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Abstract—Marine science and Internet of underwater things
applications rely significantly on collecting data from underwater
sensors. Data collection using long-distance underwater acoustic
communications consumes a lot of energy in underwater sensor
nodes, which are powered by batteries. To achieve low-energy
consumption, we can use the autonomous underwater vehicle
(AUV) to move close to sensor nodes and exploit the short-
range and high-rate communications. Most of the existing AUV-
based data collection schemes consider the scenarios having the
knowledge of node positions, where the cruising trajectory can
be computed before the AUV’s departure. These schemes cannot
apply to some scenarios such as turtle tracking for a certain sea
area having no position information. To this end, we first propose
a planning-while-detecting approach to dynamically detect the
sensors on turtles and adjust the AUV cruising direction to collect
data. To further improve data efficiency under the energy limit of
the AUV, we group the sensors that can share the same trajectory
using their detected directions. A grouping-based dynamic tra-
jectory planning (GDTP) is then proposed to determine the next
cruising direction that can visit the group of sensors having the
largest amount of data and demanding the least cruising energy
at the risk of detection errors. Simulation results show that GDTP
achieves significantly higher data collection efficiency than the
existing trajectory planning algorithms in dynamic scenarios, and
as the communication range increases, it can even outperform
existing algorithms with node locations.

Index Terms—Internet of Underwater Things (IoUT), data
collection, autonomous underwater vehicle (AUV), dynamic tra-
jectory planning, node detection.

I. INTRODUCTION

The ocean covers more than 70% of the earth, while only
five percent of the ocean has been explored by humans. The
under-explored ocean has attracted increasing attention and
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Fig. 1. An IoUT application example. The AUV collects tracking data on
sea turtles.

interests of human beings. Recent development in data science
has introduced a new paradigm in marine research to obtain
more knowledge of the ocean [1]. Therefore, data acquisition
has become more important than ever for marine science and
Internet of Underwater Things (IoUT) applications [2].

The IoUT applications rely on deploying underwater sensors
to sense underwater environmental parameters (e.g., tempera-
ture, salt, depth, acoustic Doppler current profiler, etc.). Two
basic approaches can be used to collect data from the sensors
wirelessly. One approach is to allow the sensors to report their
data to the sink on the water surface directly or via multi-
hop forwarding [3]. However, the long distance between the
sensor and the sink requires high-power underwater acous-
tic communications, which will deplete the limited battery
in the sensors fast. Another approach uses an autonomous
underwater vehicle (AUV) to collect data from the underwater
sensors [4]. The AUV can move close to a sensor node, and
then collect and relay the collected data via short-range and
high-rate radio-frequency (RF) or optical links. The relaying
by AUVs can reduce the energy consumption of underwater
sensor nodes, since underwater acoustic communications are
energy-consuming for the battery-powered underwater sensor
nodes.

Trajectory planning is the key to AUV-based data collection
approaches. Traditionally, the AUV is designed to cruise
along a fixed trajectory, such as layered-scan paths [5], linear
round-trip trajectory [6], ellipse trajectory [7], [8], [9], spiral
trajectory [10], [11]. In order to traverse all the sensor nodes
and collect the data therein, a static trajectory can be carefully
calculated based on node positions before deploying the AUV
[5], [12], [13], [14], [15].

However, the positions of underwater sensor nodes are
unavailable in some IoUT applications. Take the turtle tracking
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in Fig. turtle as an example, where the sensors are mounted on
the turtles to track their underwater migration route. The short-
range relay based data collection by the AUV can significantly
prolong the lifetime of sensors on turtles. However, it is
impossible to compute a static trajectory for the AUV with
unknown positions, since the turtles are moving. Even though
the sensors are fixed, we cannot know the exact coordinates
of the sensors since there is no positioning system underwater,
which is different from terrestrial Internet of Things (IoT)
systems.

Without the positions of moving nodes, it is challenging
to plan a dynamic trajectory. The AUV has to detect the
existence of the nearby sensors and adjust its cruise trajectory
based on the detection information dynamically. Due to the
large sea area and signal attenuation, the AUV can detect
only the nearby sensor nodes and limited information (e.g.,
the direction of the sensor nodes) is available. Considering
also the limited cruising energy of the AUV, it is difficult to
design a data-efficient dynamic path for the AUV.

To address the above challenges for the dynamic trajec-
tory planning based data collection, we propose a planning-
while-detecting framework, where the long-propagation acous-
tic waves are used to detect and estimate the existence of
sensor nodes. Besides, the short-range communications are
used for data transmissions between the AUV and the sensor
nodes. Before the energy is exhausted, the AUV floats to the
surface and delivers the collected data to a sink.

