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Abstract: This article presents an Unmanned Underwater Vehicle simulator named Simu2VITA1

which was designed to be rapid to setup, easy to use, and simple to modify the vehicle’s parameters.2

Simulation of the vehicle dynamics is divided into three main Modules: the Actuator Module,3

the Allocation Module and the Dynamics Model. The Actuator Module is responsible for the4

simulation of actuators such as propellers and fins, the Allocation Module translates the action of5

the actuators into forces and torques acting on the vehicle and the Dynamics Module implements6

the dynamics equations of the vehicle. Simu2VITA implements the dynamics of the actuators and7

of the rigid body of the vehicle using the MATLAB/Simulink R© framework. To show the usefulness8

of the Simu2VITA simulator, simulation results are presented for an unmanned underwater vehicle9

navigating inside a fully flooded tunnel and then compared with sensor data collected when the10

real vehicle performed the same mission using the controllers designed employing the simulator.11

Keywords: Underwater Unmanned Vehicle, Simulation, Mobile Vehicle Dynamics12

1. Introduction13

Working with mobile vehicles often proves to be time consuming and, adding to the14

natural complexity of the matter, typically there is also the additional burden of using15

complicated simulators. Simulators are a necessity when dealing with mobile vehicles16

since they allow the design team to increase its knowledge about the vehicle’s behaviour17

and to test different scenarios. Quality of simulation is a requisite that rapidly grows in18

importance as the cost of equipment increases and the environment gets more hazardous19

to operate.20

Our research project aims to design an Underwater Unmanned Vehicle (UUV) to21

be used for inspection of adduction tunnels in hydroelectric power plants. Initially a22

search was done for possible simulators for this scenario that would satisfy the following23

requisites:24

• overall design simple and easy to understand,25

• easy description and modification of the vehicle physical parameters, its actuators26

and its sensors,27

• rapid testing of the different types of speed and position controllers, and28

• simple to add features on top of it such as vehicle autonomous behaviours.29

Nowadays popular consolidated robotics simulators like Gazebo [1] offers great30

physics accuracy in simulation and in customization but its learning curve is steep.31

The same happens with rich-feature simulators like Webots [2] . The setup of these32

simulators was considered too complicated by our team since they require complex33

file-based descriptions of the vehicle and other elements.34

In this article we show a simple, yet complete, UUV simulator which was built35

on top of the MATLAB/Simulink R© software framework1 given its popularity among36

engineers and for being the academia and industry standard for simulation of mechanical37

1 MATLAB R© and Simulink R© are registered trademarks of The MathWorks, Inc.
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and electrical systems. To use this simulator one needs to define explicitly only the38

vehicle parameters. Modelling the vehicle dynamics and its actuators is simple and39

accurate.40

In this paper we introduce our simulator named Simu2VITA, owing to it was was41

developed using MATLAB/Simulink R© to simulate underwater vehicles designed by42

our team at ITA (Instituto Tecnológico de Aeronáutica, Brazil). The Simu2VITA software43

can be found at this repository2, which includes an example of a simulation session and44

an animation produced by it.45

The remaining sections of this article are organized as follows:46

• Section 2 discuss other popular simulators and their main characteristics.47

• Section 3 presents our simulator Simu2VITA, considerations taken in implementa-48

tion and some possible extensions. Besides the presentation of the internal design49

functioning of Simu2VITA, this section also provides an overview on the modeling50

of a rigid-body vehicle and its actuators.51

• Section 4 presents the simulation results for an UUV navigating inside a fully52

flooded tunnel and a comparison of these results with sensor data collected when53

the real vehicle performed the same mission, showing that Simu2VITA can be used54

for fast concept validation.55

• Section 5 highlights the main points of the article and presents some possible56

improvements for this work.57

2. Background58

There are well established vehicle simulators already in use such as Gazebo [1] and59

Webots [2]. Gazebo is a general-purpose 3D simulator that can handle multiple robots60

and has an extensive library of ready-to-use vehicle models. Gazebo was originally built61

to satisfy the need for a high-fidelity vehicle simulator in outdoor environments. Being62

in development since early 2000’s, the simulator now includes many features like over63

the network and cloud simulation. A simulated scenario configuration in Gazebo is64

done using SDF (Simulation Description Format) files [3], a markup language which65

was derived from URDF (Unified Robotic Description Format) [4] (SDF and URDF are66

XML formats). SDF allows the description of the vehicle (in terms of its joints) and its67

environment.68

However, Gazebo was not designed to handle simulations including vehicles with69

rigid bodies moving through a dense fluid such as water. Taking advantage of the70

Gazebo plugin architecture, an extension to add fluid simulation named Fluids [5] was71

created. However, its own web page states that this plugin is experimental and outdated.72

There are also the Buoyancy Plugin[6] and the Lift-Drag Plugin[7] which make possible73

the creation of simplified underwater vehicle simulations but have complex parameters74

configurations such as defining the slope of the lift curve.75

A possible alternative to add hydrodynamics and hydrostatics to Gazebo with lower76

complexity is to use the UUV Simulator3 [8] which uses the modular design of Gazebo77

to enable simulation of multiple underwater vehicles. However, UUV Simulator does78

not implement fluid simualtion, instead it implements the extra forces caused by the79

presence of the fluid. Both Simu2VITA and the UUV Simulator use the same equations80

to simulate an underwater vehicle. Our simulator uses an similar approach building the81

simulation block on top of a more complete framework, in our case Simulink R©. The82

difference is that our simulator does not require neither the edition of URDF files nor83

