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Online paths planning method
for unmanned surface vehicles based
on rapidly exploring random tree
and a cooperative potential field
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Abstract
The unstructured, dynamic marine environmental information and the cooperative obstacle avoidance problem greatly
challenge the online path planner for unmanned surface vehicles. Efficiency and optimization are crucial for online path
planning schemes. Thus, we proposed an algorithmic combination of the optimal rapidly exploring random tree and
artificial potential field methods. First, we built a repulsive potential field by considering the relative velocity and position of
the unmanned surface vehicle to obstacles and the international regulations for preventing collisions at sea, wherein we
designed a repulsive force calculation method using radar readings to avoid irregular obstacles. Then, we guided the
sampling process of rapidly exploring random tree using the potential field to accelerate the convergence rate of rapidly
exploring random tree to low-cost obstacle avoidance paths. Finally, we planned for multiple paths based on the leader–
follower architecture with the guidance of a cooperative potential field. In the experiments, the proposed method
consistently outperformed the benchmark methods. We also verified the effectiveness of the algorithmic modifications by
conducting ablation experiments.
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Introduction

Online paths planning (OPP) is necessary for cooperative

tasks of autonomic unmanned surface vehicles (USVs),

such as cooperative search and rescue in the open sea with

partially unknown locations and shapes of static obstacles

(e.g. islands) and dynamic obstacles (DOs; e.g. ships) that

unpredictably appear, disappear, or move.1 The manipula-

tors of the planned paths are assumed to be small, light-

weight USVs with high maneuverability and relatively low

speed. Thus, USVs can follow the path to avoid complex

obstacles. The simplified state vector of USVs comprises

1 School of Mechanical and Electronic Engineering, Dalian Minzu

University, Dalian, China
2Key Laboratory of Intelligent Perception and Advanced Control, Dalian

Minzu University, Dalian, China
3Faculty of Computing, Harbin Institute of Technology, Harbin, China
4College of Mathematics and Informatics, Digital Fujian Internet-of-Things

Laboratory of Environmental Monitoring, Fujian Normal University,

Fujian, China

Corresponding author:

Ru-Bo Zhang, College of Mechanical and Electronic Engineering, Dalian

Minzu University, Liaohe west 18, Economic and Technological

Development Zone, Dalian, Liaoning 116600, China.

Email: zhangrubo@dlnu.edu.cn

International Journal of Advanced
Robotic Systems

March-April 2022: 1–22
ª The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/17298806221089777
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0003-2725-8645
https://orcid.org/0000-0003-2725-8645
https://orcid.org/0000-0002-6133-8078
https://orcid.org/0000-0002-6133-8078
mailto:zhangrubo@dlnu.edu.cn
https://sagepub.com/journals-permissions
https://doi.org/10.1177/17298806221089777
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F17298806221089777&domain=pdf&date_stamp=2022-04-12


surge, sway, and yaw variables. The planning space is pro-

jected from the state space.

Efficiency is the first requirement of the OPP method

for the quick response to real-time sensed data to capture

cooperative paths. However, the path planning problem in

dynamic environments is computationally complex.

Meanwhile, cooperative constraints, such as the position

coupling between USVs in the obstacle avoidance (OA)

process,2–4 greatly challenge the online path planner. If

paths are planned individually, the computational com-

plexity is probably unacceptable. Moreover, the high

path quality is also a crucial performance indicator for

the online planner. Besides the geometric features of

paths, the planner should also consider the influence of

time-varying sea current.5–7 The studies of literature7–9

suggested that the energy-efficient path should contain

various downstream sections. In summary, the OPP tech-

nology for USVs is far from mature. This observation is

the motivation of this study.

The optimal OA control for a single USV is complicated

because of the coupled differential equations with bound-

ary conditions and motion constraints.10–15 Thus, the prob-

lem is decoupled into subproblems,16 such as path planning

and optimal control. The model predictive control (MPC)

frame is a typical decoupling method that requires the

online path planner to provide committed local paths itera-

tively in short periods. On the basis of MPC, we focus on

the path planning problem, leaving the complicated optimal

control problem to the path executive module. We initially

plan a local path reaching a subgoal that is selected within

the sensing domain of USVs. Another local path planning

iteration starts when USVs execute the available path. The

iterations roll forward until the USVs achieve the goal.

The intelligent searching and reasoning methods are

often too computationally complex to apply online.17 The

prevalent reinforcement learning method18 has difficulty in

solving the multiple paths planning problems. The artificial

potential field (APF) method quickly queries paths in the

gradient descent direction of the potential field that attracts

the USV to the target and repulses the USV away from

obstacles.

To address the problem of the goal nonreachable with

obstacles nearby, Ge and Cui improved APF by defining a

repulsive potential field taking positions of the USV and

the goal into account.19,20 Repulsive force was divided into

components in the direction from the obstacle to the USV

and in the vertical direction of the relative velocity of the

USV with respect to the obstacle in the study.20 The studies

of literature21,22 promoted the potential field definition by

considering more OA parameters.

Ge et al. employed an instant-goal-driven method to

compute the repulsive force using radar readings.23 How-

ever, the method did not consider the situation when radar

readings are from multiple obstacles. Solari et al. calculated

the point potential at a certain distance from the obstacle

on each beam of the mechanical scanning sonar and

selected the motion direction of the vehicle by the lowest

potential.24

Lyu and Yin et al. improved the repulsive field defini-

tion by considering OA angle and velocity.25,26 Wang et al.

proposed a ring-shaped repulsive potential field for USV

swarm control.15 Wang et al. developed APF by combining

it with the ship domain model to consider the DO’s velocity

and course.27 To bypass obstacles smoothly, Qin et al.

added a velocity damping coefficient to the repulsive

potential function.28

Balch and Hybinette employed virtual forces toward

the attachment sites of USVs to keep the formation29

and investigated the social potential for scalable vehicle

formation.30 Ge and Fua investigated queues and artificial

potential trenches for multirobot formation.31 Sun et al. stud-

ied the collision avoidance problem for UAVs using APF.32

However, APF depends on the elegant mathematical

analysis based on known, static environmental information,

which is unpractical. Uncertainties in the environmental

information and the USV motion model make the poten-

tials incomparable, even causing the local optimum.

Rapidly exploring random tree (RRT)-based methods

were proposed to plan/replan feasible paths quickly with

differential, nonholonomic, and inequality constraints.33–35

The optimal rapidly exploring random tree (RRT*) asymp-

totically converges to the optimal path by incrementally

rewiring the path tree. After new states are added to the

path tree, they are also considered as replacement parents

for existing nearby states in the path tree. RRT* can con-

veniently solve the local optimum.33–35 However, the effi-

ciency of RRT* is possibly low.36,37

When an initial solution path is found, the redundant

points of the path are pruned by the RRT*-Smart36 method,

and the remaining states as used as biases for further sam-

pling. However, the method may reduce the probability of

finding a different homotopy class of the initial solution

and further violate the RRT* assumption of uniform

density.37

Gammell et al.37 presented the informed RRT* method

to improve the efficiency of RRT* by focusing the path

planning in terms of directly sampling a prolate hyper-

spheroid subset that is defined as xellipse ¼ Lxball þ xcenter,

where xcenter is the center of the hyper-ellipsoid in terms

of its two flocal points that are often set as the start

and goal points, xball is the unit ball, L ¼ diagfcbest/2,

0.5*(cbest
2-cmin

2)1/2, . . . , 0.5*(cbest
2-cmin

2)1/2g, cbest is the

cost of the current best path, cmin is the distance between

the start and goal points, and the dimension of the diagonal

matrix L equals that of the planning space.

Otte and Emilio38 proposed the RRTX method for effi-

ciently avoiding DOs. Rewiring operations cascade down

the affected branches using existing nodes to remodel the

existing search graph and repair the shortest path-to-goal

subtree. Replanning efficiency is improved by maintaining

graph connectivity information in local neighbor sets stored

at each node with the expected number of O(log n), where
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n is the number of nodes, as well as aborting rewiring

cascades once the graph becomes consistent. Moreover,

graph consistency ensures that the newly added nodes and

edges are useful for improving the solution.