The main contributions to this paper are summarized as
follows:

• Planning-while-detecting: To address the position u-
navailability, we propose a planning-while-detecting
framework, which formulates the dynamic cruising ad-
justment as an expected payoff maximization problem
considering the gain of the collected data from sensors,
the cost of the AUV movement, and the data loss in the
unvisited nodes based on the detected directions and de-
tection probabilities of sensors. Individual-based dynamic
trajectory planning (IDTP) is proposed to dynamically
visit the next sensor having the maximum payoff.

• Grouping-based dynamic trajectory planning (GDTP): To
further improve data efficiency under the limited energy
of the AUV, we group the sensors that can share a
common communication area of the trajectory using their
detected directions, such that one movement of the AUV
can collect a group’s data. A grouping-based dynamic
trajectory planning (GDTP) is then proposed to determine
the next cruising direction that can visit the group of
sensors having the largest amount of data and demanding
the least cruising energy under detection uncertainty.

The remainder of this paper is arranged as follows. Section
II reviews the related work in AUV data collection. In Section
III, we present the system model and formulate the data
collection problem. Then we present the proposed GDTP
algorithm in Section IV. Section V shows and discusses the
simulation results. Finally, Section VI concludes this paper.

II. RELATED WORK

In the literature and the practical applications, there are three
kinds of path planning for AUV-based data collection: fixed
path, static path, and dynamic path.

A. Fixed Path Planning

The fixed planning does not require the node information,
and the AUV just traverses the entire or part of the area along
a fixed and pre-defined path.

Without the knowledge of node positions, the fixed path
planning is proposed to scan the monitored sea area and
collect the data. Inspired by the lawn mower pattern, the
reference [16], [17] proposed a z-shaped path to traverse
sensors at the same depth. Han et al. extended the fixed z-
shaped path to three-dimensional underwater acoustic sensor
networks (UASNs) by proposing a grid and probabilistic
neighborhood-based data collection algorithm with layered-
scan (GPN-LSCAN) [5].

The energy of AUV is limited to scan a large monitoring sea
area. To this end, Ilyas et al. proposed an AUV-aided efficient
data gathering (AEDG) routing protocol [8], where the AUV
moves along a fixed elliptical trajectory. The AEDG shortens
the journey of the trajectory by allowing sensors far from the
elliptical trajectory to deliver their data to a node near the
trajectory via multiple hops. Similarly, Han et al. proposed a
fixed spiral trajectory for the AUV. Since the multi-hop data
forwarding may make the nodes near the trajectory become
the communication hot spots, the reference [11] proposed a
multi-AUV scheme to release the hot spots.

B. Static Path Planning

Static path planning calculates a cruising trajectory accord-
ing to the positions of sensor nodes before the departure of
the AUV. Therefore, static path planning is often applied to
the case where the sensor deployment is fixed and the node
positions are known in advance.

Static planning to traverse all the sensor nodes with limited
energy of AUV is similar to the classic traveling salesman
problem (TSP) and is often NP-hard. Taking the static plan-
ning as a TSP, a nearest-neighbor (N-n) algorithm [18] was
proposed to always visit the closest neighbor from the current
location.

To reduce the number of nodes that the AUV has to traverse,
many algorithms have been proposed to cluster the sensor
nodes, and only cluster headers need to be traversed [13], [5],
[14], [19]. Han et al. proposed a probabilistic neighborhood
covering set-based greedy heuristic algorithm (PNCS-GHA)
[5], which constructs a minimum probabilistic neighborhood
covering set (PNCS) to divide nodes into clusters and shorten
the length of the cruise journey. Duan et al. used the value
of information (VoI) of the data as the criterion to divide
the network into several clusters [14], where a static path is
calculated to visit the cluster with the largest VoI.
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Fig. 2. An example of network model. The AUV detects the existence of
sensor nodes during its cruise, moves close to sensor nodes, and collects their
data.

C. Dynamic Path Planning

When the node positions are not available in advance, prior
static path planning cannot be calculated for the AUV. In
this case, the AUV has to determine its ongoing trajectory
dynamically during its journey.

Basagni et al. proposed a greedy and adaptive AUV path
planning (GAAP) based on VoI [20]. In this paper, the VoI
is defined as a decreasing function of time. Whenever the
new data is generated, the sensor node transmits a short
packet through the acoustic channel to the AUV to report VoI.
According to the received VoI information, the AUV adjusts
its trajectory dynamically to maximize the VoI of the data
delivered to the sink.

To reduce the cruising journey and save energy of the AUV,
Yan et al. proposed an energy-efficient data collection solution
(EDCS) for AUV-assisted UASN [21]. EDCS allows nodes to
transmit their data to gateways, and the AUV just needs to visit
the gateways node and uses a short cruising path to maximize
VoI of the collected data. However, the existing dynamic
trajectory planning relies on the knowledge of node positions,
and adjusts the AUV’s trajectory based on the reported VoI
in the communication range, but not the detected information
from sensor nodes.