SDF files to describe the vehicle. Therefore we argue that it is easier to input the vehicle84

description in our simulator.85

The Webots Open Source Robot Simulator [2] is a solution in many ways more86

suited for underwater simulation than Gazebo and UUV Simulator since it includes87

2 https://gitlab.com/aqualab/simu2vita
3 https://uuvsimulator.github.io/

https://gitlab.com/aqualab/simu2vita
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fluid simulation by design. It shares many similarities with Gazebo like multiple robot88

simulation, collision detection between bodies, headless simulation over network (when89

the visualization is not required or shown in a different machine and only the background90

computation of the simulation is performed in the simulator host machine) and ready-91

to-use models of sensors and robots. Webots also allows the addition of external forces92

to be added to the physics engine to create, for instance, a constant wind force affecting93

the vehicle. External communication with the simulator is possible using different94

approaches such as through a generic TCP/IP socket or using an API (Application95

Programming Interface) to an external application such as a program written in C/C++,96

java, python or MATLAB R©.97

In comparison to Webots, Simu2VITA can also accept inputs from outside the98

MATLAB/Simulink R© framework using functionalities from MATLAB toolboxes such99

as the Instrument Control Toolbox or the Robotics System Toolbox. For someone used100

to using MATLAB/Simulink R©, the learning curve to acquire the external signal input101

is very small. Simu2VITA lacks the visual aspect and the detailed physics descriptions102

of Webot but its simplicity to achieve good quality rigid body simulation its inherited103

communication functionalities from the MATLAB/Simulink R© framework justify it as a104

good choice for an UUV simulator and its use for rapid controller design and testing.105

3. The Simu2VITA Simulator106

The Simu2VITA simulator implements the mathematical structure describing the107

laws of motion of an underwater vehicle. Such structure is composed of the actuator108

module, allocation module and the dynamics module of the vehicle. Compared with109

other solutions, the simulator Simu2VITA has the advantage of inheriting tool knowledge110

from the MATLAB/Simulink R© framework, where one would only need to understand111

the concepts regarding the dynamics of the underwater vehicle.112

It is worthy noting that our solution can be easily adapted to simulate other types of113

vehicles (e.g., ground and aerial vehicles) by changing the values of the dynamic model114

which is described ahead. This possibility will not be explored in this article. However,115

it will be explained in this article how to adapt Simu2VITA to simulate different types of116

underwater vehicles. The software usage can be found in Appendix A.117

3.1. Simulator Description118

Simu2VITA has three main modules describing different components of the vehicle.119

This modules are briefly described below and more details are given in the subsections120

ahead.121

• The Actuator Module contains the actuator dynamics modeled each with a input122

signal saturation followed by a simple first order system. Inputs are handled by123

this module.124

• The Allocation Module describes how the forces generated by the vehicle actuators125

are mapped into forces and torques acting on the body of the vehicle.126

• The Dynamics Module has two main software components: the kinematics com-127

ponent that treats only geometrical aspects of the vehicle motion, and the kinetics128

component which deals with the effect of forces and torques applied to the body of129

the vehicle.130

On Simu2VITA modeling is restricted to mechanical forces and torques acting in131

the vehicle and generated by its actuators. Therefore, an eventual electronic activation132

system of an actuator would have to be attached externally to the simulation block as133

shown in Figure 1. A typical case is the translation of a PWM input signal to the expected134

thrust input signal of a propeller.135

At this point it is necessary to define the notation regarding vectors, matrices and136

linear transformations used herein. A vector v that is from some frame {U} is shortly137

written as vU or UvU , and if the same vector has to be transformed yet to another frame138
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Figure 1. A simple schematic showing the logic to add some electronic activation dynamics of the
actuators when using Simu2VITA.

{W} then is denoted WvU . A matrix P that represents a linear transformation from frame139

{U} into frame {W} is written as W PU . Therefore the expression linking vU and WvU is140

WvU = W PUvU , (1)

and the transformation in opposite direction is given by:

U PW = W P−1
U , (2)

vU = UvU = U PW
WvU . (3)

Figure 2 shows a three-dimensional frame attached to the body of some vehicle and141

the components regarding each axis of the body frame {b}. Observe the frame {b} is142

defined according to the North-East-Down convention and centered at a chosen point143

Ob in the body called the body frame origin. The independent vectors forming frame144

