Article

Simu2VITA: A general purpose underwater vehicle simulator

Pedro Daniel de Cerqueira Gava

Citation: Lastname, F.,; Lastname, F,;
Lastname, F. Title. Sensors 2021, 1, 0.
https:/ /doi.org/

Received:
Accepted:
Published:

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and insti-

tutional affiliations.

Copyright: (© 2022 by the authors.
Submitted to Sensors for possible
open access publication under the
terms and conditions of the Cre-
ative Commons Attribution (CC
BY)
mons.org/licenses/by/ 4.0/).

license (https:/ /creativecom-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

*, Cairo Lucio Nascimento Janior 7, Juan R. B. E Silva and Geraldo José Adabo

Division of Electronic Engineering, Instituto Tecnolégico de Aerondutica, Sdo José dos Campos, SP, Brazil;
pdcg@ita.br, cairo@ita.br, juan@ita.br, adabo@ita.br
* Correspondence: pdcg@ita.br

Abstract: This article presents an Unmanned Underwater Vehicle simulator named Simu2VITA
which was designed to be rapid to setup, easy to use, and simple to modify the vehicle’s parameters.
Simulation of the vehicle dynamics is divided into three main Modules: the Actuator Module,
the Allocation Module and the Dynamics Model. The Actuator Module is responsible for the
simulation of actuators such as propellers and fins, the Allocation Module translates the action of
the actuators into forces and torques acting on the vehicle and the Dynamics Module implements
the dynamics equations of the vehicle. Simu2VITA implements the dynamics of the actuators and
of the rigid body of the vehicle using the MATLAB/Simulink® framework. To show the usefulness
of the Simu2VITA simulator, simulation results are presented for an unmanned underwater vehicle
navigating inside a fully flooded tunnel and then compared with sensor data collected when the
real vehicle performed the same mission using the controllers designed employing the simulator.

Keywords: Underwater Unmanned Vehicle, Simulation, Mobile Vehicle Dynamics

1. Introduction

Working with mobile vehicles often proves to be time consuming and, adding to the
natural complexity of the matter, typically there is also the additional burden of using
complicated simulators. Simulators are a necessity when dealing with mobile vehicles
since they allow the design team to increase its knowledge about the vehicle’s behaviour
and to test different scenarios. Quality of simulation is a requisite that rapidly grows in
importance as the cost of equipment increases and the environment gets more hazardous
to operate.

Our research project aims to design an Underwater Unmanned Vehicle (UUV) to
be used for inspection of adduction tunnels in hydroelectric power plants. Initially a
search was done for possible simulators for this scenario that would satisfy the following
requisites:

overall design simple and easy to understand,
e easy description and modification of the vehicle physical parameters, its actuators
and its sensors,
rapid testing of the different types of speed and position controllers, and
simple to add features on top of it such as vehicle autonomous behaviours.

Nowadays popular consolidated robotics simulators like Gazebo [1] offers great
physics accuracy in simulation and in customization but its learning curve is steep.
The same happens with rich-feature simulators like Webots [2] . The setup of these
simulators was considered too complicated by our team since they require complex
file-based descriptions of the vehicle and other elements.

In this article we show a simple, yet complete, UUV simulator which was built
on top of the MATLAB/Simulink® software framework! given its popularity among
engineers and for being the academia and industry standard for simulation of mechanical

1 MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc.

Version March 9, 2022 submitted to Sensors

https:/ /www.mdpi.com/journal/sensors

https://www.mdpi.com
https://orcid.org/0000-0003-2682-043X
https://orcid.org/0000-0002-2418-0320
https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors

Version March 9, 2022 submitted to Sensors 2 of 24

38

39

40

41

42

43

a4

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

and electrical systems. To use this simulator one needs to define explicitly only the
vehicle parameters. Modelling the vehicle dynamics and its actuators is simple and
accurate.

In this paper we introduce our simulator named Simu2VITA, owing to it was was
developed using MATLAB/Simulink® to simulate underwater vehicles designed by
our team at ITA (Instituto Tecnolégico de Aerondautica, Brazil). The Simu2VITA software
can be found at this repository?, which includes an example of a simulation session and
an animation produced by it.

The remaining sections of this article are organized as follows:

Section 2 discuss other popular simulators and their main characteristics.

Section 3 presents our simulator Simu2VITA, considerations taken in implementa-
tion and some possible extensions. Besides the presentation of the internal design
functioning of Simu2VITA, this section also provides an overview on the modeling
of a rigid-body vehicle and its actuators.

e Section 4 presents the simulation results for an UUV navigating inside a fully
flooded tunnel and a comparison of these results with sensor data collected when
the real vehicle performed the same mission, showing that Simu2VITA can be used
for fast concept validation.

e Section 5 highlights the main points of the article and presents some possible
improvements for this work.

2. Background

There are well established vehicle simulators already in use such as Gazebo [1] and
Webots [2]. Gazebo is a general-purpose 3D simulator that can handle multiple robots
and has an extensive library of ready-to-use vehicle models. Gazebo was originally built
to satisfy the need for a high-fidelity vehicle simulator in outdoor environments. Being
in development since early 2000’s, the simulator now includes many features like over
the network and cloud simulation. A simulated scenario configuration in Gazebo is
done using SDF (Simulation Description Format) files [3], a markup language which
was derived from URDF (Unified Robotic Description Format) [4] (SDF and URDF are
XML formats). SDF allows the description of the vehicle (in terms of its joints) and its
environment.

However, Gazebo was not designed to handle simulations including vehicles with
rigid bodies moving through a dense fluid such as water. Taking advantage of the
Gazebo plugin architecture, an extension to add fluid simulation named Fluids [5] was
created. However, its own web page states that this plugin is experimental and outdated.
There are also the Buoyancy Plugin[6] and the Lift-Drag Plugin[7] which make possible
the creation of simplified underwater vehicle simulations but have complex parameters
configurations such as defining the slope of the lift curve.

A possible alternative to add hydrodynamics and hydrostatics to Gazebo with lower
complexity is to use the UUV Simulator? [8] which uses the modular design of Gazebo
to enable simulation of multiple underwater vehicles. However, UUV Simulator does
not implement fluid simualtion, instead it implements the extra forces caused by the
presence of the fluid. Both Simu2VITA and the UUV Simulator use the same equations
to simulate an underwater vehicle. Our simulator uses an similar approach building the
simulation block on top of a more complete framework, in our case Simulink®. The
difference is that our simulator does not require neither the edition of URDF files nor
SDF files to describe the vehicle. Therefore we argue that it is easier to input the vehicle
description in our simulator.