Dynamic trajectory planning is also used to avoid underwa-
ter obstacles for the AUV. Lv et al. proposed to dynamically
adjust the AUV cruising by predicting the obstacle’s trajectory
and analyzing the probability of collision to achieve safe
obstacle avoidance [22]. However, the obstacle avoidance
differs significantly from the data collection without node
positions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Architecture

We consider the data collection in an underwater sensor net-
work, where sensor nodes are deployed in a three-dimensional
underwater environment with a size of L×W ×H , as shown
in Fig. 2. The sink is located on the surface of the water
area. An AUV is cruising in the water and tries to visit
the underwater sensor nodes to collect the sensed data. In
this case, the AUV and the visited sensor nodes can exploit
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Fig. 3. The AUV uses the UCA to detect the angles of the incident signal.

the short-range high-speed communication technologies 1 for
the data transmissions, as shown in Fig. 2. Usually, short-
range communications consume less energy than long-range
communications due to signal attenuation [24]. Thus, short-
range communications can save the energy of the underwater
sensor nodes and prolong the lifetime of the network.

B. Sensor Node Model

We consider the case that the positions of the underwater
sensor nodes are unavailable. The AUV has to detect the un-
derwater sensor nodes and plan its cruising path dynamically
to collect data. To achieve node detection for the AUV, we
enable the sensor nodes to periodically broadcast underwater
acoustic beacons to show their existence. The sensor node
broadcasts beacons when its sensed data reaches to B bytes;
otherwise, the transmitter will keep silent to save energy. After
transmitting the data to the AUV, the sensor nodes will empty
their buffers and start a new round of sensing, as shown in
Fig. 2.

C. AUV Model

The AUV is equipped with a uniform circular array (UCA)
to receive the beacon signals and detect the existence of sensor
nodes in the 3-dimensional underwater environment. The UCA
contains M elements and estimates the azimuth angle ϕ and
the pitch angle θ of the incident signal as shown in Fig. 3,
where O is the position of the AUV. Suppose there are K
(K ≤ M − 1) signals incident on the array and each signal
sk(t)(k = 1, 2, · · · ,K) is from the direction (θk, ϕk)(k =
1, 2, · · · ,K,−π2 < θk <

π
2 ,−

π
2 < ϕk <

π
2 ). At time t, the

received signals X of the UCA can be expressed as [25], [26]

X = A(θ, ϕ)S(t) + N(t), (1)

where, S(t) = [s1(t), s2(t), · · · , sK(t)]
T represents the re-

ceived signal vector, N(t) = [n1(t), n2(t), · · · , nM (t)]
T rep-

resents the noise vector, and A denotes the steering matrix.
The steering matrix for the UCA is

A(θ, ϕ) = [a1,a2, · · · ,aK ] , (2)

1For example, underwater acoustic communications can reach 1.2 Mbps
over a distance of 12 meters with tens of watts power [23], underwater optical
communications can reach Gbps with a transmission power of several watts
within a range of 10 to 100 meters [24], and underwater RF communications
can reach Mbps at about 10 meters with a transmission power of a few
milliwatts to 100 watts [24].
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where

ai =


exp(−j2πR sin θi cos(ϕi − φ0)/λ)

exp(−j2πR sin θi cos(ϕi − φ1)/λ)

· · ·
exp(−j2πR sin θi cos(ϕi − φM−1)/λ)

 , (3)

φk = 2πm/M(m = 0, 1, · · · ,M − 1) and R denotes the
radius of the UCA, and λ represents the wavelength.

Since a UCA with M elements can resolve at most M − 1
sources, let the first K incident angles represent the incident
directions of the real signal sources, and the last (M −1−
K) incident angles are the incident directions of the virtual
signal sources generated by noises. When there is no noise,
the waveform of the virtual signal source satisfies sk(t) = 0,
for k= M−1−K, ...,M−1. Eq. (1) can be rewritten as

X(t) =
K∑
k=1

aksk(t) +
M−1∑
k=K+1

aksk(t) + N(t). (4)

Through the calculation and processing of the received
signals, the directions of (M − 1) signals are estimated.
In order to distinguish whether the signal in the estimated
direction (θ̂i, ϕ̂i) comes from a possible node or is a virtual
signal, the power likelihood ratio hypothesis test is used [27].
Theoretically, the power of the k-th node can be expressed as

pk =
1

N

N∑
n=1

|sk(n)|2 + σ2, (5)

where sk(t) is the k-th signal source waveform, σ2 represents
noise variance, and N is the snapshots number. The hypothesis
test for the signal power of the estimated incident direc-
tion (θ̂k, ϕ̂k) is

H0(k) : p̂k = σ2,

H1(k) : p̂k = (M − 1)pk + σ2. (6)

The H1 judgment is made in (θ̂k, ϕ̂k), towards which direction
there is a node bk with a detection probability PD

k . If the
decision is H0, the direction (θ̂k, ϕ̂k) contains only noises.
The details of the angle estimation and the calculation for the
detection probability will be specified in Section IV-A. The
notions used in our study are listed in Tab. I.

