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Mobile robot 3D trajectory estimation
on a multilevel surface with multimodal
fusion of 2D camera features and a 3D
light detection and ranging point cloud

Vinicio Rosas-Cervantes1,2 , Quoc-Dong Hoang1,2,
Sooho Woo1,2 and Soon-Geul Lee1,2

Abstract
Nowadays, multi-sensor fusion is a popular tool for feature recognition and object detection. Integrating various sensors
allows us to obtain reliable information about the environment. This article proposes a 3D robot trajectory estimation
based on a multimodal fusion of 2D features extracted from color images and 3D features from 3D point clouds. First, a
set of images was collected using a monocular camera, and we trained a Faster Region Convolutional Neural Network.
Using the Faster Region Convolutional Neural Network, the robot detects 2D features from camera input and 3D
features using the point’s normal distribution on the 3D point cloud. Then, by matching 2D image features to a 3D point
cloud, the robot estimates its position. To validate our results, we compared the trained neural network with similar
convolutional neural networks. Then, we evaluated their response for the mobile robot trajectory estimation.
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Introduction

Indoor environments may include slopes to transit from dif-

ferent multilevel areas. Most structured environments provide

an even surface useful for robot mapping and exploration,

where feature or image extraction is easier than in unstruc-

tured environments. Since modern indoor infrastructure

includes slopes, mobile robots can navigate multilevel areas.

RGB cameras and light detection and ranging (LIDAR)

sensors allow robots to explore structured even-surface sce-

narios with a robust response.1–3

RGB cameras capture scenes in 2D images, and we can

classify one image into pixels and superpixels. LIDAR is an

active sensor that does not depend on the lighting condi-

tions and provides an accurate distance measurement.

However, RGB camera performance depends on illumina-

tion, and LIDAR point clouds do not have texture or color

information. To overcome those limitations, we can use

multimodal sensor fusion.4–7
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Multimodal fusion uses region levels,8 and conditional

random fields (CRFs)9 help to model contextual informa-

tion, but some LIDAR information is lost, resulting in

labeling problems.6,10 Since 3D LIDAR point clouds have

plenty of noise, a solution is treating the point cloud as a

mesh.11,12 Point cloud labeling or mesh treatment is viable

for large outdoor scenarios. However, for indoor scenarios,

the feature extraction has limitations. Mobile robot locali-

zation on unstructured scenarios with uneven or multilevel

surfaces is still a challenge.

The proposed method aims to provide an efficient

solution for image feature detection and mobile robot loca-

lization in indoor environments. Nowadays indoor environ-

ments are provided with ramps to allow the connection of

different levels in indoor environments, such as ramps or

access points for wheelchairs. Similar feature extraction

methods certainly identify and extract features with a good

response. However, our method allows a robust feature

extraction and robot localization in indoor environments

including multilevel surfaces.

Since 3D point cloud treatment is critical for mobile

robot exploration, we propose a multimodal sensor fusion

for robot localization on multilevel surfaces employing an

RGB camera and a 3D-LIDAR. Using a convolutional

neural network (CNN), we extracted 2D features from

RGB images and matched them into a 3D point cloud. To

perform the 2D feature detection, the input from the RGB

camera trains a Faster Region Convolutional Neural Net-

work (Faster R-CNN).

In parallel, the robot extracts features from the 3D point

cloud generated from the 3D LIDAR. Finally, we match the

features from the 3D point cloud and the camera. Figure 1

shows the pipeline of the proposed concept. The contribu-

tions of this document are as follows: a trained neural net-

work for 2D feature detection on multilevel scenarios and a

3D LIDAR–2D camera fusion that enables mobile robot

trajectory estimation based on rapid feature detection.

Figure 2 shows the proposed strategy to do the neural net-

work training.

Related work

To review the background studies, we divided them into

two major areas. The first is CNNs for object and feature

detection techniques. The second is the 3D LIDAR point

cloud and RGB camera fusion.