{b} are denominated:145

• n for the forward pointing axis in red,146

• e for the axis normal to the sagital plane of the vehicle in blue,147

• and d for the axis pointing down in green.148

Each axis of the body frame {b} is named according to the nomenclature defined149

by the Society of Naval Architects and Marine Engineers - SNAME [9]. The vector n is150

named Surge Axis, e is the Sway Axis and d is the Heave Axis. The vector υυυb = [u v w]T151

represents the linear velocity of the vehicle written in respect to its own body frame {b}152

and the components in each axis following the Surge, Sway, Heave order. The angular153

velocity is ωωωb = [p q r]T , with each component being the gyros around each axis. Both154

vectors can be put together in vector vb = [υυυT
b ωωωT

b ]
T . The forces and torques working on155

the vehicle body are all put in one single vector τττb = [X Y Z K M N]T , with X, Y and Z156

being the force components, and K, M and N the torque components.157

Next the implementation of the three modules forming Simu2VITA are presented158

from a rear-to-front perspective. The Dynamics Module is presented in subsections 3.1.1159

and 3.1.2. Subsection 3.1.3 explains how the Allocation Module transforms the forces160

generated by the actuators to forces and torques acting on the vehicle. Finally we show161

how an actuator is modeled and how the forces they generate are obtained in subsection162

3.1.4 – the Actuator Module.163

3.1.1. The Dynamics Module - Kinematics Component164

Defining the global reference frame adopted by the simulator as the NED (North-165

East-Down) frame convention and calling it {w}, the simulated vehicle state is described166

as follows:167

1. The pose of the vehicle written with respect to (w.r.t.) the {w} frame,168

wηηηb = [wpb
wqb]

T , (4)

where wpb is the position and wqb is a unit quaternion [10] describing the orienta-169

tion of the vehicle with respect to {w}. Also wpb = [n e d]T , where n, e and d are170

the three euclidean components in the {w} frame. The quaternion wqb = [q0 εεε]T171

has its real part as its first component and the imaginary part encapsulated in εεε.172
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p, K

q, M

r, N
u, X

nb

db
w, Z

Surge Axis

Sway Axis

Heave Axis

v, Y

eb

Ob

Figure 2. Definition of the body frame b of the vehicle. Note the components of vb and τττb in each
corresponding axis.

Notice that quaternion vector wqb can be interpreted as “orientation of frame {b}173

in respect to frame {w}”.174

2. The linear and angular velocities w.r.t. the vehicle’s own body frame175

vb = [υυυT
b ωωωT

b ]
T . (5)

The displacement of the vehicle w.r.t. {w} is calculated using wη̇̇η̇ηb obtained from176

[11]177

wη̇̇η̇ηb(vb, wηηηb) =
[wṗb

wq̇b
]T

=
[wqbυυυb

wq∗b Tq(wqb)ωωωb
]T , (6)

178

with wq∗b being the inverse of wqb [10] and Tq(q) being a matrix with the form [11]179

Tq(q) =
1
2

[
−εεεT

q0 I3×3 + S(εεε)

]
, (7)

180

where S(·) is the skew-symmetric matrix operator.181

3.1.2. The Dynamics Module - Kinetics Component182

The differential equation describing the behavior of the vehicle [11] is

Mv̇b + Ma
bvr + (C(bvr) + Ca(

bvr))
bvr + D(bvr)

bvr + g(wηηηb) = τττb , (8)

already accounting for hydrodynamics and hydrostatic components, where183

• v̇b is the acceleration vector of the vehicle.184

• bvr is the relative velocity of the vehicle when accounting for constant water currents
bvc,

bvr = vb − bvc , (9)
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with
bvc =

[
uc vc wc 0 0 0

]T , (10)

where uc, vc, wc are respectively the components of the water current velocity in185

Surge, Sway and Heave.186

• Matrix M is the rigid body Inertial Matrix and can be derived using Newton-Euler
equations of motion. Here, M is defined using an arbitrary point Ob in the body of
the vehicle as origin for frame {b} and has the structure

M =

[
mI3×3 −mS(rb)
mS(rb) Ib

]
. (11)

Vector rb describes the displacement of the center of gravity of the vehicle w.r.t. {b},187

and shall be informed when using the simulator. The scalar m is the mass of the188

vehicle. Matrix Ib ∈ R3×3 is the Inertia Matrix defined around the origin of {b}.189

One possibility to obtain the value of Ib is to first obtain the Inertia Matrix Ig around190

rb and perform191

Ib = Ig −mS2(rb) . (12)

• C is the Coriolis–Centripetal Matrix, and the form used here can be found using
Newton-Euler method,

C =

[
mS(ωωωb) −mS(ωωωb)S(rb)

mS(ωωωb)S(rb) −S(Ibωωωb)

]
. (13)

• Ma is the Added-Mass Matrix, that accounts for the extra inertia added to the192

system because of the water volume the accelerating vehicle must displace in order193

to move through it. This matrix is normally computed using an auxiliary numeric194

modeling software [12].195

• Ca is the Hydrodynamic Coriolis–Centripetal Matrix and have the following form

Ca =

[
0 S(Ma,11υυυb + Ma,12ωωωb)

S(Ma,11υυυb + Ma,12ωωωb) S(Ma,21υυυb + Ma,22ωωωb)

]
. (14)

• D is the Hydrodynamic Damping Matrix, which is simplified in our model. Here196

we assume the vehicle to perform relatively decoupled movements in each direction197

resulting in diagonal matrices for the linear and non-linear diagonal dumping.198