The Webots Open Source Robot Simulator [2] is a solution in many ways more
suited for underwater simulation than Gazebo and UUV Simulator since it includes

3

https:/ /gitlab.com/aqualab/simu2vita

https:/ /uuvsimulator.github.io/

https://gitlab.com/aqualab/simu2vita

Version March 9, 2022 submitted to Sensors 3 of 24

88

89

20

91

292

93

94

95

26

97

fluid simulation by design. It shares many similarities with Gazebo like multiple robot
simulation, collision detection between bodies, headless simulation over network (when
the visualization is not required or shown in a different machine and only the background
computation of the simulation is performed in the simulator host machine) and ready-
to-use models of sensors and robots. Webots also allows the addition of external forces
to be added to the physics engine to create, for instance, a constant wind force affecting
the vehicle. External communication with the simulator is possible using different
approaches such as through a generic TCP/IP socket or using an API (Application
Programming Interface) to an external application such as a program written in C/C++,
java, python or MATLAB®.

In comparison to Webots, Simu2VITA can also accept inputs from outside the
MATLAB/Simulink® framework using functionalities from MATLAB toolboxes such
as the Instrument Control Toolbox or the Robotics System Toolbox. For someone used
to using MATLAB/Simulink®, the learning curve to acquire the external signal input
is very small. Simu2VITA lacks the visual aspect and the detailed physics descriptions
of Webot but its simplicity to achieve good quality rigid body simulation its inherited
communication functionalities from the MATLAB/Simulink® framework justify it as a
good choice for an UUV simulator and its use for rapid controller design and testing.

3. The Simu2VITA Simulator

The Simu2VITA simulator implements the mathematical structure describing the
laws of motion of an underwater vehicle. Such structure is composed of the actuator
module, allocation module and the dynamics module of the vehicle. Compared with
other solutions, the simulator Simu2VITA has the advantage of inheriting tool knowledge
from the MATLAB/Simulink® framework, where one would only need to understand
the concepts regarding the dynamics of the underwater vehicle.

It is worthy noting that our solution can be easily adapted to simulate other types of
vehicles (e.g., ground and aerial vehicles) by changing the values of the dynamic model
which is described ahead. This possibility will not be explored in this article. However,
it will be explained in this article how to adapt Simu2VITA to simulate different types of
underwater vehicles. The software usage can be found in Appendix A.

3.1. Simulator Description

Simu2VITA has three main modules describing different components of the vehicle.
This modules are briefly described below and more details are given in the subsections
ahead.

e The Actuator Module contains the actuator dynamics modeled each with a input
signal saturation followed by a simple first order system. Inputs are handled by
this module.

e The Allocation Module describes how the forces generated by the vehicle actuators
are mapped into forces and torques acting on the body of the vehicle.

e The Dynamics Module has two main software components: the kinematics com-
ponent that treats only geometrical aspects of the vehicle motion, and the kinetics
component which deals with the effect of forces and torques applied to the body of
the vehicle.

On Simu2VITA modeling is restricted to mechanical forces and torques acting in
the vehicle and generated by its actuators. Therefore, an eventual electronic activation
system of an actuator would have to be attached externally to the simulation block as
shown in Figure 1. A typical case is the translation of a PWM input signal to the expected
thrust input signal of a propeller.

At this point it is necessary to define the notation regarding vectors, matrices and
linear transformations used herein. A vector v that is from some frame {U} is shortly
written as vi; or Yvy;, and if the same vector has to be transformed yet to another frame

Version March 9, 2022 submitted to Sensors 4 of 24

139

168

Electronic Actuator mechanical
command Electronic Activation reference signal _ SimuaVITA
—_— >
System

Figure 1. A simple schematic showing the logic to add some electronic activation dynamics of the
actuators when using Simu2VITA.

{W} then is denoted "Wvy;. A matrix P that represents a linear transformation from frame
{U} into frame {W} is written as "V Py;. Therefore the expression linking vi; and Vv, is

Wy ="Pyvy, 1)

and the transformation in opposite direction is given by:

Ypw = "Pyt, @

vu = Yvy = Py vy ®)

Figure 2 shows a three-dimensional frame attached to the body of some vehicle and

the components regarding each axis of the body frame {b}. Observe the frame {b} is

defined according to the North-East-Down convention and centered at a chosen point

Oy, in the body called the body frame origin. The independent vectors forming frame
{b} are denominated:

n for the forward pointing axis in red,
e for the axis normal to the sagital plane of the vehicle in blue,
e and d for the axis pointing down in green.

Each axis of the body frame {0} is named according to the nomenclature defined
by the Society of Naval Architects and Marine Engineers - SNAME [9]. The vector n is
named Surge Axis, e is the Sway Axis and d is the Heave Axis. The vector v, = [u v w]T
represents the linear velocity of the vehicle written in respect to its own body frame {b}
and the components in each axis following the Surge, Sway, Heave order. The angular
velocity is w, = [p q], with each component being the gyros around each axis. Both
vectors can be put together in vector v, = [v} w]]T. The forces and torques working on
the vehicle body are all put in one single vector T, = [X Y Z K M N]T, with X, Y and Z
being the force components, and K, M and N the torque components.

Next the implementation of the three modules forming Simu2VITA are presented
from a rear-to-front perspective. The Dynamics Module is presented in subsections 3.1.1
and 3.1.2. Subsection 3.1.3 explains how the Allocation Module transforms the forces
generated by the actuators to forces and torques acting on the vehicle. Finally we show
how an actuator is modeled and how the forces they generate are obtained in subsection
3.1.4 — the Actuator Module.

3.1.1. The Dynamics Module - Kinematics Component

Defining the global reference frame adopted by the simulator as the NED (North-
East-Down) frame convention and calling it {w}, the simulated vehicle state is described
as follows:

1. The pose of the vehicle written with respect to (w.r.t.) the {w} frame,

“ny = [“py “as]", @
where “p,, is the position and “qj is a unit quaternion [10] describing the orienta-
tion of the vehicle with respect to {w}. Also “p, = [n e d]’, where n, ¢ and d are
the three euclidean components in the {w} frame. The quaternion “q; = [g0 €]”
has its real part as its first component and the imaginary part encapsulated in €.

Version March 9, 2022 submitted to Sensors 5o0f 24

177

178

183

u, X
Surge Axis

w, Z

Heave Axis

Figure 2. Definition of the body frame b of the vehicle. Note the components of v, and T}, in each
corresponding axis.

Notice that quaternion vector “q; can be interpreted as “orientation of frame {b}
in respect to frame {w}”.
2. The linear and angular velocities w.r.t. the vehicle’s own body frame

v, = [v,f wa]T . (5)

The displacement of the vehicle w.r.t. {w} is calculated using “#,, obtained from
[11]

“iy (v, 1) = [“Po wflb]T = [“quvp “q; Tq(wqb)wh]T/ (6)

with “q; being the inverse of “qj [10] and T;(q) being a matrix with the form [11]

1 —T
Tq(CI) = E |:q013><3 +S(€):| ’ (7)

where S(+) is the skew-symmetric matrix operator.

