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Underwater navigation using
visual markers in the context
of intervention missions
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Abstract
Intervention missions, that is, underwater manipulation tasks, for example, in the context of oil-&-gas production,
require a high amount of precise, robust navigation. In this article, we describe the use of an advanced vision system
suited for deep-sea operations, which in combination with artificial markers on target structures like oil-&-gas
production-Christmas-trees significantly boosts navigation performance. The system is validated in two intensive field
tests running off the shore of Marseille, France. In the experiments, a commercial remotely operated vehicle equipped
with the system and a mock-up structure with an oil-&-gas production panel is used to evaluate the navigation
performance.
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Introduction

In recent years, there has been an increasing interest in

autonomous behaviors for intervention missions, that is,

missions with autonomous underwater vehicles (AUVs)

or at least semiautonomous remotely operated vehicles

(ROVs), which include automated, machine-controlled

manipulation tasks.1–9 Surveillance and inspection mis-

sions are usually not so critical in terms of navigation

performance. For these missions, the vehicle observes the

environment only from a distance and the localization

accordingly needs to be only reasonably accurate. Also,

post-processing of the data with, for example, simulta-

neous localization and mapping or even with manual cor-

rection of outliers by an end user is a common practice.

But intervention missions in contrast have higher

demands on the navigation. Especially, the vehicle is by

definition closer to objects of interest that need to be

manipulated—precise and robust localization in real time

is hence of high interest.

We present here work on the use of artificial markers to

improve navigation in the context of intervention missions.

Concretely, ArUco markers10 are used. This is motivated

by the fact that intervention typically takes place in envi-

ronment settings that involve man-made structures, for

example, Christmas-tree installations in the context of

oil-&-gas production (OGP), where the markers can be

easily added before deployment of the structures. The idea
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to exploit man-made structures for navigation in the con-

text of intervention can also be found, for example, by

Evans et al.,9 where edges extracted by computer vision

are matched against a priori known 3-D CAD models of

the structures. Visual markers have also been used before in

underwater applications, for example, in a form of active

light beacons for docking.11 In the work presented here,

augmented reality (AR) markers are used, which are in

general designed to provide good identification and locali-

zation capabilities. AR markers have among others been

used underwater for their original purpose, that is, for AR

by displaying virtual objects and virtual scenes into a

diver’s view of the real world at the location of the mar-

kers,12 for example, to assist divers in commercial opera-

tions13 or to enable underwater games for divers.14 AR

markers have also been used to enable a diver to commu-

nicate with an AUV15 and for the identification of nodes in

an underwater sensor network.16 Last but not least, AR

markers have also been used in the context of navigation,

for example, for the visual servoing of an ROV on a

moored target17 and the detection and localization of panel

elements for intervention.18

The work presented here is done in the context of the EU

project “Effective Dexterous ROV Operations in Presence of

Communications Latencies (DexROV)”.19 DexROV deals

with the problem that the state of the art for underwater

manipulation is dominated by costly ROV operations, which

require an offshore crew. This crew typically consists of at

least an intendant, an operator, and a navigator. And it often

has to be duplicated or even tripled due to work shifts

enabling 24/7 operations for, for example, missions in OGP.

Furthermore, intervention is still dominated by low-level,

manual control of the manipulator(s) and of the vehicle

itself. The core idea of DexROV is to enable operations from

an onshore control center. This includes among others a

reduction of the gap between low-level teleoperation and

full autonomy. The user in an onshore control center (e.g.

in Brussels, Belgium in our field trials) interacts with a real-

time simulation environment, and a cognitive engine

analyzes the user’s control requests and turns them into

movement primitives that the ROV needs to autonomously

execute in the real environment (e.g. in the waters off the

shore of Marseille, France, in our trials). One challenge for

this operation scheme is the communication latencies of the

satellite link between the control center and the vessel.

The contributions of our work on navigation aided by

AR markers presented here are among others (a) the use of

a novel underwater calibration method and of image

enhancement methods to improve marker detection and

localization, (b) additional measures with respect to the

view angle and distance range to increase the robustness,

and most importantly (c) a significant amount of system

development and integration leading to a high technology

readiness level (TRL) of six suited for field trials in realistic

application conditions (Figure 1), especially with respect to

a wide range of challenging visibility conditions.