D. Problem Formulation

Multiple nodes in multiple directions may be detected,
leading to multiple choices of decisions on cruising. The
cruising decisions are expressed as different branches in Fig. 4.
For each node, the AUV has two options “visit” and “not
visit”.

The AUV has to consider the following cases before its next
cruising:
• The visit of a node can collect the data therein and

obtains a positive payoff. However, the node detection
may experience errors and false alarms. When the AUV
chooses to visit a node, there may be no nodes in that
cruising direction. Thus, the cruising energy is wasted in
such a case, and the AUV will receive a negative payoff.

TABLE I
NOTATIONS

Notation Definition

P The cruise path of the AUV
Pi The i-th hover point of the AUV
B The set of detected nodes
B The size of the node’s data
bi The detected node i
θi The azimuth angle of bi
ϕi The pitch angle of bi
PD
i The detection probability of bi
L(·) The travel cost of the AUV from the current hover position
D The detection range of the AUV
C The communication range of the AUV and sensors

uv(bi) The expected payoff of visiting bi
un(bi) The expected payoff of not visiting bi
Eini Initial energy carried by the AUV
Erel The current residual energy of the AUV
Eback The energy for the AUV to return to sink from next hover point
M The number of hydrophone elements in UCA
σ2 Noise variance
pk The k-th source’s received signal power at the UCA

Fig. 4. The payoff extended form of the AUV

• When the AUV chooses to visit a node, the remaining
nodes cannot be visited. Thus, the sensed data in those
nodes will be lost, which means a negative payoff for
data collection.

Assuming that each node contains B bytes of data. Thus, the
collection of B bytes’ data will obtain a payoff of B. The cost
is the energy consumption of the AUV movement. Suppose
the sound waves emitted by the nodes diffuse in a spherical
manner, the detection area of the AUV is a hemisphere with a
radius D. This radius represents the farthest distance at which
a node can be detected. Once the AUV decides its cruising
direction, it will move to a hover point which is within the
communication range of that node to collect data. Let L0 be
the energy consumption for an AUV movement of one meter.
Considering that the detection probability for a node relates
to the distance between that node and the AUV, the cruising
cost of visiting a node bi from the current hover position can
be given by

L(bi) = L0 ·D · exp(− PD

i

1− PD

i

). (7)

The cruise cost of the AUV moving to the detection edge is
defined as Lc = L0 ·D. The payoff matrix of the AUV cruising
decisions is summarized in Tab. II. According to the payoff
matrix, the expected payoff uv(bi) for visiting bi and the

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 01,2022 at 12:47:14 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3141402, IEEE Internet of
Things Journal

5

TABLE II
THE PAYOFF MATRIX OF THE AUV CRUISING DECISIONS

Correct detection False alarm

Visit B − Lc · e
−

PDi
1−PD

i −Lc · e
−

PDi
1−PD

i

Not visit −B 0

expected payoff un(bi) for not visiting bi can be respectively
expressed as

uv(bi) = [B − Lc · e
− PDi

1−PD
i ] · PD

i + [−Lc · e
− PDi

1−PD
i ] · (1− PD

i )

= B · PD

i − Lc · e
− PDi

1−PD
i , (8)

un(bi) = −B · PD

i . (9)

Since the AUV carries limited energy Eini, its energy con-
sumption should be considered. The current residual energy
Eres of the AUV at hover point Pk can be expressed as

Eres(Pk) = Eini −
k−1∑
i=1

L(Pi). (10)

The energy required for the AUV floating to the surface after
collecting the data in bi can be represented as

Eback = Lfloat. (11)

We define the ratio of the cruising cost L(bi) to Eres−Eback
as

εi =
L(bi)

Eres − Eback
. (12)

We consider εi in the following cases to evaluate the feasibility
of visiting bi.
• εi < 0 holds when Eres < Eback. In this case, the AUV

has not enough energy to return to the sink, facing the
potential of losing the AUV.

• εi > 1 holds when L(bi) > (Eres−Eback), which means
the residual energy of the AUV is insufficient to return
to the sink when it visits bi. In this case, bi should not
be visited.

• εi = 0 holds when L(bi) = 0, which represents that bi is
the current position of the AUV.

• εi ∈ (0, 1] holds when L(bi) < (Eres − Eback). In this
case, bi is an effective potential node to visit.