3.1.2. The Dynamics Module - Kinetics Component
The differential equation describing the behavior of the vehicle [11] is

My, + M, v, + (C(bvr) + Cu(bvr)) by, + D(bvr) by, + e(“np) =711, 8)

already accounting for hydrodynamics and hydrostatic components, where
e v, is the acceleration vector of the vehicle.
b

b
VC/

v, is the relative velocity of the vehicle when accounting for constant water currents

bvr =v, — bvc , 9)

Version March 9, 2022 submitted to Sensors

6 of 24

186

with

by. = 1 ve wCOOO]T, (10)

where 1., v., w, are respectively the components of the water current velocity in
Surge, Sway and Heave.

Matrix M is the rigid body Inertial Matrix and can be derived using Newton-Euler
equations of motion. Here, M is defined using an arbitrary point Oy, in the body of
the vehicle as origin for frame {b} and has the structure

m13><3 —mS(rb)

M= Lms(xy) Iy

(11)

Vector r, describes the displacement of the center of gravity of the vehicle w.r.t. {b},
and shall be informed when using the simulator. The scalar m is the mass of the
vehicle. Matrix I, € R3*3 is the Inertia Matrix defined around the origin of {b}.
One possibility to obtain the value of I is to first obtain the Inertia Matrix Iy around
1 and perform

I = I; — mS*(x) . (12)

C is the Coriolis—Centripetal Matrix, and the form used here can be found using
Newton-Euler method,

mS(wp)S(rp) —S(Lwy)
M, is the Added-Mass Matrix, that accounts for the extra inertia added to the
system because of the water volume the accelerating vehicle must displace in order
to move through it. This matrix is normally computed using an auxiliary numeric
modeling software [12].
C, is the Hydrodynamic Coriolis—Centripetal Matrix and have the following form

0 S(Mg110p + Mg 10wp)

C p—
T [S(Maa1p + Ma1owy) S(Map10p + My powy,)

(14)

D is the Hydrodynamic Damping Matrix, which is simplified in our model. Here
we assume the vehicle to perform relatively decoupled movements in each direction
resulting in diagonal matrices for the linear and non-linear diagonal dumping.
Vector g(“11,) account for the static and hydrostatic forces acting on fully submerged
vehicles, meaning gravitational force “fyy = [0 0 W] and buoyancy force “fp =
—[00 B]T, with W = mg and B = pgV . Scalar g is gravity acceleration, p is the
water density and V the volume displaced by the vehicle. Finally

" = “q, " “fw (g,)", (15)
be _ wqb—l wa(wqh—l)* , (16)
b b
fiy +°f
w w B
= — , 17
g(”b) L‘b X bfW + by, X be‘| 17)

and observe that by, is the center of buoyancy in the body of the vehicle.

Ty, is the vector of disturbing forces and torques applied to the vehicle in each axis
of the body frame, including those generated by the actuators. We divide this vector
into two main components as described in eq. (18)

7, = [XYZKMN]" =tr,+"z,, (18)

Version March 9, 2022 submitted to Sensors 7 of 24

200

202

203

204

205

206

where X, Y and Z are forces applied into the Surge, Sway and Heave Axis re-
spectively. Torques are K, M and N following roll, pitch and yaw movements
respectively. See Figure 2. With ’t, encapsulating any external forces and torques
from any source and bt, coming from the actuators.

Internally, we compute the acceleration of the vehicle by simply isolating ¥ in eq.
(8) transforming it into

vy = (M + M) "Ny + My ' — C(vy) vy — Ca(bvy) bv, — D(Ov,) by, — g(“n)) , (19)
considering v, to be

by, — [S(Wb) 03x3] by, (20)
03x3 O3x3

implicitly assuming the water current to be constant and irrotational [11]. Figure 3 shows
the internal flow of information, input and output o this module. Observe that here we
also present the initial state vectors “17;, o and "v;, as inputs to the Kinematics part.

) Dynamics Module
T, | T
b . v
Te » Kinetics Vi -
by | | _ My |
> > B >
4 Kinematics /L >
Vp

‘ >

“Ho0| Vo

Figure 3. Logic representation of both Kinetics and Kinematics inside the Dynamics Model. Inputs
and outputs are also represented.

3.1.3. The Allocation Module

The Allocation Module task is to transform the output of the modeled actuators y
into forces and torques inputs of the vehicle described by "7, i.e., a function f : R" —
R® with n > 0 being the number of actuators contributing to the generation of forces
and torques in all six degrees of freedom. Commonly this transformation is linear, and
so it is in our design. This linear transformation is firstly considered static, and later a
time-variant possible solution is shown. Eq. (21) show the static case transformation,

bTa = [bXa bYa hZa hKﬂ bMa hNa}T = HYa ’ (21)

with y, being the vector containing the output of the actuators written in respect to these
and matrix H is the allocation matrix, accounting for the contribution of each actuator in
forces and torques acting in each axis of the vehicle. The computation of this matrix can
be made pragmatically for the case where the actuators are propellers attached to the
body of the vehicle. First we consider the position of this actuators w.r.t {b} frame and
their orientations using Euler angles. We denote the position of the k-th propeller in this
case as 'p,x = [Pnax Yeux bdu,k]T and its orientation as Ya,; = [P¢,x b(),l,k b i 1T
representing roll, pitch and yaw components. Now assuming the propeller pushes the
vehicle only in its n,; axis direction as in Figure 4, we compute "n, ; as the resultant

Version March 9, 2022 submitted to Sensors 8 of 24

first column vector from the rotation matrix R, i describing the misalignment of the
actuator frame with respect to the body frame of the vehicle

bRu,k = [bna,k beu,k bdu,k] = R(bfpu,k)R(bea,k)R(blpa,k)- (22)

A

:ya,k
0

4

nu’k
e €ak
n ak l L3
ak a,k du,k

. U

left-side view top view

Figure 4. This image shows the direction of the force generated by a propeller. The left view
shows a side way view from the left of the propeller, the right view gives the top view. Observe
the output force vector y, is always aligned with the n, axis.

We then change the name of vector b n, ; to express the distribution of the force y, x
generated by the k-th propeller in each axis of {b}.

"o = Ufxr "fvr "fzi)” = nlL . (23)

This way, the resultant force of the k-th propeller in each axis is given by

bXa,k

bya,k = bya,k = bfa,k]/a,k . (24)
bz
ak

The torque generated by the k-th propeller in the body is calculated using the cross
product of hpa,k by y, i resulting in

bk

b b ok b b b T b b
My = "My | = Umgr "Mk "Mkl Yok = Pak X fapYak - (25)
bN

ak

b mg

Figure 5 shows the geometric relation of b Pax and bnﬂrk. It is now clear that the full

allocation vector is bhark = fI, b m!,]7, and we can align all allocation vectors in the
matrix
b b b b
Hexpn = [ha,l ha,z ha,3 hu,n] ’ (26)

with n being the total number of propellers, we obtain the allocation matrix. Now
multiplying H by a column vector y containing the forces coming from the propellers,
the resultant forces and torques vector 7, is generated and shown in eq. (21). Figure 6
shows a block diagram of this transformation.