The system components

The core navigation system

Our core navigation system is based on a standard, state-of-

the-art approach, namely, the use of a Doppler velocity log

(DVL) and an inertial measurement unit (IMU). Concre-

tely, a Navquest 600P micro DVL and a Xsens MTi-300

IMU are used. The DVL is rated for up to 6000 m depth,

that is, it is suited for deep-sea operations. The DVL is

mounted on the bottom of the DexROV-skid, which

is added to the Apache ROV in the field trials. The IMU

is integrated into the compute bottle of the vision system,

which is also integrated on the skid. The DVL is directly

connected to the compute bottle.

Figure 1. Our navigation system has been employed at a high TRL of 6. It was tested, for example, in two extensive field trials off the
shore in Marseille. In addition to the vision system to aid the navigation (left), the setup in these trials consists of an Apache ROV
extended a dual arm setup, which is deployed from the COMEX Janus II vessel (center). A mock-up panel structure is used to test
different application scenarios (right). TRL: technology readiness level; ROV: remotely operated vehicle.
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The DVL provides altitude as well as velocities in X, Y,

and Z (speed over ground), which is used for the computa-

tion of the translation. The IMU is used to track the ROV

orientation. As described in more detail later on, a standard

approach is used for the processing of the data for the core

navigation system, namely, an extended Kalman filter

(EKF). This processing is handled by the vision computer

in the onboard compute bottle, which is described in the

next section.

Vision system components

State-of-the-art ROVs like the Apache used in DexROV

often rely on analog camera systems. However, the image

quality is strongly influenced by the connection to the

support vessel. Due to long cables used in deep-sea oper-

ations, images are noisy and there can be interrupts in the

streams, which makes processing of the data by computer

vision quite challenging. The use of digital cameras has

multiple advantages, especially when they are combined

with computation power on the vehicle to generate an

intelligent vision system. First of all, an intelligent under-

water vision system (Figure 2, 3 and 4) can be used to

minimize the traffic over the umbilical cable from the

ROV to the vessel. Especially, it allows to online adapt

the image resolution, the compression factor, and the

frame rate to optimally use the available bandwidth for

the task at hand. Furthermore, computer vision can be

used directly onboard of the ROV to assist core capabil-

ities, like navigation in the work presented here, up to the

provision of autonomous functions. This processing

onboard of the ROV minimizes latencies and increases

robustness compared to processing on the vessel, which

requires the transmission of sensor data over the limited

data connection of a tether up to the vessel and also the

sending of commands down to the ROV again.

Our intelligent vision system is based on high-

resolution firewire (IEEE 1934b) cameras in pressure

housings. Concretely, Point Grey Grasshoppers2 cameras

are used. They are based on Sony ICX285 CCD sensors,

which are known for good performance in lowlight con-

ditions. The firewire bus signals are relayed over high-

frequency underwater cables between the bottles to allow

the daisy-chaining of multiple cameras connected to an

embedded computer, which is used for vision processing

and for adaptive video compression onboard of the ROV.

For the onboard vision computer, which also services the

core navigation based on the DVL and the IMU, an Intel

Figure 2. The camera system consists of a computer bottle with significant online processing power to which multiple cameras in
pressure housings can be daisy-chained (left), for example, as a stereo setup with two cameras (right).

Figure 3. The camera pressure housing of one camera of the intelligent underwater camera system.
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NUC with a 4th-Gen Intel Core i5-4250U is used. The

firewire bus supports among others the synchronization

of the cameras. They can hence be used for stereo, respec-

tively, multi-camera setups to generate depth information

from different views with a known relative geometry. The

option of more than two synchronized cameras allows

implementing different baselines to cover different

range/resolution trade-offs in one system. Due to payload

constraints of the Apache ROV, a stereo setup with two

cameras is used in all field trials.