The study by Wang et al.39 improved the probabilistic

sampling with the 2D Gaussian mixture model to sample

around obstacles for short OA paths. The study in Jaillet

et al.40 used the cached historical paths as heuristics to

improve replanning efficiency. Transition-based RRT pro-

moted sampling in terms of the environment configuration-

space cost maps.41

The above methods only consider the DO to be errant.

Wen et al.42 assumed that USV can negotiate with DOs and

then sampling is biased by the International Regulations for

Preventing Collisions at Sea (COLREGs).

As one of the state-of-the-art OPP solutions, the poten-

tial field was combined with RRT*.41–44 Qureshi et al.

directionalized random samples of RRT* through potential

functions for reducing the number of planning iterations.43–45

Wang et al. solved the motion planning problem by the bidir-

ectional potential guided RRT* method.46

In this article, the RRT* efficiency is improved by the

following schemes: the local potential field guides

the planning toward reasonable areas in terms of the

real-time feedback of sensors; the potential field is

improved by considering the velocities of USV and DO;

and the given environmental information is leveraged by

selecting subgoals referring to the offline planned global

path. First, the virtual leader’s local path is planned

to obtain multiple cooperative USV paths. Then, the

expected locations of USVs referring to the leader are

defined, and multiple paths are planned by the distributed

local planners in each USV. The cost distance for the

RRT* rewiring is defined by considering sea current,

path length, and path turns to reduce the energy expendi-

ture of paths.

Therefore, the main contributions of this study are two-

fold. (1) We improve the efficiency of RRT* to accelerate

the convergence to energy-efficient and cooperative OA

paths by the guidance of a newly built potential field in

dynamic environments, wherein the repulsive potential

field considers the OA-related velocities and rules. It is

calculated from the radar readings. (2) The online multi-

path planning architecture is constructed based on the MPC

and virtual leader frameworks.

Sketch of the paths planning system
for USVs

The hierarchical architecture is divided into

submodules,8,9,27,28 as shown in Figure 1. On the global

path planning layer, the potential field used for capturing

the global reference path is built in terms of the given

environmental information, and the parameters are set

empirically. During the online planning procedure, the

parameters remain unchanged. Then, the OPP module

plans for feasible, low-cost paths for the virtual leader,

wherein samples of RRT* are directionalized by the poten-

tial field. On the cooperative path planning layer, the coop-

eration attachment sites of the USV formation are defined

by following the virtual leader, and the cooperation poten-

tial field is then constructed. Finally, the OA paths are

planned locally for USVs.

Objective of the OPP

Three important properties of the paths are considered dur-

ing the OPP process, i.e. low collision probability, feasi-

bility, and the likelihood of success.23,12 The likelihood of

success requires paths to be energy efficient with few

aggressive turns. The planning objective expression is

listed in the following

argmin
XM
k¼1

XN

i¼1

ei;k � vi;k � lengthðPlanPathðpi;k ; piþ1;kÞÞ
( )

; s:t: Fcons ¼ 0 (1)

where Fcons ¼ 0 means the feasible path needs to satisfy

motion constraints, M is the number of USVs, N is the number

of the discrete waypoints, ei,k denotes the energy cost against

the sea current on a path section ti,k between adjacent way-

points: pi,k and piþ1,k, of the kth USV, vi,k denotes the control

cost on ti,k, and length(�) represents the length of ti,k.

USV motion model

Usually, a physical USV model is simplified to establish a

control model that satisfies system requirements, and the char-

acteristics of the USV structure are moderately simplified.

We truncated the freedom degrees of USVs to surge,

sway, and yaw for the OPP burden reduction. That is also

because the influence of heave, pitch, and rolling motions is

supposed to be relatively small on the OPP procedure in

ordinary sea states. Figure 2 shows the Earth-fixed inertial

frame fig and the body-fixed frame fbg. The positive X-axis

of fbg is in the USV heading direction, and the origin locates

at the barycenter of USV. The vehicle is well designed to be

symmetric so that the barycenter coincides with the center of

the hull.

The experimental dynamic model is listed below

according to the study in Mousazadeh and Kiapey47

Wen et al. 3



_x ¼ dx=dt ¼ u � cosq� v � sinq

_y ¼ dy=dt ¼ u � sinqþ v � cosq

_q ¼ dq=dt ¼ r

_u ¼ du=dt ¼ m22

m11

� v � r � du

m11

� u�
X3

i¼2

dui

m11

� juji�1 � uþ 1

m11

� tu

_v ¼ dv=dt ¼ m11

m22

� u � r � dv

m22

� v�
X3

i¼2

dvi

m22

� jvji�1 � v

_r ¼ dr=dt ¼ ðm11 � m22Þ
m33

� u � v� dr

m33

� r �
X3

i¼2

d ri

m33

� jrji�1 � r þ 1

m33

� tr

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(2)
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Figure 1. Hierarchically cooperative paths planning system for USVs. USV: unmanned surface vehicle.
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where [ _x, _y, _q]T and [u, v, r]T are the velocity vectors in fig
and fbg, respectively, and du, dv, dr, dui, dvi, and dri (i ¼ 2,

3) are the hydrodynamic damping weights. The mii (i ¼ 1,

2, 3) denotes the mass parameters, and the mass matrix is

diagonal. tu and tr denote the surge force and yaw moment,

respectively. The parameters in Table 1 refer to a real USV,

and they come from the study in Mousazadeh and Kiapey.47

du2 ¼ 0.2du, dv2 ¼ 0.2dv, dr2 ¼ 0.2dr, du3 ¼ 0.1du,

dv3 ¼ 0.1dv, dr3 ¼ 0.1dr, L, and W are the length and width

of the hull, respectively.

To guarantee the dynamic feasibility of the resulting

path, we take motion constraints into account during the

OPP process. The inequality constraints of the maximum

velocity and acceleration are defined by the performance

limitations of USV according to formula (2). The minimum

turning radius is set as rmin ¼ 4(u2þv2) / omax, where omax

is the maximum angular acceleration of USV, thus the

extendable domain for a path tree node is fan-shaped. The

nonholonomic differential of USV motion constraint is

sinq�dx � cosq�dy ¼ 0, where dx and dy are the X and Y

increments in fig, respectively. The constraints are checked

during each path extension iteration to ensure the feasibility

of the planned path sections.

Cooperative potential functions design

Collision detection

When a DO enters the working domain of USV, the colli-

sion cone scheme was improved to assess the collision

situation by the intention of DO,10 and the collision navi-

gational angle ranges were computed according to the rela-

tive velocity of the USV with respect to DO

vq ¼ visinða� qÞ � vosinðb � qÞ
vr ¼ vicosða� qÞ � vocosðb � qÞ

�
(3)

Figure 3 illustrates that vio is the relative velocity of the

USV with respect to the DO, ro is the safe radius from the

USV to the DO, pi¼(xi, yi) denotes the position of the USV,

po¼(xo, yo) denotes the position of the DO, vq is the com-

ponent of vio on the direction perpendicular to the line pipo,

C is the intersection of the expected USV path on the safe

circle centering at the DO if the USV and the DO maintain

their velocities, and vr is the component of vio on the direc-

tion of pipo. If vq¼0, then the relative trajectory of the USV

to the obstacle is right on the line of pipo. If vr>0, then the

projection of vio on pipo is positive, and the USV has a

tendency of becoming close to the obstacle; otherwise, the

USV is more likely to separate from the DO. Figure 3

shows that collision probably occurs at point C. If vr>0 and

the direction of vio is within the domain from piA to piB that

are the tangents of the circular bounding box of the DO

from the USV location, then collision possibly occurs.

(vq)pA and (vq)pB are the components of vio in the direction

perpendicular to lines piA and piB, respectively. Thus, the

following collision detection condition can be obtained.