• Vector g(wηηηb) account for the static and hydrostatic forces acting on fully submerged
vehicles, meaning gravitational force wfW = [0 0 W]T and buoyancy force wfB =
−[0 0 B]T , with W = mg and B = ρg∇ . Scalar g is gravity acceleration, ρ is the
water density and ∇ the volume displaced by the vehicle. Finally

bfW = wq−1
b

wfW(wq−1
b )∗ , (15)

bfB = wq−1
b

wfB(
wq−1

b )∗ , (16)

g(wηηηb) = −
[

bfW + bfB
rb × bfW + bb × bfB

]
, (17)

and observe that bb is the center of buoyancy in the body of the vehicle.199

• τττb is the vector of disturbing forces and torques applied to the vehicle in each axis
of the body frame, including those generated by the actuators. We divide this vector
into two main components as described in eq. (18)

τττb =
[
X Y Z K M N

]T
= bτττa +

bτττe , (18)
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where X, Y and Z are forces applied into the Surge, Sway and Heave Axis re-200

spectively. Torques are K, M and N following roll, pitch and yaw movements201

respectively. See Figure 2. With bτττe encapsulating any external forces and torques202

from any source and bτττa coming from the actuators.203

Internally, we compute the acceleration of the vehicle by simply isolating v̇ in eq.
(8) transforming it into

v̇b = (M + Ma)
−1(τττb + Ma

bv̇c − C(vb)vb − Ca(
bvb)

bvr − D(bvr)
bvr − g(wηηηb)) , (19)

considering bv̇c to be

bv̇c =

[
S(ωωωb) 03×3
03×3 03×3

]
bvc , (20)

implicitly assuming the water current to be constant and irrotational [11]. Figure 3 shows204

the internal flow of information, input and output o this module. Observe that here we205

also present the initial state vectors wηηηb,0 and bvb,0 as inputs to the Kinematics part.206

vb

Kinetics

Kinematics

bτττa τττb

v̇b
wηηηb

wηηηb,0 vb,0

wη̇̇η̇ηb

bτττe
bvc

Dynamics Module

Figure 3. Logic representation of both Kinetics and Kinematics inside the Dynamics Model. Inputs
and outputs are also represented.

3.1.3. The Allocation Module207

The Allocation Module task is to transform the output of the modeled actuators y
into forces and torques inputs of the vehicle described by bτττa, i.e., a function fff : Rn →
R6 with n ≥ 0 being the number of actuators contributing to the generation of forces
and torques in all six degrees of freedom. Commonly this transformation is linear, and
so it is in our design. This linear transformation is firstly considered static, and later a
time-variant possible solution is shown. Eq. (21) show the static case transformation,

bτττa = [bXa
bYa

bZa
bKa

b Ma
bNa]

T = Hya , (21)

with ya being the vector containing the output of the actuators written in respect to these
and matrix H is the allocation matrix, accounting for the contribution of each actuator in
forces and torques acting in each axis of the vehicle. The computation of this matrix can
be made pragmatically for the case where the actuators are propellers attached to the
body of the vehicle. First we consider the position of this actuators w.r.t {b} frame and
their orientations using Euler angles. We denote the position of the k-th propeller in this
case as bpa,k = [bna,k

bea,k
bda,k ]T and its orientation as bαααa,k = [bφa,k

bθa,k
bψa,k ]T

representing roll, pitch and yaw components. Now assuming the propeller pushes the
vehicle only in its na,k axis direction as in Figure 4, we compute bna,k as the resultant
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first column vector from the rotation matrix bRa,k describing the misalignment of the
actuator frame with respect to the body frame of the vehicle

bRa,k = [bna,k
bea,k

bda,k] = R(bφa,k)R(bθa,k)R(bψa,k) . (22)

ya,k

ya,k na,k

na,k

da,k

da,k
ea,k ea,k

left-side view top view

Figure 4. This image shows the direction of the force generated by a propeller. The left view
shows a side way view from the left of the propeller, the right view gives the top view. Observe
the output force vector ya,k is always aligned with the na,k axis.

We then change the name of vector bna,k to express the distribution of the force ya,k
generated by the k-th propeller in each axis of {b}.

bfa,k = [b f X,k
b f Y,k

b f Z,k]
T = bnT

a,k . (23)

This way, the resultant force of the k-th propeller in each axis is given by

bya,k =

bXa,k
bYa,k
bZa,k

 = bfa,kya,k . (24)

The torque generated by the k-th propeller in the body is calculated using the cross
product of bpa,k by ya,k resulting in

bMa,k =

 bKa,k
b Ma,k
bNa,k

 = [bmK,k
bmM,k

bmN,k]
T︸ ︷︷ ︸

bma,k

ya,k =
bpa,k × bfa,kya,k . (25)

Figure 5 shows the geometric relation of bpa,k and bna,k. It is now clear that the full
allocation vector is bhhha,k = [bfT

a,k
bmT

a,k]
T , and we can align all allocation vectors in the

matrix

H6×n = [bhhha,1
bhhha,2

bhhha,3 ... bhhha,n] , (26)

with n being the total number of propellers, we obtain the allocation matrix. Now208

multiplying H by a column vector y containing the forces coming from the propellers,209

the resultant forces and torques vector bτττa is generated and shown in eq. (21). Figure 6210

shows a block diagram of this transformation.211

Observe H can be time-dependent if the vehicle has movable actuators, for instance,212

a rotating propeller or even a fin for roll and pitch maneuvers. These rotating and213

movable actuators can be also modeled in the actuator module as will be show in214

Subsection 3.1.4, but H will need to be calculated outside the simulator and this output215

fed back into Simu2VITA. For the simple case of a rotating propeller the procedure we216

presented is the basis, with just the constant changing orientation needing to be tracked,217
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bpa,k
Ob

nb

eb

bea,k

bna,k

Oa,k

db

bda,k

Figure 5. The representation of the frame of any k-th actuator w.r.t. the body frame {b} of the
vehicle.