Observe H can be time-dependent if the vehicle has movable actuators, for instance,
a rotating propeller or even a fin for roll and pitch maneuvers. These rotating and
movable actuators can be also modeled in the actuator module as will be show in
Subsection 3.1.4, but H will need to be calculated outside the simulator and this output
fed back into Simu2VITA. For the simple case of a rotating propeller the procedure we
presented is the basis, with just the constant changing orientation needing to be tracked,

Version March 9, 2022 submitted to Sensors 9 of 24

233

Figure 5. The representation of the frame of any k-th actuator w.r.t. the body frame {b} of the

vehicle.
Ya (t) .
br
Allocation Modulef—— %
—Z>

Figure 6. A graphic representation of the operation performed by the Allocation Module, with y,
and H as inputs and b7, as output.

see Figure 7. For fins, perhaps a non-linear approach is needed and the final T, must be
fed back directly using the ", input of the Dynamics Module as the Allocation Module
internal machinery expects a matrix to perform a linear transformation, in this case
H =0, 1i.e., the Allocation Module is bypassed. A future refining is to turn needless this
bypass for the non-linear case of force allocation.

3.1.4. The Actuator Module

The input of Simu2VITA represents the reference signal the actuators of the vehicle
should follow. For instance if the actuator is a propeller, the input reference signal
should be the desired force to be generated by the actuator. In the case of a fin, the
reference signal should would be the desired fin angle. These input signals are handled
by the Actuator Module. Each actuator is modeled as a saturation function followed
by a first order linear system with a user-defined time constant T (transfer function
G(s) = 1/(Ts + 1)). Therefore each actuator output y,(t) can be computed in time in
closed form like

wt) =ep |- i) 1 [ew |- e, @)

where { is the initial simulation time, y, () is the output at time ¢, y,(t9) is the
initial state and #,(t) is the limited input signal received by the actuator. This ii,(t) is
defined as

Upin i ug () < iy
i (t) = sat(ua(t), pin, Umax) = ug(t) if thyin < ug(t) < tmax, (28)
Umax if Uy < ug(t)

with u,,;, and 1,4, being respectively the lower and upper limit values for the actuator
input signal u,(t). Note that the actuator output y,(t) is also bounded by u,,;;, and ux.

Version March 9, 2022 submitted to Sensors

10 of 24

234

237

238

>

Alloc.
Matrix <t
Reference input Computation
for the actuators
Simu2VITA
Ya (t)
Actuator |
] Module
Allocation |,
Module
i Dynamics
- Module
br,

Pose of the vehicle

Figure 7. The logic representation of an external calculator for the allocation matrix in case of a

moving propeller.

Since a vehicle usually has multiple actuators, we need to define some useful vectors
to express the whole system in a compact form

ya(to)
T
ua(t)
Umin
Umax

U, (t)

ya,l(to) . ya,n(to)]T ’

[

[Tl s Tn]T ’

(a1 (t) ... ugn(®)]T,
(thming -+ Uminn) '+
[umax,l e ”max,n]T p

sat(ua(t), Umin, Umax) ,

(29)
(30)
(31)
(32)
(33)
(34)

where for all actuators y,(t) is the initial output vector, T gathers the time constants,
u,(t) contains the input signals, upin and umax contains the input lower and upper

limits respectively.

The actuator output vector y,(t) is then computed using:

Yaa (t>
Yu(t) =
Yanu(t

exp[lefl(tfto)] Va1 (tO) + Tl—l ftg exp[le (th)] ﬂa,l<T)dT

eXp[_T;Tl(t_tO)] ya,n(to) + Tnil ftf) exp[—T,Tl(t—T)] ﬂa,n(f)d’[’

-1

(35)

Figure 8 represents graphically the Actuator Module as a block. Figure 9 shows the
connection of all modules as a whole greater block, Simu2VITA. This can serve as initial
point to visualize possible ways to adapt it to other types of marine-crafts other than

underwater vehicles.

Version March 9, 2022 submitted to Sensors 11 of 24

—fo | Actuator Module‘—ML>

Win

Wimax

Figure 8. The Actuator Module as a block. Observe this Module also outputs the state of the
actuator before it passes through the saturation.

Simu2VITA
t
—r ™ ya(t) .
fo: Actuator | by,
va(to). | Module >
LT Tp
Emm »> Allocation . >
e Module Vb >
H Dynamics |wp, |
> , o
br, ~ Module g, .
b Ve - Vp
P] >

N0 Vb0

Figure 9. Logic connection of all three modules and their input and output signals.

4. Experiments

In this section an experiment is presented to demonstrate the flexibility of usage
of Simu2VITA. The simulated results are then compared with telemetry data captured
when a real UUV was deployed in loco. We simulate the UUV named VITA1[13], shown
in Figure 10, which is a modified version of the BlueROV2 sold by Blue Robotics [14].
VITAT1 has eight fixed propellers acting as actuators and the following sensors:

a set of four echosounders from Bluerobotics pointing outwards the vehicle[15],
an imaging sonar, model Tritech Gemini 720im[16],

a profiling sonar, model Imagenex 881L[17], and

a high definition (1080p, 30fps) wide-angle low-light camera[18] equipped with
four small lights.

We use the Simulink 3D Animation toolbox for visualization of the dynamics of
the vehicle. This visualization shows the vehicle pose over time as a 3D animation, see
Figure 11. The echosounders are simulated as lines going out from them. The distance
between an echosounder and an object is obtained when its line intersects the object.
This intersection detection is made automatically by the Simulink 3D Animation toolbox.

4.1. Simulated Experiment

In the simulated experiment presented in this section the vehicle navigates inside
a fully flooded underwater straight tunnel. The vehicle should move with a constant
desired forward speed, in the center of the cross section of the tunnel and oriented as
the tunnel main axis. The tunnel itself is oriented in the same direction as the n of the

Version March 9, 2022 submitted to Sensors 12 of 24

2

o

4

265

266

267

268

269

270

271

272

273

274

275

276

277

278

Imagenex 881L

Bluerobotics Echosounders

Figure 10. The vehicle VITA1 and its sensors.

Figure 11. Visualization of the 3D model of the vehicle and the scenario. The red dot in front of
the simulated vehicle is an allusion to the red of the Imagenex Profiling Sonar 881L. The blue lines
on both sides are the representation of the “wings” carrying the propellers on VITA1. The side
wall and floor of the simulated tunnel can be seen in gray and dark gray, respectively, on the left.

frame {w}. To achieve these goals, two additional systems were attached to Simu2VITA:
a Guidance System and a Control System. The Guidance System continuously updates
the desired path the vehicle should follow. The Control System generates the command
signals for the vehicle actuators such that it follows the desired path generated by the
Guidance System as close as possible. The general picture of the problem can be seen
in Figure 12, with the four echosounders readings (d; to d4) shown as blue and green
arrows and the red arrow point forward indicating the direction of the desired forward
speed.