If one of the conditions, (1) vq¼0 and vr>0;

(2) (vq)pA�(vq)pB�0 and vr>0, is met, then USV is probably

collision with the obstacle. The proof of the second condi-

tion refers to in appendix 1. The practical style of the sec-

ond condition is as: dio
2vq

2�ro
2(vr

2þvq
2), where dio is the

distance between USV and DO. The collision detection

algorithm is as:
vq ¼ 0 and vr > 0

vr > 0 and d2
io � v2

q � r2
o � ðv2

r þ v2
qÞ:

�

Cooperative potential functions design for avoiding
obstacles

The quadratically ring-shaped attractive potential field is

constructed around the goal

U attðqÞ ¼ 0:5xdit
2 (4)

where dit is the distance from USV to the target. The attrac-

tive force is calculated by F attðqÞ ¼ xditnit, where

nit¼�!r(qi, qtarget) is the direction unit vector from USV

to the target, and we set x to be 1.

We defined a ring-shaped repulsive potential field

around each obstacle at the region: ro<dio<Ro, where Ro

is the radius to conduct the OA action. We set Ro to be

5 kilometers in open water areas and 500 m in narrow

passage areas empirically. The repulsive force from obsta-

cles is calculated as follows, and n is the number of

obstacles

Table 1. Parameters of the USV dynamic model.

m11 (kg) m22 (kg) m33 (kg � m2) du (kg/s) dv (kg/s) dr (kg�m2/s) L (m) W (m)

25.8 33.8 2.7 2 7 0.5 1.5 0.5

USV: unmanned surface vehicle.

{i}

Yb Xb

Bu

Fstdb

Fport

{i}

y

x

{b}

Figure 2. Schematic of USV planning frame system. USV:
unmanned surface vehicle.
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�OA ¼
Xn

i¼1

1

2
� 1

dio

� 1

ro

� �2

� d2
it

 !
(5)

Fio¼
Xn

i¼1

@�OA

@vio

� @vio

@v
þ @�OA

@dio

� @dio

@p
þ @�OA

@dit

� @dit

@p
þ @�OA

@vio

� @vio

@p

� �

(6)

Because vio ¼ (vi�vo)T�nio ¼ (vi�vo)T�(pi�po)/dio, thus,

we can get that @vio/@v¼nio and @vio/@p ¼ (vionio�

(vi�vo))/dio according to the study in Ge and Cui.20 Since

vio?nio? ¼ (vi�vo) �vionio, thus @vio/@p ¼ �vio?nio?/dio,

where nio is the unit direction vector from USV to the

obstacle and nio? is the unit vector perpendicular to nio.

The time to perform the OA action is also important for

both the refinement and the safety of the path.28 We set the

safe distance as ro ¼ vio
2/2 am, where am is the maximum

deceleration, thus USV has enough space for OA. We set

the repulsive force to be infinity if dio�ro for emergency

OA. The repulsive force is calculated by formulas (6) and

(7), and dio ¼ ((xi�xo)2þ(yi�yo)2)1/2

@�OA

@vio

� @vio

@v
¼

d2
itvio

amr2
o

� 1

dio

� 1

ro

0
@

1
A � nio; if dio � Ro and collision may happen

0 ; otherwise

8>><
>>:

@�OA

@dio

� @dio

@p
¼

d2
it

r2
o

� 1

dio

� 1

ro

0
@

1
A � nio; if dio � Ro and collision may happen

0 ; otherwise

8>><
>>:

@�OA

@dit

� @dit

@p
¼ dit �

1

dio

� 1

ro

0
@

1
A

2

� nit; if dio � Ro and collision may happen

0 ; otherwise

8>><
>>:

@�OA

@vio

� @vio

@p
¼ � d2

itvio

amdior2
o

� 1

dio

� 1

ro

0
@

1
A � vio ⊥ nio ⊥ ; if dio � Ro and collision may happen

0 ; otherwise

8>><
>>: (7)

Vectors for the construction of the repulsive potential

field are shown in Figure 4. Thus, the repulsive force

component along nio pushes the USV away from obstacles,

and the component along nio? provides steering torque for

y

xvo

vo

vi

pi

vi - vo

vio nio

vionio - (vi - vo)

poObstacle

Figure 4. Vectors for construction of the repulsive potential
field.

ro

α

voA

B

θ

β

vi

y

x

pi

po

vo

vio

C

θmax

θio

safe 
circle

obstacle

{i}

Figure 3. Illustration of the collision detection via the collision
cone method.
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USV to avoid obstacles. We add a positive or negative

weight on nio? to change the direction of the steering vector

according to the COLREGs.

If the relationship between DO and USVs is cooperative,

then USV chooses the OA direction according to the COL-

REGs and the intention of DO action that is assumed to be

given. Such a relationship exists between USV members in

a formation or the communicated USVs and DOs. Then, we

add the positive or negative sign to nio? to determine the

direction of the repulsive force in terms of the absolute

angle (qs, 0<|qs|<p) that is from the motion direction of

USV to that of DO. If |qs| ¼ 0 or p, then we adjusted vo

by a small angle clockwise. Thus, according to the COL-

REGs, the direction of nio? is the steering direction of USV

that enlarges |qs|. Figure 5 shows four typical OA situations

of USV. Then, the OA direction and the repulsive force are

determined. If the relationship between USVs and DO is

not cooperative, then no rules should be complied with, and

USV avoids DO by a low-cost path.

OPP algorithm for USVs

The potential field of the global environment is constructed

according to the given environmental information before-

hand. This procedure is regarded as environment prepro-

cessing for online burden reduction. The local potential

field should be rebuilt during online planning if the envi-

ronmental information changes or a DO occurs. The online

built local potential field may have the local optimal prob-

lem. Thus, the randomness of the RRT* extension is kept to

guarantee probabilistic completeness. This feature of RRT*

can help the planner escape from the possible local opti-

mum of the local potential field.

Local potential field modeling

The traditional APF method handles the obstacles with irre-

gular shapes by two schemes, i.e. the circular bounding box

method and the decomposition method. The bounding box

method considers the obstacles by the circular bounding

ro

voA

B

vi

y

x

pi

po

vio

C

θs
safe 

circle

obstacle

nio

vo

ro

vo

A

B

vi

y

x
pi

po

vo vio

C

θs

safe 
circle

obstacle

nio

ro

vo

A

B
vi

y

x

pi

po

vo

vio

C

θs

safe 
circle

obstacle

nio

ro

vo

A

Bvi

y

x

pi

po

vo

vio

C

θs

safe 
circle

nio

obstacle

(a) (b)

(c) (d)

Figure 5. Typical dynamic OA situations according to the COLREGs. (a) USV overtakes DO. (b) DO crosses the course of USV from
the right. (c) DO crosses the course of USV from the left. (d) USV and DO move head-on. OA: obstacle avoidance; COLREGs: the
International Regulations for Preventing Collisions at Sea; USV: unmanned surface vehicle; DO: dynamic obstacle.
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boxes, and then, the distance between USV and obstacle is

easy to compute. However, if the obstacle is thin and long,

the circular bounding box method is rather inaccurate. The

decomposition method splits the irregular shape obstacle

into unit circulars, but the decomposition process is compli-

cated, and the method intends to only reflect the local fea-

tures of obstacles.

Front-facing scanning radar is a sort of crucial sensor for

OA, thus if the local potential field is constructed according

to the characteristics of radar data, then the virtual forces can

be calculated directly by the radar readings efficiently. The

distances and obstacle’s occupied area information that is

crucial for OPP are easy to be acquired from radar read-

ings.23 Meanwhile, OPP generally needs the information

on obstacles in front of USVs rather than that behind USVs.

Thus, the radial modeling method is applicable. The local

environment is expressed in vector form as follows: R¼ [R1,

R2, . . . , RN] according to the study in Ge et al..23 As shown in

Figure 6(a), Ri¼ minfRr, Rdg, (i¼ 1, 2, . . . , N), where Rd is

the minimum distance between USV and obstacle on a radar

beam and Rr is the radius of the sensing range.

Since consecutive radar readings can be categorized as

the feedback of the same obstacle. As shown in Figure 6(a),

R0, R1, and R2 are considered as the readings of Obs1, and

RN�2, RN�1, and RN are considered as the readings of Obs2.

Then, the relatively closest reading from the same obstacle

can be used to calculate the repulsive potential field, for

instance, R1 is used to compute the repulsive potential field

from Obs1 because R1 returns the minimum distance

among all the readings from Obs1. For the same reason,

RN�1 can be used to calculate the repulsive potential field

from Obs2. Then, the repulsive force Frf from obstacles is

calculated as the resultant force of Ff1 and FfN�1.