At the current hovering position, the AUV has to choose the
next visiting node, at the risk of false alarm error detection, to
maximize its payoff considering the data loss and cruising en-
ergy consumption. Based on the prior discussion, the detected
nodes should satisfy the requirement of 0 < ε ≤ 1. They are
the next potential nodes to be visited by the AUV. Denoting
B by the next visiting candidate nodes, the individual-based
dynamic trajectory planning (IDTP) problem for the AUV can
be formulated as

b∗i = arg max
bi∈B

[
uv(bi) +

∑
bj∈B,j 6=i

un(bj)

]
. (13)

Using (13), the AUV can determine the next moving di-
rection towards node b∗j to the next hover point Pi+1. The
current hover point Pi and the next hover point Pi+1 will
then form a track for the AUV’s trajectory. Considering the
communication range, the position of node b∗i is not equivalent
to the next hover point Pi+1, and the data in the nodes near
the track will be collected during the cruise. Once collecting
the data from node b∗i , the AUV will stop at the hover point
Pi+1 to detect nodes and determine the next trajectory track,
considering that the detection performance is better at hovering
state than at moving state. The cruise trajectory will be formed
dynamically by the consecutive tracks, which can be presented
by P = {P1,P2, · · · ,Pn}.

The nearest node detected will be possibly output by (13).
According to the payoff matrix in Tab. II, the nearest node
requires the least cruising energy Lc, and will possibly have
the largest detection probability PD since the incident signal
at the UCA from the nearest node would be the strongest.
In this sense, (13) is similar to the nearest node strategy N-n
[18]. The difference is that N-n needs the knowledge of node
positions while IDTP uses the detection information.

Notice that multiple nodes may locate in a cruising direction
and share the same trajectory in data collection, in which case
a cruising trajectory can collect data from multiple nodes.
The nearest node strategy in IDTP does not consider the
node distribution feature and does not exploit the sharing of
trajectory. To further improve the data collection efficiency, we
will propose a grouping-based dynamic trajectory planning for
the AUV in the next section.

IV. GROUPING-BASED DYNAMIC TRAJECTORY PLANNING
FOR AUV DATA COLLECTION

The proposed GDTP includes detection, grouping, and
selection phases.

A. Detection Phase

We use a passive detection model to detect the existence of
sensor nodes. Multiple signal classification (MUSIC) is first
applied to obtain the angles of the M−1 incident signals, and
then we use a power-based hypothesis to judge the existence
of nodes and calculate their detection probabilities.

1) Node direction estimation: MUSIC is used to estimate
the direction of nodes. As mentioned before, (M−1) signal
sources are incident on the array. The first K incident angles
represent the incident directions of the real signal sources, and
the last (M−1−K) incident angles are generated by noises. The
received signal of UCA is shown in (4). The autocovariance
matrix RX can be expressed as

RX = E[XXH]

=A(θ, ϕ)RSA
H(θ, ϕ)+σ2I(M), (14)

where RS = E[S(t)SH(t)], σ2 represents the noise variance,
and I(M) is a M ×M dimensional identity matrix. The eigen
decomposition of RX can be expressed

RX = UΛUH

= USΛSU
H
S + UNΛNUH

N , (15)

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 01,2022 at 12:47:14 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3141402, IEEE Internet of
Things Journal

6

where U and Λ are the M×(M−1) dimensional eigenvector
matrix and eigenvalues matrix of RX respectively. US is the
signal subspace, UN is the noise subspace, and ΛS and ΛN
are diagonal matrices composed of K large eigenvalues and
the remaining small eigenvalues. The MUSIC spatial spectrum
[28] can be expressed as

PMUSIC =
1

AH(θ, ϕ)UNUH
NA(θ, ϕ)

. (16)

The M − 1 possible source directions are then estimated by
the largest M − 1 peaks on the MUSIC space spectrum.

2) Hypothesis Test for Each Node: The MUSIC algorithm
can find directions of all the possible M−1 sources. However,
it cannot tell which one is the real source or the virtual source.
Therefore, We use a hypothesis test to judge the existence of
real sources and their detection probabilities. The hypothesis
test for the signal power of the (θ̂k, ϕ̂k) is shown as (6). In
H0(k), the received signal obeys sk∼N(0, σ2). In H1(k), the
received signal obeys sk∼N(0, (M−1)pk+σ

2). The likelihood
function ratio can be expressed as [29]

Λ(sk) =
p(x; p̂k;H1)

p(x;σ2;H0)

=
exp

[
pk

2σ2[(M−1)pk+σ2]

∑N
n=1 ŝ

2
k(n)

]
(

(M−1)pk
σ2 + 1

)N
2

, (17)

where

ŝk = aH
kR
−1X(n)/(aH

kR
−1ak), n = 1, 2, · · · , N. (18)

The log likelihood ratio can be represented as

l(sk)=−
N

2
ln
((M−1)pk

σ2
+1
)
+

(M − 1)pk

2σ2[(M−1)pk+σ2]

N∑
n=1

ŝ2k(n). (19)

Suppose that the decision threshold is γ0, the hypothesis test
can be expressed as

l(sk)
H1(k)

≷
H0(k)

γ0. (20)

The power-based hypothesis test becomes

T (sk) =

∑N
n=1 ŝ

2
k(n)

N

H1(k)

≷
H0(k)

γ′0, (21)

where

γ′0 =
2σ2((M−1)pk+σ2)

N(M−1)pk

[
γ0+

N

2
ln
( (M−1)pk

σ2
+1
)]
. (22)