The camera bottles are equipped with flat Sapphire glass

windows. All bottles designs are optimized by numerical

simulations for 4000 msw and pressure tested in the real

world for deep-sea operations up to 2000 msw. The cam-

eras need to be calibrated intrinsically and extrinsically

with respect to the ROV platform. For intrinsic calibration,

own work is used,20 which allows calibrating the system in

air, prior to underwater deployment with no need of further

in-water calibration. The predicted camera parameters take

salinity, temperature, and pressure into account, so the

varying depth of the application can easily be taken care

of. This is facilitated by a new camera model dubbed PinAx

as it combines an axial and a pinhole camera model.20

Based on the calibrated camera model, the images from

both cameras are rectified to remove the distortions, which

stem from the refraction caused by the water and the pro-

tective glass panel in front of the cameras. This contributes

to the robust recognition and localization of the AR mar-

kers. Furthermore, several pre-processing steps are exe-

cuted to enhance the image quality. Especially, own

methods to reduce haze are used in this context.21,22

System operation

For the onboard vision system, reliability and robustness are

of high interest. Furthermore, the network connection

through the tether between the ROV and the vessel is in

general subject to delays and dropouts, so any processing

involving the vessel computing facilities should be avoided.

Therefore, an approach as automated as possible is chosen

for the operation of the onboard vision computer. This

includes a possibility to (re-)start the sensor drivers and the

data recording via asynchronous commands which, in case

of network failures, are transmitted after the communication

has been restored and do not fail in such cases. This is

realized with a finite state machine on the onboard vision

computer, which gets triggered by asynchronous network

commands from the vessel computers, or otherwise boots

and runs autonomously once the ROV is switched on with-

out the need of any operator interaction. It is also possible to

do any computation processes including, for example, data

collection completely autonomously by launching the sys-

tem a certain time after the ROV is powered on or once a

certain altitude above sea ground has been reached.

Approach and methods

Definitions and notations

A core idea for the work presented here is as mentioned to

exploit the fact that intervention typically is done in envir-

onments featuring man-made structures. Here, this is a

mock-up structure with several panels for testing different

application scenarios. Given the panel as a landmark, a

kinematic model is used, which describes the spatial rela-

tionships among the ROV and the panel (see Figure 5).

Therein, the following transformations are defined:

� robot in camera frame: C
R T;

� camera in marker frame: M
C T;

� marker in panel frame: P
M T;

� panel in odom frame: O
P T;

� robot in marker frame: M
R T ¼ M

C TC
R T;

� marker in odom frame: O
M T ¼ O

P TP
M T; and

� robot in odom frame: O
R T ¼ O

M TM
R T.

Our approach focuses on the estimation of position and

orientation of the panel with respect to the origin of the

vehicle trajectory. Our approach incorporates a priori knowl-

edge, especially the CAD model of the panel and the place-

ment of the visual markers at known locations on the panel.

Based on this, the panel pose in the odometry frame O
P T can

be reliably estimated using the detected marker pose with

Figure 4. The design of the pressure housings for the cameras and the compute bottle are optimized by numerical simulations.
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respect to the camera frame C
M T, the camera pose on the

robot frame R
CT, the panel pose in the marker frame M

P T, and

the current robot pose in the odometry frame O
R T (Figure 5).

O
P T ¼ O

R TR
CTC

M TM
P T ð1Þ

Consequently, n marker observations lead to n panel pose

estimates O
P T that eventually allow to compute the pose

mean, which includes the mean position and the orientation,

determined by spherical linear interpolation (Slerp).23

Vehicle localization

Localization is a challenging task, especially in underwater

conditions, due to noisy sensor readings typically based on

acoustic devices like ultra-short baseline (USBL) systems,

single-beam or multi-beam sonars, DVL, or readings pro-

vided by inertial navigation systems. Consequently, locali-

zation methods rely on multiple modalities to increase

reliability.24,25 A typical and well-established approach to

deal with sensor fusion is the EKF,26 which allows incor-

porating the different modalities on the basis of their dif-

ferent uncertainties.

In order to increase the pose accuracy, we exploit the

panel as a visual landmark due to its static pose on the

seafloor and its visual augmentation with multiple markers.

Once the panel pose is estimated, the robot pose can be

inferred and used as an additional EKF input modality. In

the following, we describe our EKF-based localization sys-

tem incorporating standard sensor readings and the visual

landmarks.