The direction of the kth reading is denoted by n¼ [cosq(k)

sinq(k)]T, where q(k) ¼ 180– (k�1) qs, and the motion

direction of USV is defined as the reference direction of zero

degree angle, qs is the angle between a pair of adjacent read-

ings, and qs is determined by the angular resolution of the

sensor. Figure 6(b) is an expressive potential field vector

constructed by the proposed method.

Cooperative potential function-based RRT* method

Leveraging the advantages of the baseline APF and RRT*,

a cooperative potential function-based RRT* (CPRRT*)

scheme is proposed. The new cooperative potential func-

tion is used to guide the exploration and exploitation pro-

cesses of RRT*, eventually improving efficiency. The

RRT* method is used to handle the motion constraints and

the possibly unstructured and changing information to plan

paths online. The potential functions are used to directio-

nalize samples to promising areas where the optimal path

more probabilistically exists, to reduce the number of itera-

tions. The samples adjustment and path tree rewiring of

CPRRT* are regarded as the exploitation or refinement

process for enhancing the energy efficiency of paths.

The potential function-based sampling process and

totally random sampling process are performed alternately

by a probabilistic threshold tp to keep the balance between

exploitation and exploration. The description of the OPP

algorithm is listed below.

The following steps are conducted iteratively until the

OPP time expires.

1. A sample qs is spawned randomly according to the

uniform probability distribution in the sensing

domain of USV, and the nearest node (qn) to the

sample qs is searched on the path tree.

2. A random number rand2[0,1] is generated. If rand

is lower than the probability tp, then the potential

Figure 6. Local environmental potential field construction. (a) Repulsive force from irregular-shaped obstacles. (b) Expressive potential
field vectors.
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function-based sampling scheme is performed, else,

the random sampling procedure is conducted. The

potential function-based sampling scheme is as fol-

lows. The sample qs is directionalized by following

the cooperative potential field for k (set as 3) times

if the adjustment is collision-free. If a collision hap-

pens, then the directionalizing process will stop and

the last collision-free sample during the adjustment

will be kept.

3. The path tree node qn is extended toward qs. If the

extension succeeds, then a new node is added to the

path tree and the locally topologic path tree rewiring

process is conducted. The extension step length is

set as h ¼ vU�Dt, where vU is the estimated velocity

of USV at qn andDt is the control step duration. The

expected motion direction of USV coincides with

the extension direction.

Figure 7 illustrates the sampling adjustment where qs is

the original sample, and qs1, qs2, and qsk (k¼3) are the

directionalized samples.

Algorithm implementation

ALG.1 shows our OPP algorithm. The online architecture

is constructed based on the MPC framework. After a sub-

goal is selected, the local planning iteration starts and runs

in the predefined local planning time. The USVs sail by

following the currently available path, and the environmen-

tal information in the sensing range of the USVs is updated

at each path extension iteration. If the local planning time

runs out, then a local path is queried, and the next local

planning iteration begins. The local planning with the sen-

sing range rolls forward until the USVs achieve the goal.

At the beginning of each local planning iteration, a subgoal

for the current local planning is selected, as shown by the

second line, to leverage the given global reference path. If

the current sensing range of USVs intersects with the global

path, then the furthest waypoint to the USVs on the global

path in the sensing range is selected as the subgoal. If the

sensing range does not intersect with the global path, then the

sensing boundary is divided into discrete points, and the dis-

crete point nearest the global path is selected as the subgoal.

In the fifth line, the repulsive potential forces from

obstacles are calculated according to the characteristics of

the radar data. The eighth line shows the path tree extension

of RRT* guided by the cooperative potential field. The

tenth line shows the baseline RRT* extension process.

In the eleventh line, a local path is queried after the local

path planning iteration expires, then the redundant way-

points are reduced, and the simplified path is smoothed via

the Dubins curve. That is because the OPP method may

plan a large number of waypoints, thus, the planned path is

probably complex and zigzagged. To make the path easier

to follow, the path should be simplified to reduce redundant

waypoints and turns. We first classify the peaks of turns on

the paths. If the turning angle is big, then we attempt to

delete the peak by connecting the points before and after

the peak. If the point is the peak of consecutive turns, then

we also attempt to delete the point. The redundant way-

points reducing process is conducted sequentially until the

qnEnvironmental 

potential field

RRT* 

path tree

qs
qs1

qs2
qsk

Figure 7. Illustration of the sample adjustment.

ALG.2 RRTStarExtension(qrs, T)
Input: Sample, qrs; Cost weights matrix, W;

Cooperativepotential field,PE;Currentvectors,Vcur;
Path tree, T fV, Eg; Path tree nodes, V; Path tree
branches, E

01: Snear NearbyNodes(T, qrs);
02: Snear.sort();
03: qn¼NearestNode(T, qrs)) 6¼Null
04: IF CollisionFree(Enew¼Extend(qn, qrs)) THEN
05: T Insert(qnew, Enew);
06: FOR qj ¼ Snear.pop() /*locally path tree rewiring loop */
07: IF cost(qnew) þ C(qnew, qj) < cost(qj)

&& qnew can extend to qj THEN
08: E.remove(qj.parent(), qj); E.add(qnew, qj);
09: RETURN(True);
10: RETURN(False); /*no extension succeeds*/

ALG.1 Online path planning method for USVs
Input: Global reference path; Path tree T¼fV, Eg Ø
01: WHILE Planning does not expire DO
02: Select the subgoal for local path planning;
03: WHILE Online planning does not expire DO
04: Environmental information update;
05: Radar-based local environment modeling;
06: Random sample qs spawning and rand20,1 generation;
07: IF rand�tp THEN
08: CPRRTStarExtension(qs, T, Patt, Prep, Vcur);
09: ELSE /*IF rand >tp */
10: RRTStarExtension(qs, T);
11: Local path querying and simplification, then smoothing;
12: Virtual leader path following and USVs cooperative paths

planning;
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end of the path. In the twelfth line, USVs cooperative paths

are planned by following the virtual leader of USVs.

ALG.2 shows the extension process of the baseline

RRT*. In the first line, the RRT* method finds the near

nodes of qrs within a ball of the radius: Rn:¼g�(logn/n)1/d,

where g>(2(1þ1/d))1/d�(m(Xfree)/zb)1/d by means of the

requirement of asymptotical optimality of RRT*, d is the

dimension of the planning space (3), n is the number of path

tree nodes, and m(Xfree) and zB denote the volumes of the

obstacle-free space and the unit ball, respectively. In the

second line, the path tree nodes in the stack of Snear are

sorted in ascending order by their distances to qrs. In the

third line, the node qn is the nearest path tree node of qrs.

Enew in the fourth line and qnew in the fifth line are the

newly added path tree edge and tree node after the path

tree extension, respectively.

The path tree locally rewiring (refinement) iteration is

shown from the sixth line to the eighth line. In the sixth line,

the function pop(�) returns the top element of the stack

Snear. In the seventh line, the cost value of a node qj

means the sum of all the costs of path sections from the

tree root to qj, and the C value is the cost of a path section.

The cost and C values are computed by means of formula

(8). If the cost of a node qj decreases when qj takes qnew as

the father node and qj can extend to qnew by a collision-free

path, then qj is rewired to qnew and takes qnew as its new

father, and the path section from the original father of qj to

qj is deleted.

The cost function is defined by consideration of the path

execution difficulty, energy expenditure, and safety, in

terms of the path length, and the compliance of the path

to the potential field or current vector

Cðqi; qjÞ ¼ wl � sinðaT =2Þ þ wy � Cy þ wd � distðqi; qjÞ
s:t: Cy ¼ cosðp� ayÞ; 0 � ay � p=4 or 3p=4 � ay � p

Cy ¼ sinay; p=4 � ay � 3p=4

(8)
where aT is the angle between the vector from qi to qj

(marked as tij) and the previous path section vector toward

qi, and 0 � aT � p, the consideration of aT is to reduce the

numbers and aggressiveness of turns. The angle between tij

and the direction of potential field or current vector is

denoted as ay, 0 � ay � p. The task-specific weighting

coefficients are tuned to be wl ¼ wy ¼ 1 and wd ¼ 0.2,

related to the energy costs by the actions of moving

straight, turning, and conquering the impeding of current.