Allocation Module

ya(t)

Σ

bτττa

Figure 6. A graphic representation of the operation performed by the Allocation Module, with ya

and H as inputs and bτττa as output.

see Figure 7. For fins, perhaps a non-linear approach is needed and the final bτττa must be218

fed back directly using the bτττe input of the Dynamics Module as the Allocation Module219

internal machinery expects a matrix to perform a linear transformation, in this case220

H = 0, i.e., the Allocation Module is bypassed. A future refining is to turn needless this221

bypass for the non-linear case of force allocation.222

3.1.4. The Actuator Module223

The input of Simu2VITA represents the reference signal the actuators of the vehicle224

should follow. For instance if the actuator is a propeller, the input reference signal225

should be the desired force to be generated by the actuator. In the case of a fin, the226

reference signal should would be the desired fin angle. These input signals are handled227

by the Actuator Module. Each actuator is modeled as a saturation function followed228

by a first order linear system with a user-defined time constant T (transfer function229

G(s) = 1/(Ts + 1)). Therefore each actuator output ya(t) can be computed in time in230

closed form like231

ya(t) = exp
[
− (t− t0)

T

]
ya(t0) +

1
T

∫ t

t0

exp
[
− (t− τ)

T

]
ūa(τ)dτ , (27)

where t0 is the initial simulation time, ya(t) is the output at time t, ya(t0) is the
initial state and ūa(t) is the limited input signal received by the actuator. This ūa(t) is
defined as

ūa(t) = sat(ua(t), umin, umax) =


umin if ua(t) < umin

ua(t) if umin ≤ ua(t) ≤ umax ,
umax if umax < ua(t)

(28)

with umin and umax being respectively the lower and upper limit values for the actuator232

input signal ua(t). Note that the actuator output ya(t) is also bounded by umin and umax.233
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ya(t)

bτττa

Pose of the vehicle

bτττe

Reference input
for the actuators

Actuator

Alloc.

Matrix

Computation

H

Allocation

Dynamics

Simu2VITA

Module

Module

Module

Figure 7. The logic representation of an external calculator for the allocation matrix in case of a
moving propeller.

Since a vehicle usually has multiple actuators, we need to define some useful vectors234

to express the whole system in a compact form235

ya(t0) = [ya,1(t0) . . . ya,n(t0)]
T , (29)

T = [T1 . . . Tn]
T , (30)

ua(t) = [ua,1(t) . . . ua,n(t)]T , (31)

umin = [umin,1 . . . umin,n]
T , (32)

umax = [umax,1 . . . umax,n]
T , (33)

ūa(t) = sat(ua(t), umin, umax) , (34)

where for all actuators ya(t0) is the initial output vector, T gathers the time constants,236

ua(t) contains the input signals, umin and umax contains the input lower and upper237

limits respectively.238

The actuator output vector ya(t) is then computed using:

ya(t) =

ya,1(t)
...

ya,n(t)



=


exp[−T−1

1 (t−t0)] ya,1(t0) + T1
−1 ∫ t

t0
exp[−T−1

1 (t−τ)] ūa,1(τ)dτ
...

exp[−T−1
n (t−t0)] ya,n(t0) + Tn

−1 ∫ t
t0

exp[−T−1
n (t−τ)] ūa,n(τ)dτ

 .

(35)

Figure 8 represents graphically the Actuator Module as a block. Figure 9 shows the239

connection of all modules as a whole greater block, Simu2VITA. This can serve as initial240

point to visualize possible ways to adapt it to other types of marine-crafts other than241

underwater vehicles.242
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ua(t)

ya(t)
T
t0

ya(t0)

umin

umax

t

Actuator Module

Figure 8. The Actuator Module as a block. Observe this Module also outputs the state of the
actuator before it passes through the saturation.

bvc

ya(t)

ua(t)

T
t0
ya(t0)
umin
umax

t

Actuator

H

Allocation

Dynamics

Simu2VITA

Module

Module

Module

bτττa

bτττe

wηηηb,0 vb,0

vb

τττb

v̇b

wηηηb
wη̇̇η̇ηb

Figure 9. Logic connection of all three modules and their input and output signals.