Visual landmark-based localization

Figure 6 shows a sample pose estimate of a visual marker,

which is used to infer the panel pose through the space

transformations, shown in Figure 5,—note that the panel is

only partially observed. The panel is taken as a fixed land-

mark and the robot pose O
R T can be estimated as follows

O
R T ¼ O

P TP
M TM

C TC
R T ð2Þ

where O
P T is the panel pose in the odometry frame, P

M T is

one marker pose in the panel frame, M
C T is the camera pose

with respect to the marker, and C
R T is the robot fixed pose

with respect to the camera. Further on, the means of the

robot position O
R �p and its orientation O

R �q with respect to the

odometry frame are estimated from multiple marker detec-

tions (for better readability, O
R

�p ¼ �p, O
R

�q ¼ �q)

�p ¼ 1

n

Xn

i¼1

pi

 !
ð3Þ

where pi ¼ Opi is the position of the robot in the odometry

frame O estimated from detecting marker i; n is the number

of detected markers.

For calculating the mean �q of rotations q, we use the

Slerp algorithm

�q ¼ sn ð4Þ

with

si ¼ Slerpðsi�1; qi; tÞ; s1 ¼ Slerpðq1; q2; tÞ ð5Þ

Slerpðqi; qiþ1; tÞ ¼
sinð1� tÞq

sinq
qi þ

sintq
sinq

qiþ1 ð6Þ

q ¼ arccosðqi � qiþ1Þ; t ¼
1

n
ð7Þ

where qi ¼ O
R qi is the rotation quaternion between the odo-

metry frame O and the robot frame R estimated from

detecting marker i.

In order to use this robot pose estimate in the localiza-

tion filter, a covariance matrix O
R C has to be determined.

This requires the element-wise variances s2
p of the marker

positions p, which can be calculated as

Figure 5. An illustration of the transformations between the
vehicle and the panel. ROV: remotely operated vehicle.

Figure 6. An example of a marker detection under sea trial
conditions.
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s2
p ¼

1

n

Xn

i¼1

ðpi � �pÞ2 ð8Þ

Additionally, the element-wise orientation variances s2
q

have to be computed using the circular variance27 due to

the angle wraparound on the unit circle

s2
q ¼ 2p 1� r

n

� �
ð9Þ

with

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

sinqi

 !2

þ
Xn

i¼1

cosqi

 !2
vuut ð10Þ

Finally, the covariance matrix O
R C for the transformation

between the odometry frame O and the robot frame R can

be assembled as

O
R C ¼

s2
px

s2
py

0

s2
pz

s2
q�

0 s2
qq

s2
q 

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð11Þ

Eventually, a covariance matrix O
R C for the robot pose

can be defined in the form of

O
R C ¼ diagðs2

px
;s2

py
;s2

pz
;s2

q�
;s2

qq
;s2

q 
Þ ð12Þ

The full robot pose estimate O
R T ¼ hOR �p; O

R �qi along with

the respective covariance matrix O
R C is then taken as an

input for the localization filter.

Extended Kalman filter

As mentioned before, we use a standard EKF26 to estimate the

robot pose over time with a state space that consists of position

x; y; z, orientation �; q;  , translational _x; _y; _z, and angular

velocities _�; _q; _ as well as translational accelerations €x;€y;€z.

We only incorporate direct sensor measurements to the EKF,

that is, no integrated or differentiated values are used. An

inertial navigation system measures angular and linear accel-

erations, a DVL provides position outputs in a form of altitude

readings and linear velocities, and the information from the

marker landmarks is incorporated as pose readings. To

increase the localization filter robustness, obvious outliers

from sensor readings are rejected heuristically, and the pose

inputs inferred from visual markers are tuned based on our

experimental results.

Experiments and results

Data collection at sea trials

The results presented here include extensive field trials of 2

weeks each time in the Mediterranean Sea off the shore of

Marseille in June/July 2017 and in June/July 2018 (Figure 7).