Since the formula is used to compute local cost, and the

distance between qi and qj is generally one extension step

length that is generally less than 5 m in the study, thus the

weights can guarantee the action cost items to be compa-

rable. The function of dist(.) is used to compute the distance

between two nodes.

The current can significantly influence the USV motion,

thus it should be considered during the OPP procedure.

Since the horizontal current flow can be regarded as

stationary and uniform, locally, thus we can consider it

by the angles (denoted by ay2[0,p]) between the direction

of USV motions and those of the current, to improve the

energy efficiency of the path.5–8

When ay < p/4, cos(p�ay) is negative, and the down-

stream path helps to save fuel for the sailing. When 3p/4 �
ay � p, the countercurrent path segment may be fuel-

costly. Since the ability to resist transverse current interfer-

ence of USV is weak, thus we consider the interference of

the transverse current by sinay, when p/4� ay� 3p/4. The

OPP process is guided by ay to plan for energy-efficient

paths, such that most sections of the path are down-

stream, and just a small amount of sections are transverse-

current ones.

ALG.3 shows the potential function guided path tree

extension process. In the first line, qs is assigned to qrs, 1

as the initial sample. In the third line, dmin denotes the

minimum distance between the sample qrs, i to obstacles.

In the fourth line, ro is the minimum safe distance between

USV and obstacles, and k (3) is the fixed times of adjust-

ment. In the fifth line, Ro is the reactive radius for OA.

In the sixth and eighth lines, the function PVecSyn(�, qs)

is defined for synthesizing the potential vectors at qs. If

the sample is outside the OA reactive range, then the

synthesizing process will not consider the repulsive force

from obstacles. In the ninth line, Fcal(�) calculates the

resultant force by means of Ptotal. In the eleventh line,

the sample is directionalized for a distance of l along the

direction of Ftotal, where l is the extension step length of

RRT*. In the thirteenth line, the condition means the

adjusted sample is within the minimum distance from

obstacles, then we extend the path tree toward the last

adjusted collision-free sample qrs, i�1. The fifteenth and

sixteenth lines mean the adjustment process is conducted

ALG.3 CPRRTStarExtension(qs, T, Patt, POA, Vcur)
Input: Randomly spawned sample, qs; Path tree, T;

Attractive potential field, Patt;
Repulsive potential field, Prep;

01: qrs, 1¼qs;
02: i¼1;
03: dmin¼NearestObs(qrs, i, Xobs);
04: WHILE (dmin>ro && i � k) DO
05: IF dmin�Ro THEN
06: Ptotal¼PVecSyn(Patt, Prep, qs);
07: ELSE IF dmin>Ro THEN
08: Ptotal¼PVecSyn(Patt, 0, qs);
09: Ftotal¼Fcal(Ptotal);
10: i¼iþ1;
11: qrs, i¼qrs, i-1þl(Ftotal/|Ftotal|);
12: dmin¼NearestObs(qrs, i, Xobs);
13: IF (dmin�ro) THEN
14: RRTStarExtension(qrs, i-1, T);
15: ELSE /*i>k*/
16: RRTStarExtension(qrs, i, T);
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for k times, and we extend the path tree toward the

adjusted sample qrs, i.

Algorithm analysis

The heuristic sampling process is used to enhance the effi-

ciency of RRT* because the computational complexity of

generating samples is far lower than that of the path extend-

ing, and high-quality samples can accelerate the converge

process of RRT* to optimal paths.45

The qualitative illustration of the probabilistic complete-

ness of CPRRT* is listed below. The path tree of CPRRT* is a

connected tree rooted at the initial state of USV, and the path

tree extends toward samples from their nearest tree nodes.

The potential field is just used to accelerate the path searching

process of RRT* by guiding samples to avoid obstacles and

toward a goal probabilistically.43–46 Moreover, the samples

remain probabilistic randomness to explore the whole space.

CPRRT* converges to high-quality paths, and the formal

proof is as follows. A collision-free path t* is said to be

optimal in terms of Euclidean distance, if it has weak

d-clearance, meaning that the path can be deformed by a

collision-free homotopy h(y) to another path t with bigger

distances than d from obstacles; t has the same start and end

points to t*; and t* has distance no bigger than d from

obstacles.35 The path t* is provided with the set of all fea-

sible paths such that C(t*) ¼ argmin t2feasiblefC(t)g, where

feasibility means that paths satisfy motion constraints of

USV and are collision-free as well as not violating any

OA rule. CPRRT* performs exploration and exploitation

of configuration spaces to refine paths. The heuristics of

CPRRT* guide paths toward the weak d-clearance by direct-

ing samples to spaces with a high probability of containing

an optimal path. The potential field continues directing sam-

ples down the slope of the potential field to the obstacle-free

goal region until the sample gets very close to obstacles or

the threshold is reached. The algorithm parameters are set to

be the same as RRT* except that the rewiring process also

considers the current to adjust the path toward the energy-

saving direction. Therefore, the OPP solution of CPRRT*

can converge to a high-quality path that considers the path

length, ease of following, and the influence of current on the

USV motion, comprehensively.

However, path optimality is hardly achieved online due

to the limited time, and efficiency is crucial for an online

planner. To balance the complexity against efficiency, a

heuristic potential field function guided sampling scheme

is devised for leveraging the known environmental infor-

mation. Therefore, CPRRT* is probably more efficient

than the baseline RRT* method.

Potential field for cooperative paths planning

After a path section is planned online, the virtual leader is

supposed to follow the path. Thus, the position and velocity

of the virtual leader can be calculated in real time. Then, the

path planning targets of USVs are estimated.

We define the inner potentials to keep the USVs forma-

tion and then the formation keeping potential field and

the OA potential field are synthesized. The USVs in the

triangle formation are illustrated in Figure 8, where C0 is

an inertial coordinate system, CFi denotes the formation

coordinate system, and the coordinate (xci, yci) of the

virtual leader in fC0g is the origin of fCFig. We define

pi¼ (xi, yi) and pi
d¼ [xi

d, yi
d] to be the actual position vector

and the motion target vector of USVi, respectively, and

piF
d¼ [xiF

d yiF
d]T is the position vector of USVi with respect

to the virtual leader. We can adjust piF
d for various forma-

tions. The transformation of piF
d to pi

d is defined as follows

xd
i ðtÞ

yd
i ðtÞ

" #
¼

xciðtÞ
yciðtÞ

� �
þ

cos½qciðtÞ� �sin½qciðtÞ�
sin½qciðtÞ� cos½qciðtÞ�

� �
xd

iFðtÞ
yd

iFðtÞ

" #

(9)

The ring-shaped formation keeping potential is con-

structed around each USV according to the studies in Ge

and Cui20 and Qin et al.28 The attractive potential field is

constructed in the following formula

U attðp; vÞ ¼ 0:5 � ap � ðptar � piÞ2 þ 0:5 � av � ðvx � viÞ2

(10)

where ptar denotes the position of the target, vx denotes the

velocity of the virtual leader, pi and vi are the actual posi-

tion and velocity of the USV member, and ap and av are

specified to be 0.7 and 0.3, respectively.

