = 0.327m, largest discrepancy of the experiment.

obtain this position, one can use an Ultra Short Baseline
(USBL). In absence of USBL, the vertical position y of the
ROV can be found using a depth sensor, and the distance d
between the ROV and the boat can be found using a sonar,
for example.

Another practical problem is the knowledge of the hori-
zontal current Fcx, required for the model or the areas’ eval-
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uation. Since Fcx is in the most case unknown, the areas can
be defined for two cases: absence of current, i.e. Fcx = 0,
and the maximum current Fcx,max against which the ROV
will not be able to go upstream, and so the navigation of
the ROV is impossible in these conditions. Area B must be
evaluated considering Fcx = 0, and area F must be evaluated
considering Fcx,max. Since is can be very restrictive for areaF, an upper-bound on an a priori knowledge of the current
Fcx can also be used, instead of Fcx,max. Note that the buoyand/or ballast can be instrumented to know their positions
and so to simplify the model’s evaluation. Angles between
the boat and the umbilical and/or the ROV and the umbilical
can also be measured using a camera for example.

Finally, a last practical problem is to recover the cable
and the ROV after a deep sea mission. The cable l1 (or
l0) spooling and the ROV’s ascent must be synchronized to
avoid any entanglement inside area C.

13. Conclusion
Thiswork proposes three passive self-management strate-

gies for the umbilical for an ROV, without motorized sys-
tems. Three configurations of the umbilical are proposed,
each one to be the most adapted for different types of ROV
exploration missions: near-surface, sea exploration, and div-
ing in presence of large obstacles. Using moving ballasts
and buoys to stretch the umbilical, a predictable shape of the
cable in quasi-static equilibrium is provided while avoiding
entanglements of the cable itself or with environmental ob-
stacles. The model is exposed in 2 and 3 dimensions, con-
sidering the presence or absence of currents and waves. The
choice of the ballasts and the buoys is described, to better
counter-balance the effect of waves. The ROV’s velocity is
limited to keep the quasi-static equilibrium valid in all con-
figurations. The forces applied on the umbilical and the ROV
have been studied. Finally, experimentations have been per-
formed in a pool, to show the validity of the method and the
limits of the model.

If the hypothesis of quasi-static equilibrium is valid and
not very binding for the ROV in a 2D plan, it can be very
constraining in velocity for ROV’s motions perpendicular to
this plan. Thus, future works will study the dynamics instead
of a quasi-static equilibrium, with also variations of the sea
current and uncertainties on parameters. Finally, measure-
ments at sea during a true mission will be performed.

Acknowledgment
We acknowledge support from the Centre National de

la Recherche Scientifique (CNRS) and Laboratoire des sci-
ences et techniques de l’information, de la communication
et de la connaissance (Lab-STICC). The author declares that
there is no conflict of interest.

References
[1] BA Abel. Underwater vehicle tether management systems. In Pro-

ceedings of OCEANS’94, volume 2, pages II–495, 1994.

[2] O. Blintsov. Development of the mathematical modeling method for
dynamics of the flexible tether as an element of the underwater com-
plex. Eastern-European Journal of Enterprise Technologies, 1 (7):4–
14, 2017.

[3] L. Brignone, E. Raugel, J. Opderbecke, V. Rigaud, R. Piasco, and
S. Ragot. First sea trials of hrov the new hybrid vehicle developed by
ifremer. In Oceans 2015-genova, pages 1–7, 2015.

[4] B. Buckham and M. Nahon. Dynamics simulation of low tension
tethers. In IEEE Conference Proceedings Oceans, volume 2, pages
757–766, 1999.

[5] R. D. Christ and R. L. Wernli Sr. The ROV manual: a user guide for
observation class remotely operated vehicles. Elsevier, 2011.

[6] T. Crandle, G. Cook, and E. Celkis. Tradeoffs between umbilical
and battery power in rov performance. In IEEE OCEANS 2017-
Anchorage, pages 1–6, 2017.

[7] R. G. Duncan, Mark E. Froggatt, S. .T Kreger, R. J. Seeley, D. K.
Gifford, A. K. Sang, andM. S.Wolfe. High-accuracy fiber-optic shape
sensing. In Sensor Systems and Networks, volume 6530, page 65301S,
2007.

[8] O. A. Eidsvik and I. Schjølberg. Time domain modeling of rov um-
bilical using beam equations. IFAC, 49(23):452–457, 2016.

[9] O. A. N. Eidsvik and I. Schjølberg. Finite element cable-model for re-
motely operated vehicles (rovs) by application of beam theory. Ocean
Engineering, 163:322–336, 2018.

[10] J. E. Frank, R. Geiger, D. R. Kraige, and A. Murali.
Smart tether system for underwater navigation and cable
shape measurement, 2013. US Patent 8,437,979, URL
https://patents.google.com/patent/US8437979B2/en.

[11] O. Ganoni, R. Mukundan, and R. Green. Visually realistic graphical
simulation of underwater cable. 2018.

[12] F. González, A. de la Prada, A. Luaces, and M. González. Real-
time simulation of cable pay-out and reel-in with towed fishing gears.
Ocean Engineering, 131:295–307, 2017.

[13] Sung Min Hong, Kyoung Nam Ha, and Joon-Young Kim. Dynamics
modeling and motion simulation of usv/uuv with linked underwater
cable. Journal of Marine Science and Engineering, 8(5):318, 2020.

[14] M. Laranjeira, C. Dune, andV. Hugel. Catenary-based visual servoing
for tethered robots. In IEEE International Conference on Robotics and
Automation, pages 732–738, 2017.

[15] M. Laranjeira, C. Dune, and V. Hugel. Embedded visual detection and
shape identification of underwater umbilical for vehicle positioning.
In OCEANS 2019-Marseille, pages 1–9, 2019.

[16] M. Laranjeira, C. Dune, and V. Hugel. Catenary-based visual ser-
voing for tether shape control between underwater vehicles. Ocean
Engineering, 200:107018, 2020.

[17] A. Lasbouygues, S. Louis, B. Ropars, L. Rossi, H. Jourde, H. Délas,
P. Balordi, R. Bouchard, M. Dighouth, M. Dugrenot, et al. Robotic
mapping of a karst aquifer. In IFAC: International Federation of Au-
tomatic Control, 2017.

[18] M. B. Lubis, M. Kimiaei, and M. Efthymiou. Alternative configura-
tions to optimize tension in the umbilical of a work class rov perform-
ing ultra-deep-water operation. Ocean Engineering, 225:108786,
2021.

[19] H. Stuart, S. Wang, O. Khatib, and M. R. Cutkosky. The ocean one
hands: An adaptive design for robust marine manipulation. The In-
ternational Journal of Robotics Research, 36(2):150–166, 2017.

[20] M. Such, J. R. Jimenez-Octavio, A. Carnicero, and O. Lopez-Garcia.
An approach based on the catenary equation to deal with static anal-
ysis of three dimensional cable structures. Engineering structures,
31(9):2162–2170, 2009.

[21] O. Tortorici, C. Anthierens, V. Hugel, and H. Barthelemy. Towards
active self-management of umbilical linking rov and usv for safer sub-
marine missions. IFAC-PapersOnLine, 52(21):265–270, 2019.

[22] Christophe Viel. Self-management of the umbilical of a rov for under-
water exploration. https://hal.archives-ouvertes.fr/hal-03286654v2,
2021.

First Author et al.: Preprint submitted to Elsevier Page 22 of 22

View publication statsView publication stats

https://www.researchgate.net/publication/358683685