ConvNet-based approaches for object detection

ConvNet is an image feature extractor.13,14 The most pop-

ular object detectors are sliding window and region based.

Sliding window ConvNet: This is a classic method for

object detection. It employs a sliding window mechanism

suggested by Sermanet et al.15 Region-based ConvNets:

R-CNN16 and selective search10 are methods for object

proposal generation. The Faster R-CNN17 uses spatial

Figure 1. Proposed features-fusion model pipeline.

Figure 2. Feature extraction and training strategy using Faster
R-CNN. Faster R-CNN: Faster Region Convolutional Neural
Network.
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pyramid pooling networks.18 In Faster R-CNN, the image

passes through a convolutional layer and finishes with end-

to-end training. The fully convolutional network19

improves object detection and time efficiency. Xiang

et al. modify the Faster R-CNN using 3D voxel patterns.20

Single-shot object detectors: You Only Look Once

(YOLO)21,22 and single-shot detector23 use a single Con-

vNet. YOLO divides every input image into a grid, and

each grid detects an object within a bounding box. One

disadvantage is that the detection accuracy increases during

training when YOLO tries to use the entire image, and the

detection of small objects could be challenging. Cai et al.24

implement detection at multiple intermediate networks,

dealing with objects of different sizes. Oliveira et al.25 pro-

posed outdoor localization based on speed invariant inertial

transformation and deep learning for the sensor. This loca-

lization has applications on terrain classification. With 3D

object detection, Yang et al.26 use convolutional features,

and cascade classifiers to reject negative object proposals.

Li et al.27 use deep learning for fusion 2D LIDAR and

inertia measurement unit (IMU). They used a recurrent

neural network.

3D LIDAR and RGB camera fusion

3D LIDAR is critical for 3D scene perception, as it can

capture data both at day and at night. Combining 3D

LIDAR with 2D and 2.5D images allows for better 3D

scene perception. Shinzato et al.28 used a graphical method

to recognize obstacles. Approaches such as Xiao et al.6,29

use CRFs. For CNNs, Eitel et al.30 propose object detection

combining color images and depth maps. Schlosser et al.31

transformed LIDAR point clouds into Horizontal disparity

Height above the ground and Angle (HHA) fused with

RGB. Asvadi et al.32 integrated LIDAR and a color camera

using deep learning for object detection. Bellone et al.33

employ a support vector machine (SVM) which identifies

roads using 3D LIDAR data. Zhou et al.34 built an online

learning road detector. Quan et al.35 use the projection of

2D lines into 3D lines. However, the approach depends on

geometric computation as initialization to bundle adjust-

ments. Ouyang et al.36 fuse odometry and wheel encoder

to provide localization. Still, the approach is highly depen-

dent on the gyroscope for positioning.

Mobile robots have sensors such as mono and stereo

cameras, sonar, 2D, and 3D LIDAR.37,38 3D LIDAR is

an important solution for high-level safety and environment

recognition. The wide field of view, distance measurement,

and night-vision capability are among the advantages of the

3D LIDAR. The cost of the integrated mechanical parts and

the high-power requirements are major limitations for 3D

LIDAR. Wisth et al.39 use multi-sensory odometry for

mobile robot localization. The information from visual ref-

erence is combined with IMU. He et al.40 integrate global

navigation satellite based on simultaneous localization and

mapping pose estimation performing large-scale 3D map

building. The authors used global positioning for pose

estimation.