The number of signals K̂ is the number of estimated sensor
nodes, which equals the number of decisions with H1(k), k=
1, 2, · · · ,M−1. Moreover, the false alarm probability PF and
the detection probability PD related to (θ̂k, ϕ̂k) can be given
by

PFk = Pr{T (sk) > γ′0 : H0} = Qχ2
N

(
γ

σ2
n

)
, (23)

and

PD

k = Pr{T (sk) > γ′0 : H1} = Qχ2
N

(
γ

Mpk + σ2
n

)
, (24)

respectively. Qχ2
N

(x) is the right-tailed distribution of the
random variable χ2

N that obeys the chi-square distribution.
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Fig. 5. Common area model. The sector A’OB’ is within the communication
range of one common track.

B. Grouping Phase

We observe that the AUV can collect multiple nodes’
data in one moving track, as shown in Figs. 5(a) and 5(b).
Figure 5(a) depicts the scenario when two nodes are not far
away from each other. In this case, they share a common
communication area. The AUV can collect the data in the
two nodes simultaneously by moving to the common area.
Alternatively, there is no common area between node A and
node B in Fig. 5(b), but they are both near the same track. The
AUV can also collect their data in one moving track. In the
cases of Figs. 5(a) and 5(b), A and B can be grouped together
for one cruising track.

To collect multiple nodes’ data in one track, the AUV faces
the following problems: i) whether there exists such a track
to group nodes, and ii) how to calculate such a track by using
only the estimated angles of nodes.

We propose a common area model to group nodes and
calculate the moving direction for the groups. As shown in
Fig. 5(c), suppose there are two points A′ and B′ at the edge
of the detection area, and they have a common area. Since
the AUV only acquires the direction knowledge of the nodes
instead of the distance between them, we group the detected
nodes in the area of A′OB′. Angle threshold for grouping β
can be calculated by

β = ∠A′OB′ = 2arc sin(
C

D
), (25)

since sin(∠A′OB′/2) = C/D, where C denotes the commu-
nication range and D represents the detection range. For two
detected nodes with estimated directions (θ̂i, ϕ̂i) and (θ̂j , ϕ̂j),
they will fall into the area of A′OB′ and can be grouped if
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Fig. 6. An example of GDTP grouping. The sensors are divided into three
groups according to (26).

their angles satisfy

|θ̂i − θ̂j | < β, and |ϕ̂i − ϕ̂j | < β. (26)

When any two nodes in Gj satisfy (26), the cruising direction
for the track to collect data in Gj is then calculated by

θ̄ =
1

2

[
max{θ̂, θ̂ ∈ Gj}+ min{θ̂, θ̂ ∈ Gj}

]
, (27)

ϕ̄ =
1

2

[
max{ϕ̂, ϕ̂ ∈ Gj}+ min{ϕ̂, ϕ̂ ∈ Gj}

]
. (28)

The proposed GDTP uses (26) to group nodes and uses (27)
and (28) to determine the cruising direction of that group.

C. Selection Phase

The detected nodes are divided into multiple groups in the
grouping phase, as shown in Fig. 6. The AUV has to choose
one group to visit, which can obtain the maximum payoff in
data collection.

Similar to the statement in Section III.D, visiting a group
can obtain the data from the nodes in that group, while it has
a risk of data losses in other groups. Thus, the payoff and loss
for visiting a group can be expressed as follows

uv(Gj) =
∑
i∈Gj

B · PD

i −max
i∈Gj

Lc ·exp(− PD

i

1−PD

i

), (29)

un(Gj) =
∑
i∈Gj

un(bi) = −
∑
i∈Gj

B · PD

i . (30)

The AUV should select the following group to visit, having
the maximum expected payoff

G∗j = arg max
Gj∈G

[
uv(Gj) +

∑
Gk∈G,k 6=j

un(Gk)

]
. (31)

The AUV can select the group G∗j using (31), and the next
moving direction towards the group G∗j can be determined

Algorithm 1 Grouping-based dynamic trajectory planning
Input: The data amount threshold B, the cruise cost of the

AUV moving to the detection edge Lc and angle threshold
for grouping β.
Detection Phase:

1: Sensors broadcast beacons when the sensed data reaches
to B.

2: The AUV estimates (θ̂, ϕ̂) and PD

i using (16) and (24).
Put detected nodes that satisfy 0 < εi ≤ 1 into B.
Grouping Phase:

3: for i=1 to |B| do
4: for j=1 to |B| do
5: Calculate |θ̂i − θ̂j | and |ϕ̂i − ϕ̂j |.
6: if satisfy (26) then
7: Put bj into Gi.
8: end if
9: end for

10: Put Gi into G.
11: end for

Selection Phase:
12: for all Gj ∈ G do
13: Calculate uv(Gj) and un(Gj) using (29) and (30).
14: Calculate

G∗j = arg maxGj∈G

[
uv(Gj) +

∑
Gk∈G,k 6=j un(Gk)

]
.