A test panel was developed for validation by the DexROV

project partner “Compagnie maritime d’expertises

(COMEX)”. COMEX also provided the Apache ROV and the

Janus-II vessel for the sea trials. The panel served as target for

the trials to emulate different scenarios, for example, offshore

oil-&-gas facilities or the handling of archeological artifacts

(Figures 6, 1 and 8). The panel consists of three sides, which

are equipped with mock-up elements. One side is used to test

components in offshore oil-&-gas interfaces based on the ISO

13628 standard including, for example, valves and wet-mate

connectors. Furthermore, a biologic panel including mock-up

corals and an archeological box including mock-up ceramics

Figure 7. Impressions of sea trials in Marseille.
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are included. The panel is augmented with ArUco AR markers

as reference points to aid navigation.

The panel was submerged at different depths under dif-

ferent weather conditions with accordingly different visibi-

lity conditions. In order to provide a reliable estimate for the

alignment, only marker pose estimates with respect to the

ROV camera are used, that is, other cues are neglected due to

high noise level of the other available sensor feeds (e.g.

DVL, USBL, IMU). The experimental setup facilitates

experiments ranging from pure algorithm performance

experiments considering noise-free ground truth sensor feeds

over increasing noise levels under real-world sea trial con-

ditions. Especially, a high-fidelity simulator in the loop

(SIL) based on Gazebo can be used to replace components

for testing purposes. This is also of interest during the devel-

opment of the system components and their integration. It

allows, for example, the investigation of bottlenecks, con-

straints, and expected performance under certain environ-

mental conditions or for specific configurations.

Panel pose estimation

The first benchmarking test T P evaluates the accuracy of

the panel pose estimation, as this pose estimation is the

starting point for other tasks like handle pose estimation

and especially also navigation. This consequently validates

the robustness of the visual markers under different real-

world conditions. In order to replicate a realistic trajectory

for the robot to navigate, the robot poses given by the

detected markers in recorded real-world data are extracted

and first used as waypoints in the SIL for comparison. In

this way, the same visual perspectives as in the field trials

are obtained in the SIL, which represent a routine trajectory

commonly executed by the robot operators. Thus, we can

determine the expected error as the difference between the

ground-truth panel pose in the SIL O
P TS and the panel pose

determined from marker detection O
P TM

mðT P; EÞ ¼ dðOP TS ;
O
P TM Þ

¼ hdðOP �pS ;
O
P

�pMÞ; dðOP �qS ;
O
P

�qM Þi
ð13Þ

where dðOP �pS ;
O
P

�pM Þ is the Euclidean distance between posi-

tions and dðOP �qS ;
O
P

�qMÞ is the minimal geodesic distance

between orientations28 under conditions E.

Figure 9 shows the mean MðT P; EÞ and standard devia-

tion sðMðT P; EÞÞ for all panel observations under noise-

free conditions E0, as used initially in the development

stage, and underwater conditions E�, as used for

validation.

As expected, our approach features very high accuracy

in the noise-free environment E0 with a translation and

orientation error of only 0.02 m and 1.2�, respectively.

As to be expected, underwater conditions decrease the

accuracy and the number of detections. Nevertheless, there

is still only a reasonable translation and orientation error of

0.118 m and 4.2�, respectively, under the E� conditions. For

our navigation requirement, this error is small enough to

reach the desired performance. Furthermore, it can be

improved by image registration and the variance

s2ðMðT P; E�ÞÞ can be used to fine-tune the robot pose

covariance matrix O
R C to improve the localization. Tests

T H and T L show this in the next experiments.

Localization

The next test T L benchmarks the localization method. First,

we validate the use of visual landmarks in the localization

filter through SIL under the found E� conditions for com-

parison. Then, real-world data are used and we compare the

task performance with and without the use of visual markers.

Finally, results with EKF parameters, which are tuned based

on the results from tests T L1 and T P, are presented.

Evaluation measures. In order to provide meaningful numer-

ical results, we introduce the following error measures:

Robot pose estimate error (simulated data):

The pose estimate error of O
R TM and O

R TF with respect to

simulation ground truth is used in the first benchmarking test;

it is denoted by mS;MðT L1Þ ¼ dðOR TS ;
O
R TMÞ, respectively.

mS;FðT L1Þ ¼ dðOR TS ;
O
R TFÞ as shown in equation (13).