The Guidance System receives the desired values for the vehicle forward speed 1,
the desired vehicle orientation “qy 4, the desired offsets between lateral echosounder
readings b €5 4 and vertical echosounder readings b ey, 4. The lateral and vertical dis-
tances of the vehicle to the center of the tunnel cross section are computed using
besw = dy —dy and ey, = d3 — ds. These desired values are then smoothly inter-
polated with the current state of the vehicle and sensor readings generating a smooth
path to be followed. The signal outputs of the Guidance System are used as reference

Version March 9, 2022 submitted to Sensors 13 of 24

Figure 12. Distances measured by the VITA1 echosounders.

values when entering the Control System. Note that these references are smooth paths
meaning that for the case of speed there is an acceleration reference too, and for the case
of offsets and orientation that are constraints on speed and acceleration.

The Control System is responsible for generating command signals to the vehicle ac-
tuators to move the vehicle. The Control System is composed of four distinct controllers:
a forward speed controller, a centralization controller, an orientation controller and a
stabilizer controller.

To reach the reference velocity u,,f coming from the Guidance System, the forward
speed is implemented as a PI controller with a feedforward reference acceleration term
iyer is used. The idea is that once the error between the measured forward speed of
the vehicle and the reference speed approach zero only the reference acceleration input
remains. For a constant desired forward speed the final reference acceleration value will
be zero.

The centralization controller is responsible for positioning the vehicle in center of
the tunnel cross-section. It is implemented using two separated PID controllers for both
lateral and vertical position correction.

The orientation controller is a nonlinear controller that uses quaternion directly
based on the work of Fresk and Nikolakopoulos [19].

Finally the stabilizer controller compensates the nonlinear parts of the model using
a state feedback linearization approach. More details about the derivation and imple-
mentation of the Guidance and Control Systems are given by de Cerqueira Gava ef al.
[20].

The forward speed and the centralization controllers generate force commands. The
orientation controller generate torque commands. To transform forces and torques into
actuator inputs (propellers in this case), the simplest form were used. From eq. (21) we
use the pseudo-inverse of H to obtain the actuators input

u, = H'(HHT) !’r, (36)
t
H

with Pt being the output of the Control System of forces and torques. Figure 13 shows
how the Guidance and Control Systems are connected to Sim2VITA and their respective
input and output signals.

The simulation was performed using the variable step size ODE solver ode45 with
step size of 0.001 s, in MATLAB R2019a. The Guidance System runs at 20 Hz as well as
the Control System controllers but the stabilizer controller running at 400 Hz. We opted
to put this high control rate to resemble the hardware we have in the real vehicle, a
PixHawk micro-controller board [21] running the ArduSub software [22]. The PixHawk
runs its internal stabilizer controller at 400 Hz.

Version March 9, 2022 submitted to Sensors 14 of 24

Desired values for dq
the centralization task gz
3
dy
w y
b .
| Tc + | Wa_| Simu _
—~ __ » GS » CS » H SVITA >
7y 7y
Pose of the vehicle

Reference path
values to be followed

Figure 13. Diagram of the connection of the Guidance System (GS), Control System (CS) and
Simu2VITA.

Setting the tunnel to begin at the origin of the inertial system {w} alongside the
direction of n, the simulated tunnel has a square profile with each side measuring 8
meters. The vehicle initial state, as explained in Subsection 3.1.2, is

S,
1

1

Mo = | 09764 |, (37)
~0.0199
0.1776
| 0.1209 |

“vio = Ogx1, (38)

w.

with the quaternion part being equivalent to an orientation of —5° in roll, 20° in pitch
and 15° in yaw. The desired final surge velocity u,; is 0.2 m/s. Desired b esp and behe are
zero. The centralization task may be seen from the signals of the simulated echosounders
in Figure 14. Observe the lateral and vertical echosounders readings converging to the
same value (3.70 m), leading to errors bey,, and Pey, to zero. The lateral and vertical
echosounders readings converge to 3.70 m since the simulated tunnel has a square
cross-section with 8 m side length the vehicle shape is a cube with 0.6 m side length and
the echosounders are assumed to placed at the vehicle surfaces, not at its center.

Lateral Echosounder readings

E4.89 : : [[[|
saaaf
£330 ___eemmmmmmmme— i
£263~—"— ! ‘ ‘ ‘ ‘ ‘

0 10 20 30 40 50 60 70 80

time [s]
Vertical Echosounder readings

£5.03

. T T T T T T T
vazal il
E 3.45t '''''' 7
2 2.67 1 1 1 1 I I I
A 0 10 20 30 40 50 60 70 80
time [s]

Lateral and Vertical error evolution over time

T

N
w
(6]

£ 081
072 emmmmmEEe :
8 2pb-="" | ‘ ‘ ‘ | | |
0 10 20 30 40 50 60 70 80
time (s

Figure 14. Readings of echosounders of the simulated vehicle and the vertical and horizontal

errors over time.

Version March 9, 2022 submitted to Sensors 15 0f 24

325 Considering regulation of vehicle orientation, the dynamics of vehicle are stable for
a2 the roll and pitch axes, so these angles naturally converge to zero. However, the yaw
327 angle must be actively controlled in order to follow the referencing signal. In this case, as
s2s the tunnel sagittal plane is oriented orthogonal to the coronal plane of the world frame
s {w} (ed-plane) and the vehicle must cruise the tunnel with “n;, parallel to the walls, the
a0 desired final yaw value should be zero. Figures 15 and 16 show the evolution of the
s angular velocities in gyros and orientation angles, respectively, smoothly converging to

332 Zero.
<1073 p component of w;, evolution over time
1.11 T T T T T T
8 0.34 \k
5 -0.42 W]
_1.19 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
time [s]
q component of wy, evolution over time
) 0.0413 T T T T T T T
£ -0.0249 B
& -0.0911 W |
_0.1573 | 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80
time [s]
<1073 r component of w;, evolution over time
0 T T T T T T ;
g.2.18 .
& -4.37 ﬁ 4
_6.55 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80

time (s

Figure 15. The evolution of angular speed components of the simulated vehicle over time.

Roll Angle Evolution in time
;?-0.03 T T T T

le

'
=
[©)]
O

T

L

= -5 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

time (s
Pitch Angle Evolution in time

10 20 30 40 50 60 70 80
time (s
Yaw Angle Evolution in time
T T T T T

1 1 1 1 L

10 20 30 40 50 60 70 80

time (s

Figure 16. The evolution of orientation components of the simulated vehicle over time.

333 As the vehicle started the simulation displaced by a meter up and to the right, and
s34 rotated, is expected to exist considerable horizontal and vertical velocities. Figure 17
;s shows the simulated vehicle velocity vetor evolution in the 3 axis as depicted in Figure 2.
s3s Observe how the desired forward velocity u; = 0.2 m/s is achieved, while the vehicle
a7 centralizes itself. In this case v and w velocities evolution present similar profile.

338 The evolution of components of the position “p; of the vehicle can be seen in
s0 Figure 18. As expected the n component has grown as the time passed, and both e and
0 d components converged to zero as was previously show in Figure 14. This happens
;a1 because the center of the tunnel profile occurs at the origin of the coronal plane.