4. Experiments243

In this section an experiment is presented to demonstrate the flexibility of usage244

of Simu2VITA. The simulated results are then compared with telemetry data captured245

when a real UUV was deployed in loco. We simulate the UUV named VITA1[13], shown246

in Figure 10, which is a modified version of the BlueROV2 sold by Blue Robotics [14].247

VITA1 has eight fixed propellers acting as actuators and the following sensors:248

• a set of four echosounders from Bluerobotics pointing outwards the vehicle[15],249

• an imaging sonar, model Tritech Gemini 720im[16],250

• a profiling sonar, model Imagenex 881L[17], and251

• a high definition (1080p, 30fps) wide-angle low-light camera[18] equipped with252

four small lights.253

We use the Simulink 3D Animation toolbox for visualization of the dynamics of254

the vehicle. This visualization shows the vehicle pose over time as a 3D animation, see255

Figure 11. The echosounders are simulated as lines going out from them. The distance256

between an echosounder and an object is obtained when its line intersects the object.257

This intersection detection is made automatically by the Simulink 3D Animation toolbox.258

4.1. Simulated Experiment259

In the simulated experiment presented in this section the vehicle navigates inside260

a fully flooded underwater straight tunnel. The vehicle should move with a constant261

desired forward speed, in the center of the cross section of the tunnel and oriented as262

the tunnel main axis. The tunnel itself is oriented in the same direction as the n of the263
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Imaging Sonar Tritech Gemini 720im

Bluerobotics Echosounders

Light Camera

Imagenex 881L

Figure 10. The vehicle VITA1 and its sensors.

Figure 11. Visualization of the 3D model of the vehicle and the scenario. The red dot in front of
the simulated vehicle is an allusion to the red of the Imagenex Profiling Sonar 881L. The blue lines
on both sides are the representation of the “wings” carrying the propellers on VITA1. The side
wall and floor of the simulated tunnel can be seen in gray and dark gray, respectively, on the left.

frame {w}. To achieve these goals, two additional systems were attached to Simu2VITA:264

a Guidance System and a Control System. The Guidance System continuously updates265

the desired path the vehicle should follow. The Control System generates the command266

signals for the vehicle actuators such that it follows the desired path generated by the267

Guidance System as close as possible. The general picture of the problem can be seen268

in Figure 12, with the four echosounders readings (d1 to d4) shown as blue and green269

arrows and the red arrow point forward indicating the direction of the desired forward270

speed.271

The Guidance System receives the desired values for the vehicle forward speed ud,272

the desired vehicle orientation wqb,d, the desired offsets between lateral echosounder273

readings besw,d and vertical echosounder readings behe,d. The lateral and vertical dis-274

tances of the vehicle to the center of the tunnel cross section are computed using275

besw = d2 − d1 and behe = d3 − d4. These desired values are then smoothly inter-276

polated with the current state of the vehicle and sensor readings generating a smooth277

path to be followed. The signal outputs of the Guidance System are used as reference278
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d4

d1

d2
d3 ud

Figure 12. Distances measured by the VITA1 echosounders.

values when entering the Control System. Note that these references are smooth paths279

meaning that for the case of speed there is an acceleration reference too, and for the case280

of offsets and orientation that are constraints on speed and acceleration.281

The Control System is responsible for generating command signals to the vehicle ac-282

tuators to move the vehicle. The Control System is composed of four distinct controllers:283

a forward speed controller, a centralization controller, an orientation controller and a284

stabilizer controller.285

To reach the reference velocity ure f coming from the Guidance System, the forward286

speed is implemented as a PI controller with a feedforward reference acceleration term287

u̇re f is used. The idea is that once the error between the measured forward speed of288

the vehicle and the reference speed approach zero only the reference acceleration input289

remains. For a constant desired forward speed the final reference acceleration value will290

be zero.291

The centralization controller is responsible for positioning the vehicle in center of292

the tunnel cross-section. It is implemented using two separated PID controllers for both293

lateral and vertical position correction.294

The orientation controller is a nonlinear controller that uses quaternion directly295

based on the work of Fresk and Nikolakopoulos [19].296

Finally the stabilizer controller compensates the nonlinear parts of the model using297

a state feedback linearization approach. More details about the derivation and imple-298

mentation of the Guidance and Control Systems are given by de Cerqueira Gava et al.299

[20].300

The forward speed and the centralization controllers generate force commands. The301

orientation controller generate torque commands. To transform forces and torques into302

actuator inputs (propellers in this case), the simplest form were used. From eq. (21) we303

use the pseudo-inverse of H to obtain the actuators input304

ua = HT(HHT)−1︸ ︷︷ ︸
H†

bτττc (36)

with bτττc being the output of the Control System of forces and torques. Figure 13 shows305

how the Guidance and Control Systems are connected to Sim2VITA and their respective306

input and output signals.307

The simulation was performed using the variable step size ODE solver ode45 with308

step size of 0.001 s, in MATLAB R2019a. The Guidance System runs at 20 Hz as well as309

the Control System controllers but the stabilizer controller running at 400 Hz. We opted310

to put this high control rate to resemble the hardware we have in the real vehicle, a311

PixHawk micro-controller board [21] running the ArduSub software [22]. The PixHawk312

runs its internal stabilizer controller at 400 Hz.313
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Simu
2VITA

Pose of the vehicle

GS CS

d1
d2
d3

Desired values for
the centralization task

d4

H†
bτττc ua

Reference path
values to be followed

Figure 13. Diagram of the connection of the Guidance System (GS), Control System (CS) and
Simu2VITA.