Robot pose estimate error (real-world data):

To evaluate benchmarking tests on real-world data, we use

the robot pose estimate given by the marker O
R TM as reference

ground truth and compute the mean and standard deviation of

the measure mM ;FðT LiÞ ¼ dðOR TM ;
O
R TFÞ plus the lag-one

autocorrelation mAðT LiÞ ¼
P

t
O
R TFðtÞOR TFðt � 1Þ on the

EKF-predicted poses. mAðT LiÞ is a measure of the trajec-

tory smoothness, which is of interest to prevent sudden

jumps in the navigation estimate that can interfere with

manipulation tasks.

Figure 8. The ROV and the test panel during the field trials. ROV:
remotely operated vehicle.
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Relative image quality:

Furthermore, we use several measures for all images

where the ground-truth landmark can be detected. This com-

prises of the NIQMC metric,29 a model of visual image qual-

ity with respect to contrast distortion, as well as the number of

correspondences between two consecutive images of several

established feature descriptors, which are commonly used for

registration, recognition, and mapping. All of the measures

are normalized over all collected real-world data, that is, the

resulting quality measures are relative numbers with the help

of which different images can be qualitatively compared.

From all measures, we compute the mean mI ðtÞ and the stan-

dard deviation ~mIðtÞ for each timestamp t

�mIðtÞ ¼
1

jMI j
X

m

m̂I ;mðtÞ ð14Þ

~mIðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jMI j
X

m

�
m̂I ;mðtÞ � mIðtÞ

�2
s

ð15Þ

where

m̂I ;mðtÞ ¼
mI ;mðtÞ � min

t
ðmI ;mðtÞÞ

max
t
ðmI ;mðtÞÞ � min

t
ðmI ;mðtÞÞ

ð16Þ

and

mI ;m 2 MI

MI ¼ fNIQMC; SIFT; SURF;BRISK;KAZE;AKAZEg
ð17Þ

is one individual image quality measure.

T L1—localization in simulation. For real-world underwater

localization, no accurate ground-truth data are usually

available. For this reason, the performance of the proposed

localization filter that integrates visual landmarks into the

EKF is tested in high-fidelity simulation first.

In this test T L1, the simulated robot follows a trajectory

around the panel for which the visual input has been

recorded in the 2017 field trials. This video stream has been

used to determine the robot pose with respect to the panel in

order to recreate a similar trajectory in simulation. Note,

however, that it is not necessary in this first experiment to

determine accurate ground truth, but an approximately sim-

ilar trajectory to the one used in the field trial is sufficient.

During this movement, the ground-truth robot pose in

simulation O
R TS is recorded alongside the robot pose deter-

mined through the detected marker pose O
R TM in simula-

tion and the localization filter O
R TF . Note that the EKF

receives only the visual landmark-based pose estimates

to prove that it converges to ground truth. Like with all

our experiments, this test is repeated several times to

Figure 9. T P results: panel detection errors MðT P; E0Þ and MðT P; E�Þ for noise-free E0 and underwater E� conditions.
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prove the feasibility of test T L1 through both the devel-

opment and the validation stage.

Integration stage:T L1fa�bg

During development, we initially execute T L1 on the

non-optimized localization settings in the beginning of the

continuous system integration cycle (denoting this first run

as T L1a). The resulting pose estimate error of O
R TM and O

R TF

with respect to simulation ground truth, mS;M ðT L1Þ and

mS;FðT L1Þ, is shown in Figure 10(b).

Figure 11(a) shows the driven-off trajectory with the

resulting pose errors; this and the detailed error breakdown

in Figure 10(a) show that whenever no marker is detected for

a while, the EKF error increases significantly on the next

reading, but then quickly reconverges toward ground truth.

On parts of the trajectory where markers are constantly visi-

ble, the localization error decreases substantially below 0.3

m/3�, for example, between time marks 0:1 and 0:25.