15: Find θ̄G∗
j

and ϕ̄G∗
j

using (27) and (28).
16: end for
Output: The direction of the AUV next cruising (θ̄G∗

j
, ϕ̄G∗

j
).

using (27) and (28). After collecting the expected sensor’s
data, the AUV will hover and start the next detection. Alg. 1
summarizes the details of GDTP, and it has a time complexity
of O(|B|2).

D. Probe Dead Zone

The AUV may enter into a probe dead zone (PDZ) during
its dynamic cruising, where the AUV detects no nodes. In the
PDZ, the nodes will go to sleep after reporting their data to
the AUV (see Section III.B), and the other nodes are beyond
the detection area of the current hover point of the AUV.
Without any detected nodes, the AUV cannot determine its
next cruising direction by using (13) or (31).

We use a random walk approach for the AUV to escape
the PDZ. At a hover point in the PDZ, the AUV randomly
chooses a cruising direction and moves along this direction.
When nodes are detected during the movement, the AUV will
use (31) to determine its next movement. When no nodes are
detected, the AUV will stop after moving a maximal distance
to randomly choose another direction to cruise.

V. SIMULATION AND DISCUSSION

In the simulations, the nodes are uniformly distributed in a
3-dimensional region, and the detailed parameters are listed
in Tab. IV. We compare the performance of the proposed
GDTP and IDTP with LSACN [5], PNCS-GHA [5], N-n
[18] and Random Walk (RW) algorithm [18]. The similarities

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 01,2022 at 12:47:14 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3141402, IEEE Internet of
Things Journal

8

TABLE III
THE POWER DETECTED RESULTS OF FIG. 7

Signals Noise
θ(◦) 70 −40 30 80

θ̂(◦) 70 −40 30 80 −57 25 −66 −28 −26 −40 18 27 −58 59 −65
ϕ(◦) 30 60 −10 80

ϕ̂(◦) 30 60 −10 80 69 52 40 56 55 13 43 −51 65 −53 2

Judge H1 H1 H1 H1 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0

PD 0.9997 0.9998 0.9998 0.9999 0.8924 0.4142 0.5422 0.8568 0.8698 0.8602 0.9085 0.9357 0.4255 0.5698 0.8859

TABLE IV
SIMULATION PARAMETERS

Parameter Value

Network size (L×W×H) 10 × 10 × 6 km3

Number of nodes 100-500
Communication range (C) 100-500 m
Detection range (D) 2 km
Number of each node’s data packets 100 packets
Unit consumption of AUV (L0) 8 J/m
AUV initial energy (Eini) 1600 kJ
AUV floating to the surface (Lfloat) 30 kJ
AUV speed 7.72 m/s
Maximum moving distance for a direction in PDZ 1 km

TABLE V
SIMILARITIES AND DIFFERENCES AMONG ALGORITHMS

Algorithm Node coordinates Grouping/Clustering Path planning

GDTP Unknown
√

Dynamic
IDTP Unknown ∅ Dynamic

PNCS-GHA Known
√

Static
N-n Known ∅ Static

LSACN Unknown
√

Fixed
RW Unknown ∅ Dynamic

and differences between these algorithms are summarized
in Tab. V. We compare the performance of the algorithms
mentioned above in terms of collection efficiency which is the
ratio of the collected data packets to the energy consumption
of the AUV.

A. Performance of Node Detection

We set the number of snapshots N = 30, the number
of UCA elements M = 16, and the probability of false
alarm P F = 0.1. The four signals incident from (70◦, 30◦),
(−40◦, 60◦), (30◦,−10◦) and (80◦, 80◦), and signal noise ratio
are 10 dB, 15 dB, 20 dB and 25 dB respectively.

According to (16), the MUSIC spatial spectrum is shown in
Fig. 7. There are four higher peaks that represent four signals
and other small peaks generated by noises and multipath
interference. The largest M − 1 largest spectral peaks can be
found and listed in Tab. III. Using the power-based hypothesis
test (6), the four signals are judged as real signals and their
detection probabilities are also computed in Tab. III. Then the
θ̂, ϕ̂, and PD of any possible node can be obtained.

It is shown in Tab. III that the detection approach in Section
IV.A can obtain the incident directions of the signal sources

Fig. 7. DOA estimation. Four incident signals can be observed from the
MUSIC spatial spectrum in our simulation settings.

and identify each source with a high probability. The results
in Tab. III verify the feasibility of the detection approach
and the feasibility of our proposed planning-while-detecting
framework.