Feature detection uses monocular cameras fused with

various sensors. For example, to perform road-background

detection and classification, the multi-sensor divides an

image into pixels and superpixels. Machine learning has

important applications such as a mixture of Gaussian,41

SVM,4,42,43 and boosting44 structure random forest.6 These

methods classify each unit independently, but the prediction

could be noisy. Xu et al.45 proposed a multi-sensory fusion

using factor graph topology for optimal navigation. 3D

LIDAR is crucial for autonomous vehicles too. Markov ran-

dom fields can model LIDAR information generating a grid

map.46 Yuan et al.47 proposed a location-based landmark

recognition and used a novel quadrupole potential field for

obstacle avoidance. Shinzato et al.5 propose a simple cam-

era–LIDAR fusion for road detection, but LIDAR and cam-

eras have some drawbacks. Sensor fusion is an alternative

for a single sensing modality. The extent of work on data

fusion26 techniques in multimodal object detection is classi-

fied into three categories: low level, combines the multiple

sensor data; middle level, integrated the detected features;

high Level, combines classified outputs.48

For pedestrian detection, Premebida et al.49 use Velo-

dyne LIDAR with color data. Combining color images and

depth maps improves the performance of object detection.

González et al.50 use depth maps and color images as

inputs. Schlosser et al.31 use ConvNet-based fusion for

pedestrian detection. Deep learning enhances the HHA data

channel from 3D-LIDAR.51,52 The authors employ color

images and 3D-LIDAR point clouds as inputs. These inputs

get region-wise features.

Multimodal feature detection

We propose a multimodal feature detection method based

on 3D LIDAR and an RGB camera. The RGB images are

collected from a Kinect camera and the 3D point clouds

from a Quanergy 3D LIDAR. Since the projection of the

3D LIDAR points into the image is sparse, only the 3D

point cloud main corners are extracted. The corner extrac-

tion process is described in sections “Spatial planar coor-

dinates transformation” and “Division of voting space.”

Then, the extracted main corners are fused with the 2D

features from the RGB images.

3D point cloud plane extraction

An efficient way to represent a 3D LIDAR point cloud is to

segment it into small-scale 3D scenes. Kd-tree accelerates

the point cloud segmentation using the normal vector for

each point in the 3D point cloud. To proceed with the

normal estimation, we use the K-nearest neighbor process

to search around the pending points. Then, using the pend-

ing and neighbor points, the normal vectors are estimated

using principal component analysis. Here, ~n ¼ ðnx; ny; nzÞ

Rosas-Cervantes et al. 3



is normal for each vector and ~r ¼ ðx; y; zÞ is the incident

direction of the 3D LIDAR. The constraint (~n �~r < 0)

adjusts the normal orientation. After the normal values are

obtained, fussy clustering (FC) combines the normal angles

with the Euclidean distance, segmenting the point cloud

into physical planes. FC divides the points, separating them

into two different facades. According to the number of

points, FC allows us to check the point cloud space. Addi-

tionally, to reduce the computational time we employed

two steps: spatial planar coordinates transformation and

division of voting space.

Spatial planar coordinates transformation. We follow some

procedures from Zhang et al. (1) for planar extraction. First,

we transformed the spatial planar coordinates to polar coor-

dinates using equation (1)

r ¼ x cos q cos �þ y sin q cos �þ z sin � (1)

where q is the angle between the normal ~n and the x-axis,

� is the angle between the normal~n on the plane xoy, and

r is the distance from origin O to the plane xoy. Figure 3(b)

shows the normal~n with the corresponding angles q, � and

the distance r. We use equations (2)–(4) for the vector

conversion ~n ¼ ðnx; ny; nzÞ to the angles q, � and the dis-

tance r.

q ¼ arctanðny=nxÞ; q 2 ½0; 2p� (2)

� ¼ arcsinðnzÞ; � 2 ½�p=2; p=2� (3)

p ¼ d (4)

Division of voting space. For plane fitting with the width (r),

theta (q), and phi (�) obtained from equations (2)–(4) to

decide the ranges of the values in the space as

D ¼ ðdmax � dminÞ=r, T ¼ 360=q, and P ¼ 180=�, where

dmax and dmin represent the maximum and minimum

distance values from the point to the plane. Therefore,

we made a 3D array Voteðr; q; �Þ. The array size is

D� T � P, and all the elements started from 0. The

values plane1 and plane2 were extracted using equations

(5) and (6). Figure 3(a) shows the scenario scanned,

(b) shows the original 3D point cloud, (c) and (d) shows

the planes extracted from the 3D point cloud.

plane1

����! � plane2

����!
> AngleTheta

jDistplane1

(5)

�Distplane2j < Width (6)

Feature extraction

Once we completed the 3D planes segmentation, the section

“3D Point cloud feature extraction.” describes the proce-

dures for 3D feature extraction from the 3D segmented

planes, and the section “2D RGB images feature extraction”

describes the 2D feature extraction from RGB images.