Setting the tunnel to begin at the origin of the inertial system {w} alongside the314

direction of n, the simulated tunnel has a square profile with each side measuring 8315

meters. The vehicle initial state, as explained in Subsection 3.1.2, is316

wηηηb,0 =



3
1
−1

0.9764
−0.0199
0.1776
0.1209


, (37)

wvb,0 = 06×1 , (38)

with the quaternion part being equivalent to an orientation of −5◦ in roll, 20◦ in pitch317

and 15◦ in yaw. The desired final surge velocity ud is 0.2 m/s. Desired besw and behe are318

zero. The centralization task may be seen from the signals of the simulated echosounders319

in Figure 14. Observe the lateral and vertical echosounders readings converging to the320

same value (3.70 m), leading to errors besw and behe to zero. The lateral and vertical321

echosounders readings converge to 3.70 m since the simulated tunnel has a square322

cross-section with 8 m side length the vehicle shape is a cube with 0.6 m side length and323

the echosounders are assumed to placed at the vehicle surfaces, not at its center.324

Figure 14. Readings of echosounders of the simulated vehicle and the vertical and horizontal
errors over time.
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Considering regulation of vehicle orientation, the dynamics of vehicle are stable for325

the roll and pitch axes, so these angles naturally converge to zero. However, the yaw326

angle must be actively controlled in order to follow the referencing signal. In this case, as327

the tunnel sagittal plane is oriented orthogonal to the coronal plane of the world frame328

{w} (ed-plane) and the vehicle must cruise the tunnel with wnb parallel to the walls, the329

desired final yaw value should be zero. Figures 15 and 16 show the evolution of the330

angular velocities in gyros and orientation angles, respectively, smoothly converging to331

zero.332

Figure 15. The evolution of angular speed components of the simulated vehicle over time.

Figure 16. The evolution of orientation components of the simulated vehicle over time.

As the vehicle started the simulation displaced by a meter up and to the right, and333

rotated, is expected to exist considerable horizontal and vertical velocities. Figure 17334

shows the simulated vehicle velocity vetor evolution in the 3 axis as depicted in Figure 2.335

Observe how the desired forward velocity ud = 0.2 m/s is achieved, while the vehicle336

centralizes itself. In this case v and w velocities evolution present similar profile.337

The evolution of components of the position wpb of the vehicle can be seen in338

Figure 18. As expected the n component has grown as the time passed, and both e and339

d components converged to zero as was previously show in Figure 14. This happens340

because the center of the tunnel profile occurs at the origin of the coronal plane.341
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Figure 17. The evolution of the components of the simulated vehicle linear velocity over time.

Figure 18. The evolution of the position components of the simulated vehicle over time.

The simulated propellers were eight, all having the same lower and superior limits342

39.91 N and 51.48 N respectively. These values are informed by the manufacturer of the343

real propeller [23] used in the real vehicle for the specified tension of 16 V. For the time344

constant we have used 0.1754 s, a value also used by Manhães et al.[8]. Figure 19 shows345

the evolution of a propeller over time, with the lower graph depicting the transitory346

response for a series of changing values of input.347

4.2. Real Experiment348

For the real experiment the VITA1 vehicle was placed inside a hydro-power plant349

adduction tunnel which is 100 m long and 3.80 m wide. The vehicle was attached to a350

topside station through a tether cable, with the Guidance and Control Systems executing351

at the station. The only controller executing embedded of the vehicle was the stabilizer352

controller running in the PixHawk board. The control rate of the systems previous353

mentioned are the same as those in the simulated experiment. For a detailed explanation354

of the functioning of VITA1, please refer to the work of Jorge et al.[24].355

In this experiment, the main differences in relation to the simulated experiment are:356
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Figure 19. The evolution of the position components of the simulated vehicle over time.

• instead of going straight across the tunnel, the vehicle vertical desired path behe is357

sinusoidal,358

• the controller compensating nonlinear terms is a cascade PID running at 400 Hz on359

the micro-controller PixHawk [21] using readings from its own internal accelerome-360

ters and gyrometers.361

• The orientation controller operates separately in each orientation degree of free-362

dom using also cascade PID inside PixHawk while the simulated vehicle used a363

composed orientation controller in quaternion form.364

The forward speed and the centralization controller remains with the same structure,365

but now they generate input for the internal controllers of the PixHawk. The state366

observation algorithm used it the one presented by Pittelkau[25] and embedded in the367

PixHawk. The vehicle departs from the entrance of the tunnel almost pointing to the368

desired yaw orientation of −137◦ and almost centralized.369

Figure 20 exhibits the evolution of the orientation overtime, where roll and pitch370

remain in a well bounded box around zero, also the yaw track the desired yaw angle371

and remains around it.372

Figure 20. The evolution of orientation components of VITA1 over time.
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The echosounders signals in Figure 21 show that in the horizontal movement the373

bouncing converges to a oscillatory pattern near zero but around 0.25 meters, while the374

sinusoidal pattern is quite evident.375

Figure 21. Readings of echosounders of VITA1 and the vertical and horizontal errors over time.