Further down the system integration path, T L1 is

repeated as T L1b with improved parameters of the locali-

zation method for validation. The results are shown in

Figures 10(a) and 11(b). Prominently, the trajectory,

which is estimated by the localization method, is a lot

denser than in T L1a. The reason for this is the fact that

visual markers are available only on the flat panel sur-

faces, but not on the cylindrical edges. Hence, our opti-

mized localization filter is able to estimate the expected

robot pose accurately from the previous visual input even

though this is stalled for some time.

Figure 10. T L1 results: position errors dðOR �pS;
O
R �pMÞ (red)/dðOR �pS;

O
R �pFÞ (blue) and orientation errors dðOR �qS;

O
R �qMÞ (dark-red)/dðOR �qS;

O
R �qFÞ

(dark-blue) between ground-truth robot pose and marker-based/localization filter-based robot pose estimates, while the robot moves
around the panel on a trajectory recorded in field trials; no marker detected for sampling times is marked green. (a) T L1a—integration
stage; before localization parameter tuning. (b) T L1b—integration stage; after localization parameter tuning. (c) T L1c—validation stage.
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Validation stage: T L1c

Within the validation stage, the method was tested again

on the 2018 field trials data where a circular trajectory has

been recorded (see Figure11(c)). In contrary to the integra-

tion stage, a full round was performed around the panel

with no markers recognized for a while (top-right part of

the figure), but then the localization is quickly on track

again as soon as the next marker is perceived. Together

with the position and orientation errors shown in Figure

10(c), the localization on simulated sensor data is shown

to be similar to the results from the integration stage. This

means that the localization method itself works sufficiently

well to be deployed with purely real-world data as in the

next tests T L2�5.

T L2—Real-world localization using only core navigation. In

order to get a baseline to compare the performance of the

localization filter when integrating visual landmarks, only

core navigation, that is, a standard approach with an EKF

on DVL and IMU measurements, is used in this subtest.

This is also done for tuning the use of visual markers in the

EKF, because navigation sensors are not integrated in the

Figure 11. T L1a�b results: robot poses (triangles) with orientation error dðOR �qS;
O
R �qFÞ (triangle color) and position error dðOR �pS;

O
R �pFÞ

(circle color, log-scaled circle radius) while the robot moves back and forth on a half-circular trajectory around the panel recorded in
field trials. (a) T L1a—integration stage; before localization parameter tuning. (b) T L1b—integration stage; after localization parameter
tuning. (c) T L1c—validation stage.

Table 1. Description of localization tests T Lf2::5g.

Test Description

T L2 EKF with real-world data and only navigation sensors
T L3 EKF with real-world data, using navigation sensors and

visual markers (default parameters)
T L4 T L3, plus covariance O

R C of the robot pose estimates from
marker detections adjustment with results from test T P ,
that is, using ð0:126mÞ2 and ð4:6�Þ2 (see Figure 9) as
diagonal values for single marker detections

T L5 T L4, plus rejection of marker pose estimates whose
distance dðOR TM;

O
R TFÞ to the current prediction are

greater than 1 m and 12�; determined from T L1 and the
results are in Figure 10(a) and (b)

EKF: extended Kalman filter.
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Figure 12. T Lf2�5g results: position error dðOR �pM;
O
R
�pFÞ (left column) and orientation error dðOR �qM;

O
R �qFÞ (right column) with the relative

image quality mean �mIðtÞ (dark-green) and standard deviation ~mIðtÞ in the bottom row; where the results for a test T Lx are not visible;
they coincide with T Ly for y > x. (a) T Lf2�5ga—integration stage; before localization parameter tuning. (b) T Lf2�5gb—integration stage;
after localization parameter tuning. (c) T Lf2�5gc—validation stage.
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simulation at this development stage. The results of this

subtest are depicted and described together with the follow-

ing subtests in the next subsection.

T L3�5—Real-world localization with visual markers. In these

tests, we show the localization results using all sensor data

recorded in field trials along with visual marker-based pose

estimates. A description of the respective tests is given in

Table 1. Figure 12 shows experimental results. Since no

ground truth is available in this real-world underwater sce-

nario and all errors are given with respect to the ROV pose

as recognized from the visual markers, during parts of the

trajectory where no markers have been perceived, no error

measures can be computed.