3D point cloud feature extraction. Once the 3D point clouds

were segmented into planes, we found the intersecting

points. The values plane1 and plane2 are perpendicular to

each other, and their normal vectors are perpendicular to

each plane. The value normal1 is assigned to plane1 and

normal2 to plane2. The intersection vector noted as P0
�!

,

and the direction is given by ~u ¼ n1
�! � n2

�! and

Figure 3. Extracted planes from the 3D point cloud: (a) scanned
scenario image, (b) original 3D point cloud, (c) normal vector
representation with corresponding angles, and (d) extracted 3D
planes.
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~u ¼ ðux; uy; uzÞ. The direction of the intersection vector is

perpendicular to the normal n1
�! and n2

�!. To determine

the coordinates of the intersection points, we selected a

nonzero coordinate ~u (uz 6¼ 0) and set the corresponding

coordinate of P0
�!

to 0. P0
�! ¼ ðx0; y0; 0Þ lies on the inter-

section line L. The plane1 equation is given by

a1x0 þ b1y0 þ d1 ¼ 0, and the plane2 equation is

a2x0 þ b2y0 þ d2 ¼ 0. Equations (7) and (8) are derived

from the plane1 and plane2 equations, respectively. Equa-

tion (9) represents the obtained line feature. Figure 4(a)

shows the original 3D point cloud, (b) shows the normal

points in the intersection of the plane, and (c) shows the

extracted features from the 3D point cloud.

x0 ¼
b1d2 � b2d1

a1b2 � a2b1

(7)

y0 ¼
a2d1 � a1d2

a1b2 � a2b1

(8)

LðsÞ ¼

b1 b2

d1 d2

����
����; d1 d2

a1 a2

����
����; 0

� �

a1 a2

b1 b2

����
����

þ sðn1 � n2Þ (9)

2D RGB images feature extraction. A trained Faster R-CNN

(2) detects the 2D features of RGB images using a region

proposal network. Due to our robot employed a Kinect

camera for collecting RGB images, the experiment envi-

ronment has standard lighting conditions of 200–300 Lux.

Since the experiment is oriented to indoor environments,

we considered a location provided with average indoor

lighting conditions. For the particular case of this experi-

ment, the considered lighting conditions (minimum of

200–300 lux) allow the mobile robot to extract features.

To proceed with the neural network training and testing,

we started collecting a set of 300 images of the experiment

scenario. We used transfer learning for training our neural

network. All the images were resized to a 224 � 224 res-

olution, transformed into gray scale and the Canny edge

detector ran on every image. As a result, we obtained a

CNN composed of 15 convolutional layers and two fully

connected layers. We label 200 images identifying the

main corners. The Faster R-CNN ran on the entire image

during the training time and testing time. For testing, we

used a set of 100 images. Figure 5(a) shows the 2D image

capture by the Kinect camera, (b) shows the 2D gray scale

of the captured image, and (c) shows the extracted edge

using the Faster R-CNN.