Last, observer the constant surge velocity around the desired surge velocity at 2.5376

m/s in Figure 22. Also, as expected from Figure 21 there were expressive velocities in377

both horizontal and vertical directions of the vehicle. The velocities were measured using378

the DVL sensor A50 from Waterlinked [26] attached to the bottom of VITA1 pointing379

downwards.380

Figure 22. The evolution of linear velocities components of VITA1 over time.

From the previous experiments we have shown that is possible to use Simu2VITA381

to model and test controllers and behaviors for some desired vehicle, even for the case382

the simulated experimented used perfect sensing while the real case used an Extended383

Kalman Filter to estimate its states. Also, the assumption of slow decoupled movements384

held, as a high-rate PID was able to “linearize” the dynamics of the vehicle.385

5. Conclusion386

This article reports the development and some use cases of Simu2VITA, a simulator387

designed for UUV simulation. Simu2VITA is easy to setup and facilitates rapid proto-388
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typing and validation of concepts. Our simulator has been demonstrated to be a simple389

and resourceful tool when designing controllers and autonomous behaviors for an UUV.390

The simplicity of Simu2VITA and its easiness of use allowed our research project team391

to become familiar with the behavior of the real underwater vehicle before any in loco392

experiment.393

We plan to implement simulated versions of some types of sonar sensors. There394

are already some models for a complex sensor like the sonar as the one proposed by395

Mai et al.[27]. Another possible future work is to provide an animation model for the396

3D animation system of Simulink R©. Previous prepared controllers and behavior algo-397

rithms are in the sight of this research too, to enable rapid prototyping of autonomous398

underwater vehicles. In comparison to other simulators, Simu2VITA still lacks collision399

detection but this can be implemented outside of the simulator and is a possible future400

improvement to be made. Another future addition to Simu2VITA is the possibility to401

choose more complex dynamic models for the actuators.402
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Appendix A Simu2VITA block on SIMULINK411

Simu2VITA is a piece of software built on top of Matlab and Simulink machinery. It412

is a self-contained block. Figure A1 shows the block as it is on Simulink with its inputs413

and outputs. Almost all inputs and outputs in Figure A1 have a correspondence to some414

previously mentioned variable in Section 3, except inputs415

• init_actuator_time, and416

• simulation_time,417

and outputs418

• vehicle_resultant_forces.419

Starting with init_actuator_time, it receives a column vector n× 1 containing the time an420

actuator will start receiving inputs, the k-th element references the k-th actuator time421

to start. The simulation_time input enables external clock to be used, for example if one422

would like to control the vehicle in Simu2VITA using ROS[28] network and its clock, in423

this case the simulator makes the first value received as the base time and the simulation424

internal time is in reference to that base time. The output vehicle_resultant_forces is425

equivalent to the right hand-side of eq. (19) multiplied on left by (M + Ma). The other426

inputs are427

• u_input that is equivalent to ua in eq. (31),428

• Alloc_matrix is equivalent to Sigma matrix in Subsection 3.1.3,429

• external_forces is bτττe in eq. (18), and430

• current_velocity is bvc in eq. (9).431

Outputs are432

• actuator_output being ya as in eq. (35),433

• tau_input being bτττa as in eq. (18),434

• nu_dot being v̇b as in eq. (19),435

• nu being vb as in eq. (5),436

• eta_dot being wη̇̇η̇ηb as in eq. (6),437

• eta being wηηηb as in eq. (4),438
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• tau being τττb in eq. (19),439

• current_velocity is bvc in eq. (9).440

Figure A1. This is how Simu2VITA block is presented on Simulink.

Each one of the three modules of Simu2VITA has a tab dedicated to entering441

information. The tab for the Actuator Module needs the total number of actuators to be442

simulated, their initial state, the initial time they start to receive input and if Simu2VITA443

is going to use some external clock base. Next it presents the saturation options, the444

lower and upper limits and one can also disable the saturation. Last the time constant445

for each actuator is informed. See Figure A2.446

The tab for the Allocation Module contains only the field for entering with a static447

allocation matrix, but an option to use an external source is also available. The internal448

machinery of Simu2VITA will correctly pick the chosen matrix based on the option of449

use an external allocation matrix. See Figure A3.450

Information regarding the Dynamics Module involves scalars, matrices and vectors451

presented on subsections 3.1.1 and 3.1.2. From the vehicle, are required its mass, volume,452

center of gravity and its inertia matrix. For the hydrodynamics parameters, the added453

mass, linear and non-linear damping factors, and the water current velocity. Observe454

that the damping factors are considered diagonal matrices thus the input is a column455

vector for both fields. The hydrostatic parameters are the gravity constant, the water456

constant and center of bouyancy of the vehicle. The last two parameters are the initial457

pose and the initial velocity of the vehicle. See Figure A4.458



Version March 9, 2022 submitted to Sensors 21 of 24

Figure A2. Simu2VITA interface for entering with simulation parameters for the Actuator Module.
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Figure A3. Simu2VITA interface for entering with simulation parameters for the Allocation
Module.
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Figure A4. Simu2VITA interface for entering with simulation parameters for the Dynamics
Module.
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