Version March 9, 2022 submitted to Sensors 16 of 24

356

u component of vy evolution over time
T T T T T

or @
oxwhN
T

|

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
time [s]
v component of v, evolution over time
0.11 T T T T T T T
0.02 =

Velocity [m/s]
[eNe]

Velocity [m/s]
)
o
)
T
|

_0.15 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

time s
w component of v, evolution over time

0.16 T T T T T T T
- 0.07/\/\ .
5 -0.02 B
_0‘11r 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

time [s]

[m/s]

ity

Veloc

Figure 17. The evolution of the components of the simulated vehicle linear velocity over time.

n component of “p; evolution over time

F16.41 [
£ 11.93F
£ 7441
é 2.96 1 1 1 1 1
0 10 20 30 40 50 60 70 80
time [s]
. e component of “p;, evolution over time
g 11 T T T T T T T
£0.73F .
‘% 0.37 i
QO_‘ 0 1 1 - . 1 1
0 10 20 30 40 50 60 70 80
time s
. d component of “p; evolution over time
g 0 T T 7 T T T
z-0.37F g
£-0.741 .
é _1‘12 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
time [s]

Figure 18. The evolution of the position components of the simulated vehicle over time.

The simulated propellers were eight, all having the same lower and superior limits
39.91 N and 51.48 N respectively. These values are informed by the manufacturer of the
real propeller [23] used in the real vehicle for the specified tension of 16 V. For the time
constant we have used 0.1754 s, a value also used by Manhaes ef al.[8]. Figure 19 shows
the evolution of a propeller over time, with the lower graph depicting the transitory
response for a series of changing values of input.

4.2. Real Experiment

For the real experiment the VITA1 vehicle was placed inside a hydro-power plant
adduction tunnel which is 100 m long and 3.80 m wide. The vehicle was attached to a
topside station through a tether cable, with the Guidance and Control Systems executing
at the station. The only controller executing embedded of the vehicle was the stabilizer
controller running in the PixHawk board. The control rate of the systems previous
mentioned are the same as those in the simulated experiment. For a detailed explanation
of the functioning of VITA1, please refer to the work of Jorge ef al.[24].

In this experiment, the main differences in relation to the simulated experiment are:

Version March 9, 2022 submitted to Sensors 17 of 24

Evolution of right frontal propeller thrust over time
T T T T T T

Thrust

_7.16 1 1 1 1 1 1 1
0

10 20 30 40 50 60 70 80
time [s]
Observation of the first order filter effect
0.049

Z.0.044
$0.038
£ 0.033
%0.028
£ 0.022

0.017 : :
7.2 7.25 7.3 7.35 7.4 7.45 7.5 7.55 7.6

time [s]

Figure 19. The evolution of the position components of the simulated vehicle over time.

e instead of going straight across the tunnel, the vehicle vertical desired path be,, is
sinusoidal,

e the controller compensating nonlinear terms is a cascade PID running at 400 Hz on
the micro-controller PixHawk [21] using readings from its own internal accelerome-
ters and gyrometers.

e The orientation controller operates separately in each orientation degree of free-
dom using also cascade PID inside PixHawk while the simulated vehicle used a
composed orientation controller in quaternion form.

The forward speed and the centralization controller remains with the same structure,
but now they generate input for the internal controllers of the PixHawk. The state
observation algorithm used it the one presented by Pittelkau[25] and embedded in the
PixHawk. The vehicle departs from the entrance of the tunnel almost pointing to the
desired yaw orientation of —137° and almost centralized.

Figure 20 exhibits the evolution of the orientation overtime, where roll and pitch
remain in a well bounded box around zero, also the yaw track the desired yaw angle
and remains around it.

Roll Angle Evolution in time

Angle [degree]
'
N
w

1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180
time [s]

Pitch Angle Evolution in time

1

1 1 1 1 1
40 60 80 100 120 140 160 180

time [s]
Yaw Angle Evolution in time

1 1 1 1
100 120 140 160

time [s]

Figure 20. The evolution of orientation components of VITA1 over time.

Version March 9, 2022 submitted to Sensors

18 of 24

373

The echosounders signals in Figure 21 show that in the horizontal movement the

s7a bouncing converges to a oscillatory pattern near zero but around 0.25 meters, while the

375

sinusoidal pattern is quite evident.

Lateral Echosounder readings

£2.33 —~— ‘ ‘ —
g 1.931 _ N A o
153 ~o__ . NG
2114 [1 1 T
A 20 40 60 80 100 120 140 160 180
time [s]
_ Vertical Echosounder readings
=3.37
£2.62
Z1.87
2 1.12
A 20 40 60 80 100 120 140 160 180
time [s]
Lateral and Vertical error evolution over time
EO.QB = Fo o == Pl
= 0.02F. NP
£-094r =---- -
5| -1.9 I I I I I I
20 40 60 80 100 120 140 160 180
time [s]

Figure 21. Readings of echosounders of VITA1 and the vertical and horizontal errors over time.

Last, observer the constant surge velocity around the desired surge velocity at 2.5
m/s in Figure 22. Also, as expected from Figure 21 there were expressive velocities in
both horizontal and vertical directions of the vehicle. The velocities were measured using
the DVL sensor A50 from Waterlinked [26] attached to the bottom of VITA1 pointing

downwards.

u component of v, evolution over time

E‘054 T T T T T T

~.0.36

018

-95 0 L L L L L L L

= 40 60 80 100 120 140 160 180
time [s]

2 v component of v, evolution over time

= 0.32

; 0.14

= -0.04

9 -0.23 L L L L L

=

= 40 60 80 100 120 140 160 180
time [s]

= w component of v, evolution over time

Z 0.12 ‘

g 0.05

$ -0.03

,g -0.1 L L L L L

= 40 60 80 100 120 140 160 180
time [s]

Figure 22. The evolution of linear velocities components of VITA1 over time.

From the previous experiments we have shown that is possible to use Simu2VITA
to model and test controllers and behaviors for some desired vehicle, even for the case
the simulated experimented used perfect sensing while the real case used an Extended
Kalman Filter to estimate its states. Also, the assumption of slow decoupled movements
held, as a high-rate PID was able to “linearize” the dynamics of the vehicle.

5. Conclusion
This article reports the development and some use cases of Simu2VITA, a simulator
designed for UUV simulation. Simu2VITA is easy to setup and facilitates rapid proto-

Version March 9, 2022 submitted to Sensors 19 of 24

typing and validation of concepts. Our simulator has been demonstrated to be a simple
and resourceful tool when designing controllers and autonomous behaviors for an UUV.
The simplicity of Simu2VITA and its easiness of use allowed our research project team
to become familiar with the behavior of the real underwater vehicle before any in loco
experiment.