The 2D features were extracted using equations (10) and

(11). Here, i is the sequence number of the prior images, j is

the index of features in each image, I i
prior is the previous

image, and I crt is the current image, both of which were

obtained from the Kinect camera. The 3D point cloud noted

as S and the corresponding 2D image I i
prior have six Degrees

of Freedom (DoF)

f
j;i
prior ¼ Faster RCNNðI i

priorÞ 2 R2 (10)

f
j
crt ¼ Fast RCNNðI crtÞ 2 R2 (11)

2D and 3D feature fusion for robot localization

Adapting the procedure in Rublee et al.,3 we projected the

2D RGB features f i
prior and f i

crt using ray tracing. Before

proceeding with the 2D feature extraction, the Kinect cam-

era was calibrated using the procedure described in Raposo

et al.,53 and the mobile robot odometry was calibrated using

the procedure described in Borenstein and Feng.54

Then, a clustering algorithm run on the 2D feature’s

coordinates. Equation (12) calculates the candidate’s

images Ik
candidate among I i

prior, and X approximate is the robot

position given by the IMU.

Figure 4. 3D point cloud plane intersection: (a) original point
cloud, (b) intersected points located, and (c) intersected point
located in the point cloud.
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ðIk
candidate;T

k
candidateÞ ¼ neighboring posðI i

prior; T
i
prior;X approximateÞ

(12)

Here, k is the index of the candidates, and the transfor-

mation Ti
prior represents the 3D position and orientation of

the robot for I i
prior. The function neighboring pos finds the

candidates by comparing the distance between Ti
prior and

X approximate to the 3D coordinates. Ik
candidate with low corre-

lation concerning I crt are removed using the random sample

consensus. Equations (13) and (14) generate the 3D coor-

dinate features f
j;k
S of f

j;k
candidate in the 3D point cloud S. The

features are obtained from the ray-tracing algorithm

for Ti
candidate and are expressed using the pinhole camera

model

Q
j:k
S ðlÞ ¼ P�1ðf j;k

candidate; T
k
candidate;KÞ (13)

f
j:k
S ¼ RayTracingðT k

candidate;Q
j:k
S ðlÞÞ 2 R3 (14)

Here, k is an index of the candidate and P�1 is the

projection operator. The notation QsðlÞ represents the 3D

coordinates in S. The RayTracing function finds the point

that lies on the line between Tk
candidate and Q

j;k
S ðlÞ. In equa-

tions (13) and (14), we can replace f
j;k
candidate and Ti

candidate

with f
j;k
prior and T i

prior. Finally, the 3D to 2D projection

ðf j;k
S 2 R3Þ calculates the robot position. The largest cluster

selected gives the multimodal fusion. Figure 6 shows the

matching process between the 2D and 3D features.

Minimization of the robot 3D localization. Once we obtained

the 2D and 3D feature fusion, the robot localization is

minimized for every position and time t þDt. We consider

each pose at i and the coordinates of the matched features

as f
j
crt þ f

j
S ¼ ðxf ; yf ; zf Þ. Each point is matched at each

position iþ 1, and then each feature coordinate is matched

within the rotation matrices Rx and Rz. Using the values of

Rf and tf, we transformed to the robot’s current position

ðxr; yr; zrÞ using equations (15)–(17)

RxðaIMUÞ ¼
1 0 0

0 cosðaIMUÞ sinðaIMUÞ
0 �sinðaIMUÞ cosðaIMUÞ

2
64

3
75 (15)

Rzðb IMUÞ ¼
cosðbIMUÞ sinðbIMUÞ 0

�sinðbIMUÞ cosðbIMUÞ 0

0 0 1

2
64

3
75 (16)

xr

yr

zr

2
64

3
75 ¼ RxðaIMUÞRzðb IMUÞ

xf

yf

zf

2
64

3
75 (17)

Using the values of ðxr; yr; zrÞ we minimized the error in

the coordinate values obtained from odometry ðxo; yo; zoÞ,
as shown in equation (18)

EðR; tÞ ¼ min
XN

i¼1

jjf i � R
f
i � Pi � t

f
i jj (18)

where Pi is the pose obtained from the previous feature

alignment and fi is the reference robot pose obtained from

the IMU. Both fi and Pi are 6� 1 vectors ðx; y; z;a; g;bÞ,
where x; y; z are the 3D coordinates and a; g; b are the