As shown in formula (11), the attractive force has two

components where Fatt1 is used to follow the position of the

target and Fatt2 is used to follow the velocity of the virtual

leader. The direction of the unit vector nit is from the posi-

tion of USV to that of the motion target, and the direction of

the unit vector nvit is from the direction of the USV velocity

to that of the virtual leader

C0

Virtual leader

(xci,yci)

θci
USVi

Target1

CFi

ri
dri

riF
d

X

Y XC

YC

Target2

Target3

X

Figure 8. Illustration of the cooperative motion of USVs. USV:
unmanned surface vehicle.
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Fatt ¼ �rpU attðp; vÞ � rvU attðp; vÞ ¼ Fatt1 þ Fatt2

Fatt1 ¼ ap � jpgoal � pðtÞj � nit

Fatt2 ¼ av � jvx � vðtÞj � nvit

8><
>:

(11)

USVs will be pushed back by the repulsive forces

from other members for OA if they enter the domain of

other members, to keep the activities of each USV within

their own allowable range. The repulsive potential field

from other USV members is defined in the following

formula

�rij ¼
Xn

i¼1

1

dij

� 1

ro

� �2

� d2
it

 !
(12)

where the parameters of the repulsive potential field for

formation keeping are the same as those in formula (7),

and n is the number of the USV members. A USV member

considers other members as obstacles, and dij is the distance

between members. The steering direction of USVi avoiding

USVj is determined by nij?, and the calculation of the direc-

tion of nij? is similar tothat of nio? in Figure 5 according to

the COLREGs. Formula (13) shows the repulsive force

from USVj that is consisted of three components, Frij1nij,

Frij2nij?, and Fitnit. Similar to formula (7), formula (14) is

used to calculate the repulsive force component in the

direction nij from USVj to USVi, formula (15) aims to cal-

culate the repulsive force component in the direction per-

pendicular to nij, and formula (16) is utilized to compute the

repulsive force component considering the attraction from

the motion target

Frij ¼
Xn

i¼1

ðFrij1nij þ Frij2nij ⊥ Þ þ Fitnit (13)

Frij1 ¼
d2

itðvij þ amÞ
amr2

o

� 1

dij

� 1

ro

0
@

1
A; if dij � Ro and collision may happen

0 ; otherwise

8>>><
>>>:

(14)

Fij2 ¼
� d2

itvij

amdijr2
o

� 1

dij

� 1

ro

0
@

1
A � vij ⊥ ; if dij � Ro and collision may happen

0 ; otherwise

8>>><
>>>:

(15)

Fit ¼
dit �

1

dij

� 1

ro

0
@

1
A

2

; if dij � Ro and collision may happen

0 ; otherwise

8>>><
>>>:

(16)

The OA priorities of USVs are defined before sailing off

to avoid the deadlock problem in the cooperative collision

avoidance process between USVs. The low-priority mem-

bers give way to the high-priority USVs. Once the high-

priority USV has reached the estimated position, the

collision situation becomes clear. Then, the low-priority

member plans for the OA path.

Table 2. Partial parameters of the online path planner.

dc (s) PR (km) Dt (s) ro (m) gRRT*

5 5 0.1 5 20

PR: radius of the sensing domain; RRT*: rapidly exploring random tree.

12 International Journal of Advanced Robotic Systems



The CPRRT* method with the goal bias strategy was

used as the local planner. Since we considered the problems

of OA and path refinement during the virtual leader path

planning process, thus we combined the goal bias scheme

that chooses the current target as samples within a prob-

ability threshold (0.3).41

Experimental results and analyses

Experimental environment setup

Simulations were conducted on a computer with Windows

10 64 bit OS, 16 G RAM, and Intel(R) Core(TM) i7-

7820HQ CPU @ 2.90 GHz.

The OPP parameters are presented in Table 2, where dc

is the fixed local planning time and Dt is the interval

between control steps, and a local path generally contains

more than 50 control steps. PR is the radius of the sensing

domain, ro is the minimum safe distance between USV and

obstacles, and gRRT* is used in a sample’s near neighbors

searching process of RRT*. The maximum speed of our

USV is 5 m/s, the maximum translational acceleration is

1.5 m/s2, the maximum lateral acceleration is 10 m/s2, and

the minimum turning radius is 2 m.

Ablation experiments

Expressive simulation results. We performed the APF method,

baseline RRT* method, and heuristic RRT* method to

understand the contribution of each component to CPRRT*

performance. The units of the following figures are

kilometers.

Figure 9 shows the planning result of the proposed APF

method in the Monte Carlo experiment, where the locations

of the obstacles are randomly changed. The speed of USV

is set to be 5 m/s without obstacles nearby, and the OA

speed is set to be 2.5 m/s. The direction of the velocity

coincides with that of the path section.

Figure 9 indicates the possible planning results in the

Bug Trap environment. The environment consists of many

traps formed by irregularly shaped and concave obstacles,

and it also has low visibility. The experiment aims to illus-

trate that the simulated environment is rather complex for

APF-based and RRT*-based planners. Figure 9(a) shows

that APF planning easily falls into the local optimum.

Figure 9(b) indicates that aggressive turns may exist on the

path. In addition, our repulsive force calculation in terms of

radar readings is practical.

Figure 10 illustrates the results of the ablation experi-

ments where the effectiveness of the heuristic modules is

illustrated. The heuristics of CPRRT* include the potential

field-based sample directionalizing, subgoal selection that

refers to the global path, and path tree topological structure

refinement by rewiring.

Figure 10(a) shows the planning results of CPRRT* with

all of the heuristic modules. The red solid curve is the

planned path. The green- and blue-dotted curves are the

original paths captured by APF and the simplified path

which is smoothed via the Dubins curve, respectively. The

tree-shaped lines show the path tree branches during the

path searching process. The green stars denote subgoals.

The reference path is queried along the direction of the

gradient descent of the potential field. Thus, it is a high-

quality path in terms of static environment information.

The CPRRT* path deviates not far from the reference path.

It is short with a small number of gentle turns. Most sec-

tions of the path conform to the potential vectors. There-

fore, the CPRRT* path is probably a low-cost path.

The small number of tree branches illustrates that the

path searching process is efficient because of the heuristics.

Figure 10(a) describes the potential vectors built according

to the given environment information. The vectors can

guide the OPP process to collision-free spaces to improve

the efficiency of the RRT*-based planner. The path tree

exploitation by rewiring helps refine paths.

Figure 9. Path planning results of the APF method under the Bug Trap environment. (a) Planning being trapped. (b). Planning result in a
Bug Trap environment. APF: artificial potential field.
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Figure 10(b) illustrates the result of the planner without

the potential field heuristics. Compared with the path of

CPRRT*, the path in Figure 10(b) deviates further from

the reference path with many turns, including even the

aggressive turns in the middle of the subfigure. That obser-

vation shows that the path is probably costly.

Figure 10(c) shows the planning results of the potential

function-based RRT* (PRRT*) method. PRRT* uses the

repulsive potential field without considering the USV velo-

city. Similar to the studies of literature,43–45 the sample

adjustment does not consider the attractive force from the

subgoals. The path is longer with more turns than the path

in Figure 10(a). Aggressive turns also exist, as shown in

the middle of the subfigure. The probable reason is that

PRRT* does not consider the attractive force from the sub-

goals, and the repulsive force pushes the path away from

obstacles as far as possible. The path tree of PRRT* has no

absolutely random sampling process. Thus, the planner

may not be exploring space as comprehensively as

CPRRT*. Therefore, the path quality may be lower than

that of CPRRT* in dynamic environments when the plan-

ning time is quite limited.

Figure 10(d) expresses the planning result without the

subgoal selection. Moreover, the planner and the attractive

potential field consider only the global goal. As shown by

the broadly growing tree branches, the planner attempts to

Figure 10. Expressive results with different heuristic modules. (a) Result of CPRRT*. (b) Result without potential field heuristics.
(c) Planning result of the PRRT* method. (d) Planning result without reference path. (e) Result of CPRRT without rewiring. (f) Result of
CPRRT* with blocked reference path. CPRRT*: cooperative potential function-based rapidly exploring random tree; PRRT: potential
function-based rapidly exploring random tree.
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search for the path by widely exploring the space, possibly

causing the path to be more costly than the path of

CPRRT*. However, the planner can quickly find a path

with the guidance of the potential field, as shown by the

small number of branches.

Figure 10(e) describes a path of the cooperative potential

function-based rapidly exploring random tree (CPRRT)

method. Unlike CPRRT*, CPRRT does not refine paths by

rewiring. CPRRT also does not use the guidance of subgoals.

The path of CPRRT in Figure 10(e) is probably shorter but

more costly than that in Figure 10(d) because the former has

more sections with larger angles with the potential vectors

than the latter has. Moreover, the path has a large number of

turns in the middle of the subfigure. This scenario is possible

because the CPRRT has no path rewiring mechanism.

Figure 10(f) shows the result of CPRRT* when the ref-

erence path is blocked because the environmental informa-

tion changed. The result demonstrates the OPP ability of

CPRRT*. The online planned path can avoid the pop-up

obstacle. The local potential vectors also change near the

pop-up obstacle. These observations express that the pro-

posed local potential field modeling method is practicable.