We plan to implement simulated versions of some types of sonar sensors. There
are already some models for a complex sensor like the sonar as the one proposed by
Mai et al.[27]. Another possible future work is to provide an animation model for the
3D animation system of Simulink®. Previous prepared controllers and behavior algo-
rithms are in the sight of this research too, to enable rapid prototyping of autonomous
underwater vehicles. In comparison to other simulators, Simu2VITA still lacks collision
detection but this can be implemented outside of the simulator and is a possible future
improvement to be made. Another future addition to Simu2VITA is the possibility to
choose more complex dynamic models for the actuators.

Funding: The work reported in this paper was performed as part of an interdisciplinary research
and development project undertaken by Instituto Tecnolégico de Aeronautica (ITA). The authors
acknowledge the financial funding and support of the following companies: CERAN, ENERCAN
and FOZ DO CHAPECO, under supervision of ANEEL - The Brazilian Regulatory Agency of
Electricity. Project number PD 02476-2502/2017.

Acknowledgments: The authors wish to thank Waldir Vieira, Thais Machado Mancilha and Luiz
Eugénio Santos Aradtjo Filho for their support when retrieving some parameters of the underwater
vehicle VITA1.

Appendix A Simu2VITA block on SIMULINK

Simu2VITA is a piece of software built on top of Matlab and Simulink machinery. It
is a self-contained block. Figure A1 shows the block as it is on Simulink with its inputs
and outputs. Almost all inputs and outputs in Figure A1 have a correspondence to some
previously mentioned variable in Section 3, except inputs
e init_actuator_time, and
e simulation_time,

and outputs
e wvehicle_resultant_forces.

Starting with init_actuator_time, it receives a column vector n x 1 containing the time an
actuator will start receiving inputs, the k-th element references the k-th actuator time
to start. The simulation_time input enables external clock to be used, for example if one
would like to control the vehicle in Simu2VITA using ROS[28] network and its clock, in
this case the simulator makes the first value received as the base time and the simulation
internal time is in reference to that base time. The output vehicle_resultant_forces is
equivalent to the right hand-side of eq. (19) multiplied on left by (M + M,). The other
inputs are

u_input that is equivalent to u, in eq. (31),

Alloc_matrix is equivalent to Sigma matrix in Subsection 3.1.3,
bt,in eq. (18), and
e current_velocity is by.in eq. (9).

e external_forces is

Outputs are

e actuator_output being y, as in eq. (35),
tau_input being 1, as in eq. (18),
nu_dot being Vv; as in eq. (19),

nu being vy, as in eq. (5),

eta_dot being “1j;, as in eq. (6),

eta being “n;, as in eq. (4),

Version March 9, 2022 submitted to Sensors 20 of 24

439

440

e taubeing T, ineq. (19),
e current_velocity is Yv. in eq. (9).

actuator_output >
) u_input

tau_input >

> simulation_time
nu_dot >

) init_actuator_time

nu P

) Alloc_matrix ota_dot >

eta >

) external_forces
tau >

) current_velocity
vehicle_resultant_forces >

3

Simu2VITA
Figure A1. This is how Simu2VITA block is presented on Simulink.

Each one of the three modules of Simu2VITA has a tab dedicated to entering
information. The tab for the Actuator Module needs the total number of actuators to be
simulated, their initial state, the initial time they start to receive input and if Simu2VITA
is going to use some external clock base. Next it presents the saturation options, the
lower and upper limits and one can also disable the saturation. Last the time constant
for each actuator is informed. See Figure A2.

The tab for the Allocation Module contains only the field for entering with a static
allocation matrix, but an option to use an external source is also available. The internal
machinery of Simu2VITA will correctly pick the chosen matrix based on the option of
use an external allocation matrix. See Figure A3.

Information regarding the Dynamics Module involves scalars, matrices and vectors
presented on subsections 3.1.1 and 3.1.2. From the vehicle, are required its mass, volume,
center of gravity and its inertia matrix. For the hydrodynamics parameters, the added
mass, linear and non-linear damping factors, and the water current velocity. Observe
that the damping factors are considered diagonal matrices thus the input is a column
vector for both fields. The hydrostatic parameters are the gravity constant, the water
constant and center of bouyancy of the vehicle. The last two parameters are the initial
pose and the initial velocity of the vehicle. See Figure A4.

Version March 9, 2022 submitted to Sensors 21 of 24

© @ Block Parameters: Simu2VITA

Subsystem (mask)

Parameters

Actuator Module | Allocation Module = Vehicle Dynamic Parameters

Start options
Number of actuators on vehicle qty actuators
Actuators initial state values
use custom initial state for actuators to start
Actuators initial ime values |0

use external initial time for actuators to start

use external clock reference
Thrust saturation options
Thrust upper saturation limits |thrust_sup

Thrust lower saturation limits | thrust_inferior

¥ use thrust saturation
Evolution options

Time Constant values |actuators_tconst

OK Cancel Help

Figure A2. Simu2VITA interface for entering with simulation parameters for the Actuator Module.

Version March 9, 2022 submitted to Sensors 22 of 24

© @ Block Parameters: Simu2VITA

Subsystem (mask) =

Parameters

Actuator Module | Allocation Module | Vehicle Dynamic Parameters
Allocation Matrix | thruster_allocation_matrix

use external allocation matrix

OK Cancel Help

Figure A3. Simu2VITA interface for entering with simulation parameters for the Allocation
Module.

Version March 9, 2022 submitted to Sensors

23 of 24

@ ® Block Parameters: Simu2VITA

Subsystem (mask) =

Parameters

Actuator Module | Allocation Module | Vehicle Dynamic Parameters

Rigid-body Components
Vehicle Total Mass |m
Vehicle Total Volume |vol
Vehicle center of gravity w.r.t. vehicle control point |r_g
Inertia Matrix |1_b
enable external forces and moments
Hydrodanymic Components
Addded Mass Matrix |Ma
Drag Linear Factor |DIf
Drag Mon Linear Factor |Dgf
Fluid current velocity |[0 0 0T
use external fluid current velocity
Hydrostatic Components
Gravity Constant |9.81
Fluid Constant | rho

Vehicle center of bouyance w.r.t. vehicle body frame |r b
Initial state of the vehicle

Initial pose of the vehicle - [pos quat]' e position' init_vehicle orientation']'

Initial velocity and gyros of the vehicle -- [u vw p qrl' vehicle_angular_vel'l'

Cancel | Help

Figure A4. Simu2VITA interface for entering with simulation parameters for the Dynamics

Module.

Version March 9, 2022 submitted to Sensors 24 of 24

References

1. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. IEEE/RS]J International
Conference on Intelligent Robots and Systems (IROS), 2004, Vol. 3, pp. 2149-2154.

2. Michel, O. Webots: Professional Mobile Robot Simulation. Journal of Advanced Robotics Systems 2004, 1, 39—42.

3. Gazebo, an Open Source Robotics Foundation simulator. Simulation Description Format (SDF). URL: http:/ /sdformat.org/,
January, 2022.

4. Robot Operating System — ROS, an Open Source Robotics Foundation software development kit. Unified Robot Description
Format (URDEF). URL: https:/ /wiki.ros.org/urdf, January, 2022.