Figure 5. Feature extraction from RGB camera images using a
Faster R-CNN: (a) original 2D image obtain by the Kinect camera,
(b) main edges in the 2D image, and (c) edge extracted using the
Faster R-CNN. Faster R-CNN: Faster Region Convolutional
Neural Network.
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roll, pitch, and yaw angles, respectively. Algorithm 1

shows how multi-sensor fusion works to obtain the robot

localization. We use the input from the collected set of

local point clouds Sl and the set of images Il to proceed

with the multi-sensor localization. The number of iterations

is given by the size of Sl. Using the procedure described in

sections “Spatial planar coordinates transformation” and

“Division of voting space,” we generated a function

“3D_point_cloud_feature.” Then we obtained the features

fS. From the section “2D RGB images feature extraction,”

we obtained the image features f crt. Using the fusion

described in the section “2D and 3D feature fusion for robot

localization,” we combined the features fS and f crt, obtain-

ing the local coordinates xl; yl; zl. Then using the process

described in the section “Minimization of the robot 3D

localization,” the local coordinates were transformed into

global coordinates xG; yG; zG. Finally, the robot coordinates

are minimized using equation (18).

Results

To test our experiment, we chose a university location

provided with a multilevel surface. The location is divided

into three sections, and each section is connected with a

10� ramp, as shown in Figure 7(c). We used a Kobuki

robot,55 a Kinect camera,56 a Quanergy M8 3D LIDAR

manufactured by Quanergy Systems (Sunnyvale, Califor-

nia, USA),57 and a laptop computer (8 GB RAM and pro-

cessor intel i7) running MATLAB. Figure 7(a) shows the

employed mobile robot and (b) shows the experiment sce-

nario. For the experiment, the linear velocity of the robot

was considered without any slip. The robot moved with a

linear speed of 0.05 m/s, and the sampling period was 1s.

We used a scanning frequency of 0.5 m for LIDAR point

cloud registration. Using the mentioned sampling para-

meters, the robot had enough time for the multi-sensor

acquisition.

For the neural network training, we started collecting all

the RGB camera images and trained a Faster R-CNN. Our

method employs grayscale segmentation before proceeding

with the 2D image feature extraction. The proposed seg-

mentation allows a faster extraction of the major obstacles

in front of the mobile robot. Then the robot localizes itself

using the features from the trained neural network and the

3D point cloud.

The proposed method was compared with similar trans-

fer learning CNNs as Vgg16 and AlexNet. The response of

our method using the Faster R-CNN has a lower training

loss compared to the mentioned techniques. The three

methods have a high training accuracy and a robust

response for object recognition. AlexNet and Vgg16 have

trajectory errors of 0.28 m and 0.24 m, respectively. How-

ever, our method with the Faster R-CNN reduces the

trajectory error to 0.16 m. Table 1 shows a quantitative

comparison of the proposed method compared with Alex-

Net and Vgg16. To optimize the neural network weight

Figure 6. 2D and 3D feature projection and rotation: (a) ray
tracing projection on the 3D point cloud, (b) RGB camera and 3D
point cloud features on the X–Z plane, and (c) RGB camera and
3D point cloud features on the X–Y plane.

Algorithm 1. Multi-sensor localization.

1: Input: Set Local Clouds (Sl), Set images ðIl)
2: Output: Global Robot Localization: PG:m

3: for i ¼ 1 to n ¼ SizeðSlÞ do
4: f S ¼ 3D point cloud featureðSlÞ ðSlÞ
5: f crt ¼ Faster RCNNðIlÞ
6: ½xl; yl; zl�local ¼ fusionðf S; f crtÞ
7: ½xG; yG; zG�global ¼ rotateðxl; yl; zlÞ
8: min½xG; yG; zG� P!G:M ¼ ½xG:m; yG:m; zG:m�
9: end for

Rosas-Cervantes et al. 7



updating, we evaluated the training loss. The training loss

allows us the interpretation of how well the model is doing

for every set. The lower the training loss, the better is the

model. Unlike accuracy, training loss is not a percentage,

and it is a summation of errors made for each example in

training or validation sets. Loss values imply how well the

model behaves after each iteration of optimization. Ideally,

we expect the reduction of loss after each or several itera-

tions. To obtain the best possible accuracy, we use a Mini

Bach size of 128 and a max epoch of 100 for optimal

training response. Figure 8(a) shows a quantitate compar-

ison in the training process of the proposed neural network

versus similar networks such as VGG16 and AlexNet.