B. An Example of Trajectories

We next show the trajectories of GDTP, IDTP, and the
existing PNCS-GHA [5] and N-n algorithm [18] in a two-
dimensional plane by assuming that all the nodes are deployed
in the same depth. For fair comparison, the AUV has the
same energy for different algorithms. Therefore, the trajectory
lengths for the four algorithms are the same [6]. As shown
in Fig. 8, the trajectories of our proposed IDPT and GDTP
algorithms are different from the existing PNCS-GHA and N-
n in that our proposed algorithms do not need to visit the
positions of nodes to collect data. Fig. 8(a) shows that GDTP
can collect more nodes’ with the same length of the trajectory.
Both IDTP and N-n tend to choose the nearest node as the
next target for data collection. As shown in Fig. 8(b), due to
the limited number of nodes detected by IDTP while N-n has
the positions of all nodes, the trajectories of IDTP and N-n
are different. However, they can collect a similar number of
nodes’ data.

C. Impact of Communication Range

Since the communication range affects the grouping of
GDTP as shown in (25), we study the impact of the com-
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Fig. 8. The trajectories of GDTP, PHCS-GHA, IDTP, and N-n. The detection
range is 2 kilometers, and the communication is 1 kilometer.

munication range on GDTP. We use optical links, RF links,
and underwater acoustic links to represent the typical commu-
nication ranges at 10, 100, and 500 meters in the simulations,
respectively.

As shown in Fig. 9, the collection efficiencies of the

Fig. 9. Collection efficiency at different communication ranges in static scenes

algorithms are increased with the communication range in a
static scenario that the node positions are fixed. Our proposed
GDTP has a large advantage over the other algorithms as the
communication range increases. The reason is that a larger
communication range will lead to a larger group by GDTP.
Thus, the movement in a track can collect more data. When the
communication range is short (e.g., 10 meters), the number of
nodes in a group becomes small. In this case, GDTP and IDTP
have similar collection efficiencies. Having the knowledge
of node positions, N-n and PNCS-GHA can have a higher
data collection efficiency than our proposed IDTP. However,
the collection efficiency of IDTP increases faster than N-n
and PNCS-GHA as the communication range increases. The
fixed path planning LSCAN and the random planning RW can
hardly visit the node positions when the communication range
is short, leading to extremely low collection efficiencies. The
N-n algorithm has the same collection efficiency regardless
of the changes of the communication ranges, since it always
visits the nearest node.

In Fig. 10, we study the data efficiencies of the algorithms
in a dynamic scenario that the nodes are moving. We set
sensors to move at a random speed of 0− 0.5 m/s (the turtle
swims at about a speed of 0.27–0.5 m/s [30]) and a random
direction. Since the static N-n and PNCS-GHA algorithms do
not apply to the dynamic scenario where the node positions
are not available, we only compare GDTP and IDTP with
RW and LSCAN. The fixed trajectory planning by RW and
LSCAN collects only a few data when the communication
range is short at 10 meters and 100 meters in a large sea area of
10×10×6 km3. GDTP and IDTP can still achieve significantly
high data collection efficiencies by using the long-propagation
acoustic for sensor detection.

D. Impact of Node density

The increase of the number of nodes in the network will
increase the node density when the coverage area of the

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 01,2022 at 12:47:14 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3141402, IEEE Internet of
Things Journal

10

Fig. 10. Collection efficiency at different communication ranges in dynamic
scenes

Fig. 11. Collection efficiency at different node densities in static scenes

network is fixed, which has a significant impact on grouping
and trajectory planning.

With a communication range of 500 meters, the collection
efficiencies of all the algorithms increase with the number of
nodes in both the static and dynamic scenes, as shown in Fig.
11 and Fig. 12. This is because as the node density increases,
the expected distance between nodes decreases. Thus, the
AUV can travel a short distance to visit a node, increasing
the collection efficiency. Since the probability of entering into
a PDZ becomes small in a dense network, the collection
efficiencies of GDTP and IDTP increase faster than the other
algorithms as the number of nodes increases. GDTP achieves
the highest data collection efficiency in a dense network. The
reason beyond is that when the network becomes denser, the
number of nodes per group will increase. A visit of a group
can then collect more data.

Fig. 12. Collection efficiency at different node densities in dynamic scenes

VI. CONCLUSION

This paper studied the dynamic path planning problem for
the AUV to collect the data in underwater sensors, which can
exploit the movement of the AUV to reduce the transmission
power of sensor nodes. We considered a scenario that the
underwater sensor positions are unavailable for the AUV’s
trajectory planning, which can be found in typical underwater
applications. To address the unavailability of node positions,
we proposed a planning-while-detecting framework to dynam-
ically plan the AUV’s trajectory. Particularly, we proposed
a grouping-based dynamic trajectory planning (GDTP) algo-
rithm, which groups nodes having a common communication
area and adjusts the next cruising direction to the group that
can collect the largest amount of data at the cost of cruise
energy and at the risk of error detection. The simulation results
showed that the AUV in GDTP can collect more data with
less energy consumption of the AUV in comparison with the
existing schemes.

As a future work, we will design an algorithm that exploits
the historical detection information and the prior information
to plan the trajectory and collect data in a more efficient way.
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