5. Haidu, A.; Hsu, J. Fluids. URL: https:/ /gazebosim.org/tutorials?tut=fluids&cat=physics, 2014. Accessed March 9, 2022.

6. Haidu, A.; Hsu, J. Bouyancy. URL: https://gazebosim.org/tutorials?tut=fluids&cat=physics, 2014. Accessed March 9, 2022.

7. Foundation, O.S.R. Aerodynamics. URL: http://gazebosim.org/tutorials?tut=aerodynamics&cat=physics, 2014. Accessed
March 9, 2022.

8. Manhdes, M.MM.M.; Scherer, S.A.; Voss, M.; Douat, L.R.; Rauschenbach, T. UUV Simulator: A Gazebo-based pack-
age for underwater intervention and multi-robot simulation. = OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1-8.
doi:10.1109/OCEANS.2016.7761080.

9. The Society of Naval Architecture and Marine Engineers. Nomenclature for treating the motion of a submerged body through a
fluid. The Society of Naval Architects and Marine Engineers, Technical and Research Bulletin No. 1950, pp. 1-5.

10. Hart,]J.C; Francis, G.K.; Kauffman, L.H. Visualizing Quaternion Rotation. = ACM Trans. Graph. 1994, 13, 256-276.
doi:10.1145/195784.197480.

11. Fossen, T.I. Handbook of marine craft hydrodynamics and motion control; John Wiley & Sons, 2011.

12. Dukan, FE. ROV motion control systems. PhD thesis, 2014.

13. Jorge, V.AM.; Gava, P.D.d.C,; Silva,] R.B.F,; Mancilha, T.M.; Vieira, W.; Adabo, G.J.; Nascimento Jr., C.L. VITAl: An Unmanned
Underwater Vehicle Prototype for Operation in Underwater Tunnels. 2021 IEEE International Systems Conference (SysCon);
IEEE: Vancouver, BC, Canada, 2021; pp. 1-8. d0i:10.1109/SysCon48628.2021.9447108.

14. Blue Robotics Inc. . BlueROV2 Heavy Configuration Retrofit Kit. URL: https://bluerobotics.com/store/rov/bluerov2-upgrade-
kits/brov2-heavy-retrofit-rl-rp/, January, 2022. SKU: BROV2-HEAVY-RETROFIT-R2-RP.

15. Blue Robotics Inc. . Ping Sonar Altimeter and Echosounder. URL: https:/ /bluerobotics.com/store/sensors-sonars-cameras/
sonar/ping-sonar-r2-rp/, January, 2022. SKU: PING-SONAR-R3-RP.

16. Tritech International Limited, a Moog Inc. Company. Gemini 720im Multibeam Sonar. URL: https://www.tritech.co.uk/
product/gemini-720im, January, 2022.

17. Imagenex Technology Corp. . 881L Profiling — Digital Multi-Frequency Profiling Sonar. URL: https://imagenex.com/products/
881l-profiling, January, 2022.

18. Blue Robotics Inc. . Low-Light HD USB Camera. URL: https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-
usb-low-light-r1/, January, 2022. SKU: CAM-USB-WIDE-R1-RP.

19. Fresk, E.; Nikolakopoulos, G. Full quaternion based attitude control for a quadrotor. 2013 European Control Conference (ECC).
IEEE, 2013, pp. 3864-3869.

20. deCerqueira Gava, P.D.; Jorge, V.A.M.; Nascimento Jr., C.L.; Adabo, G.J. AUV Cruising Auto Pilot for a Long Straight Confined Un-
derwater Tunnel. 2020 IEEE International Systems Conference (SysCon), 2020, pp. 1-8. doi:10.1109/SysCon47679.2020.9275846.

21. Meier, L.; Tanskanen, P; Fraundorfer, F; Pollefeys, M., PIXHAWK: A system for autonomous flight using onboard computer
vision. In 2011 IEEE International Conference on Robotics and Automation; 2011; pp. 2992-2997. doi:10.1109/ICRA.2011.5980229.

22. ArduPilot Project . ArduSub. URL: https://www.ardusub.com/, January, 2022.

23. Blue Robotics Inc. . T200 Thruster. URL: https:/ /bluerobotics.com/store/thrusters/t100-t200-thrusters /t200-thruster-r2-rp/,
January, 2022. SKU: T200-THRUSTER-R2-RP.

24. Jorge, V.A.M.; de Cerqueira Gava, P.D.; de Franga Silva,].R.B.; Mancilha, TM.; Vieira, W.; Adabo, G.]J.; Nascimento Jr., C.L.
Analytical Approach to Sampling Estimation of Underwater Tunnels Using Mechanical Profiling Sonars. Sensors 2021, 21.
doi:10.3390/521051900.

25. Pittelkau, M.E. Rotation Vector in Attitude Estimation. Journal of Guidance, Control, and Dynamics 2003, 26, 855-860,
[https://doi.org/10.2514/2.6929]. doi:10.2514/2.6929.

26. Water Linked . DVL A50. URL: https:/ /store.waterlinked.com/product/dvl-a50/, January, 2022.

27. Mai, N.; Ji, Y.; Woo, H.; Tamura, Y.; Yamashita, A.; Hajime, A. Acoustic Image Simulator Based on Active Sonar Model in
Underwater Environment. 15th International Conference on Ubiquitous Robots (UR), 2018, pp. 775-780. do0i:978-1-5386-6334-
9/18.

28. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: an open-source Robot

Operating System. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open
Source Robotics; , 2009.

http://sdformat.org/
https://wiki.ros.org/urdf
https://gazebosim.org/tutorials?tut=fluids&cat=physics
https://gazebosim.org/tutorials?tut=fluids&cat=physics
http://gazebosim.org/tutorials?tut=aerodynamics&cat=physics
https://doi.org/10.1109/OCEANS.2016.7761080
https://doi.org/10.1145/195784.197480
https://doi.org/10.1109/SysCon48628.2021.9447108
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit-r1-rp/
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit-r1-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/
https://www.tritech.co.uk/product/gemini-720im
https://www.tritech.co.uk/product/gemini-720im
https://imagenex.com/products/881l-profiling
https://imagenex.com/products/881l-profiling
https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
https://doi.org/10.1109/SysCon47679.2020.9275846
https://doi.org/10.1109/ICRA.2011.5980229
https://www.ardusub.com/
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://doi.org/10.3390/s21051900
http://xxx.lanl.gov/abs/https://doi.org/10.2514/2.6929
https://doi.org/10.2514/2.6929
https://store.waterlinked.com/product/dvl-a50/
https://doi.org/978-1-5386-6334-9/18
https://doi.org/978-1-5386-6334-9/18
https://www.researchgate.net/publication/359172829

	Introduction
	Background
	The Simu2VITA Simulator
	Simulator Description
	The Dynamics Module - Kinematics Component
	The Dynamics Module - Kinetics Component
	The Allocation Module
	The Actuator Module

	Experiments
	Simulated Experiment
	Real Experiment

	Conclusion
	Simu2VITA block on SIMULINK
	References