The ground truth for the robot localization was obtained

using the odometer and the IMU integrated into the robot.

The information collected from these sensors was fused

using the extended Kalman filter within a ROS node.

Figure 8(b) shows a comparison of the obtained trajectory

versus the ground truth trajectory. The axes X and Y repre-

sent the coordinates of each robots’ pose measured in

meters. As additional validation, we calculated the root

mean square error (RMSE) comparing our trajectory versus

the ground truth in each level. Table 2 shows the quantita-

tive registration results of the obtained trajectory.

Discussion

3D mapping and registration face different challenges,

such as overlapping areas or sparse features. Our robotic

registration framework detects and computes 2D and 3D

features using as input two sensors for multimodal

localization.

Figure 7. Scenario and equipment used for the experiment:
(a) mobile robot, (b) experiment scenario, and (c) scenario diagram
showing three different levels.

Table 1. Proposed faster neural network training comparison.

Trajectory
error (m)

Training
accuracy (%)

Training
loss

Faster R-CNN 0.16 100 0.0013
Vgg16 0.24 99.99 0.0029
AlexNet 0.28 99.99 0.0042

Faster R-CNN: Faster Region Convolutional Neural Network.

Figure 8. Mobile robot training performance and trajectory:
(a) training root mean square error comparison and (b) mobile
robot trajectory compared with the reference values.

8 International Journal of Advanced Robotic Systems



The proposed plane extraction is based on the geometric

properties of the 3D point cloud. For the image feature

extraction, we trained an artificial neural network using

transfer learning. Feature matching into the 3D point cloud

is based on the reference described in the section “2D and

3D feature fusion for robot localization.” Lastly, we pro-

posed Algorithm 1 for multi-sensory fusion and mobile

robot localization. In the proposed localization, a mobile

robot only uses visual reference (color images) and the

surrounding environment (3D point clouds). Although we

obtained a robust 3D localization during a dynamic scan,

we identified two weaknesses. First, if the robot’s velocity

is higher than the established linear velocity of 0.05 m/s,

the robot may not have enough time to process the data

from all sensor inputs. Second, the robot cannot crossover a

ramp bigger than 10� due to the wheel diameter. The pro-

posed localization approach can impact on the service

industry, improving the monitoring and control of mobile

robots in multilevel areas. As future work, the experiment

will be performed in outdoor scenarios, extending the

neural network training for detecting and extracting more

scenario features.

Conclusions

We presented a 2D and 3D feature fusion for mobile robot

localization in a multilevel area. The 3D point cloud feature

extraction based on plane segmentation reduces the point

cloud processing time. The Faster R-CNN identifies the

main corners in 2D images. The mobile robot extracts 3D

features using 3D point cloud processing. As presented in

the Introduction, plenty of methods still rely on positioning

sensors as IMU or global positioning system (GPS), which

offer a good solution in outdoor scenarios. On the other

hand for indoor scenarios, the response of these sensors is

limited. The proposed method presents an RMSE around

the axis X in 0.053 m and around the axis Y in 0.02 m.

Those values are acceptable for mobile robot indoor explo-

ration, meaning that our method has a reliable response in

localization, providing an alternative to sensors as IMU or

GPS. In terms of neural network efficiency, the proposed

method reduced the training loss significantly compared to

Vgg16 in 55.18%, and Alexnet in 69.05% keeping the low-

est robot trajectory error.
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