Figure 11 shows the results of CPRRT* for different

local path planning iterations. The planner deleted the sub-

goal selection module to demonstrate the asymptotic

optimality and probabilistic completeness of CPRRT*.

Thus, it did not use the guidance of the reference path. The

results can illustrate the relationship between planning time

and resulting path quality.

Figure 11(a) shows that, although the planner can find a

path within 2000 local planning iterations, the path is not a

low-cost one. Figure 11(b) expresses that the resulting path

is probably better than the path in Figure 11(a) because the

planning iterations increase. The reason is that CPRRT*

continues refining paths in the newly added time.

Figure 11(c) shows that the path becomes better than the

path in Figure 11(b), along with an increase in the iteration

times. This observation demonstrates that the CPRRT*

method has the asymptotically optimal nature derived from

RRT*.

Figure 11(a) to (c) illustrates that CPRRT* can plan

different path styles. As the iterations increase, the path

tree explores the space extensively. Then, many kinds of

paths are considered by the planner, and the resulting path

is refined adoptively. The asymptotic optimality and

Figure 11. Expressive path refining results of CPRRT* when local iteration increasing. (a) Expressive results with 500 iterations.
(b) Expressive results with 5000 iterations. (c) Expressive results with 10000 iterations. CPRRT*: cooperative potential function-based
rapidly exploring random tree.
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probabilistic completeness are kept because randomness

remains in the planning process of CPRRT*.

Figure 12 illustrates the proposed cooperative paths

planning process. Figure 12(a) supposes that the virtual

leader moves along the online planned path, as shown by

the elliptic bounding boxes. The virtual leader is supposed

to be located at the boundary of the sensing domain of the

USVs on the path at the beginning of each local path plan-

ning iteration. The direction of the virtual leader velocity is

estimated in terms of the geometric property of the path.

We assume that the communications between USVs are

available.

The planners are guided by the cooperative potential

field, the defined collision avoidance priority, and the

real-time USV statuses to deal with the cooperative OA

problem. The dotted lines in Figure 12(b) denote the USV

paths. USVs maintain the triangle formation when they are

far from the obstacles. They cooperatively transform into

Figure 12. Illustration of cooperative paths planning process. (a) The supposed virtual leader motion. (b) USVs cooperative paths with
formation transforming. (c) Planning for paths individually. (d) Planning costly path for collision avoidance. USV: unmanned surface
vehicle.

Figure 13. Monte Carlo simulation solutions in the obstacle-cluttered environment.
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the linear formation to avoid collision when they become

close to obstacles, as shown in the middle and the right top

of the subfigure. Then, they restore the triangle formation.

The planning objective is to minimize the sum cost of all

of the paths. However, the safety of the OA path is also

crucial. Thus, the planners may balance safety against cost.

The magenta path in Figure 12(c) describes that a long path

is planned for the safety of the cooperative OA. The

magenta path in Figure 12(d) also expresses that USVs

avoid obstacles individually, and they can break the forma-

tion for cooperative OA. This scenario illustrates the flex-

ibility of the distributed OPP framework.

Figure 13 shows the solutions of our planner in Monte

Carlo experiments, which are employed to evaluate the

efficiency and the online planning capability of the planner

in dynamic environments. The cluttered, irregularly

shaped obstacles with many narrow passages challenge the

planner.

The online planning ability of our planner is testified for

the following reasons: the planner can find OA paths

according to the real-time environmental information, and

the distributed planner in each USV can find a relatively

low-cost path by flexibly changing the formation. The high

efficiency is shown by the relatively low number of exten-

sion path-tree branches and high path quality that is certi-

fied by the few and gentle turns on paths.

A time-varying sea current is generally set to be clock-

wise in the northern hemisphere in Figure 14. The current

simulated below refers to our study in Wen et al42

 ðx; y; tÞ ¼ 1� tan
cosðscy � y� BcðtÞ � cosðku � ðscx � x� c � tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
u � Bc

2ðtÞ � sin2ðku � ðscx � x� c � tÞÞ
q

0
B@

1
CA

(17)

where Bc(t) ¼ b þ e � cos(o � t þ qu), b ¼ 1.1, e ¼ 0.2,

c ¼ 0.12, ku ¼ 0.84, o ¼ 0.02, and qu ¼ p/2, scx ¼scy ¼
0.02. The current vectors are captured by  (x, y, t). The

solution paths should consider the current vectors to

save energy. Figure 14(a) and (b) illustrates the sea

current model when the time (t) equals to 1 and 10 (hour),

respectively.

Attempts are made to plan paths in the open sea. Thus,

the primary interference of the USV navigation is the time-

varying sea current. However, the real-time sea current can

be measured using the current meter. The online planner

should then return low-cost OA paths according to the real-

time sensed sea current information. The downstream sec-

tions of a path help save energy, whereas the countercurrent

or transverse-current sections add extra cost for conquering

the current.

Given that the space from the planning start point and

end point is set to be without obstacles, the potential field

vectors are replaced using the sea current vectors in for-

mula (8). Then, the planning is guided by the current. In

practical occasions, the potential field is considered in sam-

ple adjustment if obstacles exist because the OA task is

prior to the current handling task. The current is considered

instead of the potential field in sample adjustment when no

OA task is to be conducted. However, the CPRRT* planner

always refines paths by path tree rewiring to consider the

sea current.

Figure14. Path planning results with the time-varying sea current. (a) Resulting path when t ¼ 1 h. (b) Resulting path when t ¼ 10 h.
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In both subfigures, the paths consist of many down-

stream sections and few countercurrents or transverse-

current sections, possibly demonstrating the online path

refinement ability of our planner. That is because the qual-

ity of paths is ensured by asymptotical path refinement.

In Figure 15, the dynamic ship-avoidance problem is

considered. The path extension process is guided by the

potential field vectors whose directions are determined by

the collision avoidance rule, namely, COLREGs. Thus,

the planning is guided by the potential field to avoid the

dynamic ship. Experiments are conducted in four

scenarios, as shown in Figure 15. Figure 15(a) shows the

USV meets the ship. Figure 15(b) shows the USV over-

takes the ship. Figure 15(c) and (d) shows the dynamic

ships crossing the USV from the left and right, respec-

tively. The polygonal red curves are the collision-

avoidance paths. The red pentagons illustrate USVs,

whereas the green ones illustrate ships.

The USV and ship are assumed to obey COLREGs.

Then, the potential field vector directions are adjusted in

terms of the encounter scenario, as indicated in Equation

(7) and Figure 5, to guide the path extension directions of

Figure 15. USV avoiding a dynamic ship in four scenarios according to COLREGs. (a) USV meeting dynamic ship. (b) USV overtaking
dynamic ship. (c) Dynamic ship crossing USV from the left. (d) Dynamic ship crossing USV from the right. USV: unmanned surface
vehicle; COLREGs: the International Regulations for Preventing Collisions at Sea.

Table 3. Quantitative results of the virtual leader’s path planning experiments.

Algorithms
Path searching

time (s) Path cost Path length (km) Failure rate Time STDEVP Path cost STDEVP
Path length
STDEVP

CPRRT* 5.1607 153.24 152.80 0.02 0.7703 3.6068 5.9433
PRRT* 5.5251 159.24 152.40 0.02 0.1763 7.7529 6.0520
CPRRT 8.0832 161.14 153.83 0.03 0.1777 14.1109 7.2461
APF 0.8181 145.05 146.67 — — — —
WO potential 7.4001 158.43 151.39 0.09 1.2892 6.9518 7.7587
WO subgoal 11.5994 161.76 156.35 0.05 4.1362 4.5843 4.9417
RRT* 16.8554 174.15 170.55 0.15 16.3623 10.7744 8.5581

STDEVP: standard deviation; CPRRT*: cooperative potential function-based rapidly exploring random tree; PRRT*: potential function-based rapidly
exploring random tree; APF: artificial potential field; WO: without; RRT*: rapidly exploring random tree.
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our planner. Thus, the dynamic ship-avoiding paths that

conform to the potential field vectors can be planned.