As expected, the EKF instance with only core naviga-

tion sensors as an input (T L2—blue in Figures 12(a) and

(b)) bears the largest error. Integrating the visual markers

(T L3—orange) significantly reduces the error. But it

increases the number of jerky motion estimates while navi-

gating; this is due to the fact that marker input is not always

available. This hence leads to the worst mAðT LiÞ. Finally,

we show that, based on results from the previous tests T P

and T L1, the localization performance can be optimized by

adjusting the pose estimates covariances (T L4—green) and

by rejecting outliers (red). T L4 and T L5 yield only very

slightly lower accuracies, but the latter achieves by far the

smoothest navigation trajectory, measurable by the higher

autocorrelation mAðT LiÞ.
This means that the vehicle localization does not get lost

as often as with a lower mAðT LiÞ. This is desirable as,

during autonomous navigation for intervention, loss of

localization should be avoided under all circumstances in

order to not crash into any obstacles. The slightly decreas-

ing pose accuracy in the later benchmarking tests is due to

the lower relative image quality in the far distances from

the visual landmark as visible in the bottom row of Figure

12(b). As can be compared with the trajectory in Figure

11(b), the regions where the ROV is located far away from

the panel lead to the largest pose errors due to the low

relative image quality (�mIðtÞ � 0:5) in the real-world data.

However, in near-distance regions like for 0:3 < t < 0:5,

the relative image quality is much more favorable. This

overall performance is taken into account in this use case

in favor of smooth trajectories.

The trajectory recorded in the validation stage (see Fig-

ure 11(c)), in contrary to the one of the integration stage,

leads around the whole testing panel, covering also the

parts where less visual markers are placed. In addition, the

visibility and hence marker detection percentage with

respect to the trajectory length was lower on the days when

this trial happened. This is easily visible in the relative

image quality mean (�mIðtÞ < 0:3 for the whole regarded

data, Figure 12(c) bottom) which is significantly lower than

in the data of the integration stage (Figure 12(b) bottom).

Keeping this in mind, the numerical results in Table 2 and

the position and orientation errors in Figure 12(c) are com-

petitive with respect to the ones obtained during the inte-

gration stage.

Conclusion

We presented an advanced navigation system for applica-

tions in the context of intervention missions, that is, under-

water manipulation tasks, which require a high amount of

precision and robustness in real time from the navigation

system. For this purpose, a core navigation system in form

of an EKF with input from a DVL and an inertial navigation

system is extended by visual odometry using artificial mar-

kers. Concretely, AR markers on a target structure are used.

The presented system has a high TRL, featuring an

Table 2. Tests T Lð2�5Þ measure results.

(a) T Lð2�5Þa—Integration stage, before localization parameter tuning

T L2a T L3a T L4a T L5a

�mM;FðT Lih�piÞ (m) 2:10+0:95 0:26+0:40 0:29+0:32 0:28+0:36
�mM;FðT Lih�qiÞ (�) 15:59+7:33 10:24+7:57 8:82+5:16 8:86+5:19
mAðT LiÞ 0.95 0.72 0.91 0.94

(b) T Lð2�5Þb—Integration stage, before localization parameter tuning

T L2b T L3b T L4b T L5b

�mM;FðT Lih�piÞ (m) 0:81+0:36 0:54+0:44 0:70+0:42 0:70+0:42
�mM;FðT Lih�qiÞ (�) 18:83+5:63 13:78+6:56 18:65+5:77 18:66+5:79
mAðT LiÞ 0.92 0.91 0.93 0.93

(c) T Lð2�5Þc—Validation stage

T L2c T L3c T L4c T L5c

�mM;FðT Lih�piÞ (m) 2:82+1:10 1:43+1:20 2:44+1:32 2:44+1:33
�mM;FðT Lih�qiÞ (�) 17:95+6:32 17:65+9:29 17:85+9:43 17:81+9:48
mAðT LiÞ 0.9 0.9 0.9 0.91
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intelligent vision system suited for deep-sea operations on a

commercial off-the-shelf ROV. The system was validated

among others in two intensive field tests running off the

shore of Marseille, France, where a substantially increased

navigation performance due to the use of the vision system

was demonstrated.
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