Quantitative results. We conducted 100 Monte Carlo experi-

ments on different path planning schemes to compare the

proposed CPRRT* method with traditional methods and

understand the contribution of each heuristic component

to the CPRRT* performance. Figure 13 shows the dynamic

environment for this experiment.

The statistical results listed in Tables 3 to 5 are consis-

tent with the results shown in Figures 10 to 13. We captured

the time of searching for each subpath once the path tree

reaches the subgoal or the local planning time expires. The

path searching time indicator means the sum of all subpath

searching times.

The path cost and path length were obtained after the

whole planning expired. If no path was returned in the

given planning time, then the planning was regarded as a

failure. The standard deviation (STDEVP) reflects the sta-

bility of a method.

Table 3 lists the quantitative results of planning for a

virtual leader’s path. The path searching time of APF is

lower than 1 s, demonstrating the applicability of the

radial repulsive force computation scheme. However,

the planning process can be easily trapped into the local

optimum. Thus, it cannot be used individually in dynamic

environments.

However, the APF path is optimal in terms of the poten-

tial vectors. Thus, the smoothed APF path is utilized as the

reference path for selecting subgoals. The values of path

cost and path length of the APF path are regarded as the

best when considering obstacles. The results of PRRT*,

APF, and RRT* are considered the ground truth against

which we benchmark the CPRRT* and CPRRT methods.

Although the path searching time of CPRRT* is more

than 5 s, the whole planning process contains more than

five local planning procedures. A local path generally con-

tains more than 50 control steps. Thus, the waypoint update

time is probably lower than 0.1 s, which meets the control

requirement, as shown by Dt in Table 2.

The path searching time of CPRRT* is slightly lower

than that of PRRT*, possibly because the potential field of

PRRT* does not consider the attractive potential field from

the subgoals. The time STDEVP of CPRRT* is higher than

that of PRRT*, mainly because CPRRT* attempts to find

the OA path according to the real-time velocities, causing

the large fluctuation of path searching time. However, this

scenario possibly results in the superior performance

indexes of CPRRT*, compared with those of PRRT*.

These performance indexes include path cost, path length,

path cost STDEVP, and path length STDEVP. The path

length and path length STDEVP of CPRRT* are close to

those of PRRT*. However, the path cost and path cost

STDEVP of CPRRT* are superior to those of PRRT*. The

reason is that PRRT* is guided by the pure repulsive poten-

tial field without considering the USV velocity, probably

causing aggressive turns on the OA path of PRRT*, as

shown in Figure 10(c).

The performance indexes of CPRRT are worse than

those of CPRRT* and PRRT*. These performance indexes

include path searching time, path cost, and path cost

STDEVP. The main reason is that CPRRT is inclined to

search for a path by extensively exploring the space rather

than refining the path tree. This finding illustrates the con-

tribution of the rewiring module of RRT*.

The abbreviation “WO” means “without”. The CPRRT*

without the guidance of the potential field obtains longer

path searching time, higher path cost, longer path length,

larger failure rate, and larger STDEVP values than those

obtained by CPRRT* with potential field heuristics. This

finding demonstrates that the planning process of CPRRT*

without potential field heuristics becomes increasingly ran-

dom and unstable, verifying the importance of the potential

field guidance module.

The method without a subgoal means that the CPRRT*

uses no reference path information, and it only extends the

Table 5. Results of planning for multiple paths.

Algorithms Local path searching time (s) Path cost Path length (km) Time STDEVP Path cost STDEVP Path length STDEVP

CPRRT* 0.8751 177.43 154.44 0.7223 4.8798 3.4096
PRRT* 1.4288 175.57 154.83 0.6034 9.0592 8.0825

STDEVP: standard deviation; CPRRT*: cooperative potential function-based rapidly exploring random tree; PRRT*: potential function-based rapidly
exploring random tree.

Table 4. Planning results of CPRRT* with fixed local iteration times.

Iteration times Total path planning time (s) Path cost Path length (km) Time STDEVP Cost STDEVP Path length STDEVP

1000 1.467198067 154.9306 149.7542 0.47263971 8.504669 2.505083
5000 77.65518073 152.6351 149.4904 10.04815065 16.73168 2.120877
10,000 337.3860333 147.3090 145.7312 4.08819589 0.73375 2.67887

STDEVP: standard deviation.
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path tree toward the global goal. The performance indexes

of CPRRT* without using the reference path are much

inferior to those of the method with a reference path. The

reference path is planned using the given environmental

information, thereby guiding the planner to extend the path

in terms of historical experiences. The method without a

reference path must explore space extensively to capture a

path, causing long path searching time, long path, and high

path cost. Its failure rate is also high because traps exist in

our environment, impeding the path planning process.

However, the performance indexes of CPRRT* without

potential field guidance or without a reference path are still

much better than those of RRT*. RRT* explores the space

randomly without assessing the probability of containing a

path in a subspace, causing the exploration easy to trap in

the concave obstacles.

Table 4 presents the results when CPRRT* is required

to iterate for given times. The environment is shown in

Figure 11. The increment of the path planning time is not

linear to that of the iteration times. That is probably

because the algorithm attempts to explore space exten-

sively as the local iteration times increases, causing the

path tree to be easily trapped in concave obstacles, as

shown by the intensive tree branches in traps in Figure 11.

However, the increase of iterations also results in a

higher path quality compared with the results of APF. As

presented in Table 3, the APF results are regarded as the

ground truth value of the optimal path. The path quality is

rather high as the local iteration times are 10000. The

observation probably demonstrates the asymptotic optim-

ality of the CPRRT* method.

Table 5 presents the results of path planning for USVs in

a formation where the environmental information is chang-

ing, as shown in Figure 13. We gain the local path search-

ing time after a local path reaching the subgoal is found.

Both the CPRRT* and PRRT* methods can meet the time

requirement of control, as shown by the local path search-

ing time and time STDEVP values. The path cost and path

length values are higher than those of the virtual leader’s

single path in Table 3 because USVs are required to con-

sider the collision-avoidance problem between each other.

The STDEVP values are relatively small, certifying the

stabilities of the methods. The paths are high-quality, as

shown by the results.

The results illustrate that the CPRRT* method outper-

forms PRRT* in our Bug Trap environment. CPRRT* is

applicable because it performs well for planning multiple

paths of USVs.

Conclusion

In this article, the proposed CPRRT* method shows pro-

mising results in solving the online cooperative paths plan-

ning problem for USVs in dynamic environments.

Simulations and ablation experiments were performed to

illustrate the effectiveness of the heuristic modules. A

potential field was proposed by additionally considering

the velocities of the USV and the DO, and the COLREGs.

The performances of CPRRT* and PRRT*were compared.

The experimental results verified that the new potential as

well as the sampling adjustment mechanism of CPRRT*

outperformed those of PRRT*. The repulsive potential

force computation scheme was presented in terms of radar

readings, and experiments were conducted to verify its

applicability. The USVs’ paths were planned by the heur-

istics of a formation, keeping a potential field to follow the

virtual leader. Experiments were performed to certify that

the method can flexibly solve the cooperative paths plan-

ning problem. Simulations were also performed in dynamic

environments to confirm the online planning capability, the

sea current handling capability, and the dynamic ship-

avoidance ability of the CPRRT* planner.
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Appendix

The formulas of the collision cone method are listed

below.

We expand (vq)pA�(vq)pB�0 as follows to get a practical

style of the condition: vi
2sin(a�(qþqmax))sin(a�(q�qmax))

þvo
2sin(b�(qþqmax))sin(b�(q�qmax)) � vivo[sin(a�

(q�qmax)) sin(b�(qþqmax)) þ sin(a� (qþqmax)) sin(b�
(q�qmax))] � 0.

We expand the formula as: vi
2(cos(2qmax)cos(2(b-

q))þvo
2(cos(2qmax)cos(2(a�q))�vivo(2cos(a�b)cos(2qmax)

�2cos(aþb�2q))�0.

Then, we get vr
2þvq

2cos(2qmax) �2vr
2þvr

2þvq
2�0.

Because cos(2qmax)¼(dio
2�2ro

2)/dio
2, where dio is the dis-

tance between USV and the obstacle, thus the condition is

transformed into dio
2vq

2�ro
2(vr

2þvq
2).
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