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Abstract

Currently, the methods of inspection of underwater structures employ remotely operated vehicles, guided from a support
vessel by human operators. The risk of losing concentration calls for the development of an intelligent vision, guidance and
control system to support the human activity. The paper presents a robust system for the detection and the real-time tracking of

submarine pipelines. An active vision system is proposed to predict changes in the scene, and to direct computational resources
to con®rm expectations by adapting the processing mode dynamically. The system originates from an image-processing
algorithm that was previously developed by the authors to recognise the pipeline in the image plane. The accuracy of this

algorithm has been enhanced by exploiting the temporal context in the image sequence. The disturbances on acquired images
caused by motion are partially removed by a Kalman ®lter. The ®lter proves advantageous in supporting the guidance and
control of the ROV, and in making the image-processing module itself more robust. Sequences of underwater images, acquired

at a constant sampling frequency from T.V. cameras, are used together with synchronised navigation data to demonstrate the
e�ectiveness of the system. # 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Underwater vision; Remotely operated vehicle (ROV); Image understanding; Object tracking; Vision-based guidance; Active vision;

Real-time imaging; Kalman ®lter

1. Introduction

Oil and gas submarine pipelines need periodic inspec-
tions to ascertain their condition, and to prevent
damage due to ®shing activity, turbulent currents and
tidal abrasion. Currently, methods for the inspection
of underwater structures are based on remotely oper-
ated vehicles (ROVs), guided from a support vessel by
human operators. Underwater images, acquired by
video cameras mounted on a ROV, are shown on two
series of screens, one for the operator who is remotely
guiding the ROV, and the second for another oper-
ator, who detects anomalies on the pipeline with
respect to a standard or a previous situation.
Unfortunately, this on-line image analysis constitutes a
very demanding task for human operators due to the
poor quality of underwater images (e.g. lack of con-
trast, non-uniform lighting, absorption, scattering and
the opacity of the medium), the monotonous character

of the scene and the need for constant attention over

long periods. The risk of losing concentration may be

reduced by lowering the speed of the ROV and allow-

ing more time to analyse a single image. This solution,

however, requires an increase in the duration of the

mission, with a consequent rise in costs. A more inter-

esting solution consists of supporting the human ac-

tivity by means of an intelligent vision, guidance and

control system. This involves dealing with many pro-

blems that still relate to research topics like real-time

signal processing, sensor data fusion and world model-

ing. Moreover, the guidance and control-system re-

sponses to scene modi®cations must be compatible

with the speed of the ROV, and synchronisation

between the arti®cial vision system and the control sys-

tem is necessary. Thus, the proposed intelligent system

has to use many arti®cial intelligence techniques at the

same time. In particular, image understanding and

object recognition should also include the process of

selective acquisition of data in space and time, and an

active vision system (Aloimonos et al., 1987; Bajcsy,

1988) should be used to control perception.
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Remote inspection based on computer systems,
endowed with di�erent degrees of autonomy and arti®-
cial intelligence, is widely used in industry, not only to
control the quality of production but also to facilitate
the maintenance of installations (Byler et al., 1995;
Davis, 1990). Visual sensing is reported in the litera-
ture in connection with various tasks in submarine
robotics. For example, the analysis of image sequences,
acquired by a camera installed on a moving under-
water vehicle, has been employed for recursive depth
estimation (Santos and Sentiero, 1994). Image-recog-
nition techniques have been applied to solve simple
navigation and guidance problems, such as the recov-
ery of moored objects (Nguyen et al., 1994).
Furthermore, vision-based systems have been proposed
to solve the problem of relative motion estimation
between an ROV and an o�shore structure (Jin et al.,
1996; Vaganay and Jouvencel, 1996). The present work
proposes a robust real-time system for the detection
and tracking of underwater pipelines. The research is
framed within a more comprehensive project, carried
out by the Italian company Snamprogetti and aimed
at enhancing the level of automation in submarine
pipeline inspection (Conte et al., 1994). The ®nal goal
of the project is the development of an intelligent sys-
tem for ROV guidance and pipeline inspection. Global
architectural aspects of such a system have been dis-
cussed by Conte et al. (1994). Position control with
visual feedback has been considered in Conte et al.
(1996). Processing and understanding of video images
during pipeline inspection is a problem analysed by
Tascini et al. (1996), while an automatic data-analysis
system for reasoning about the pipeline status is taken
into account by Conte and Zanoli (1997). The image-
processing and detection system in the form presented
in Tascini et al. (1996) is well suited to applications

such as the one discussed in Conte and Zanoli (1997),
but its results are too inaccurate for guidance control.
The system described in this paper enhances the one
presented in Tascini et al. (1996) by exploiting the tem-
poral context in the image sequence to improve the
precision of the computation of the pipeline contours.
The disturbances on acquired images caused by motion
are also partially removed by cascading a Kalman ®l-
ter with the image-processing module. The system can
predict changes in the scene, and can direct compu-
tational resources to con®rm expectations, thus mak-
ing the image-processing module more robust, and
making feasible the ROV guidance control.

The paper is organised as follows. In the next sec-
tion, after a description of some important aspects of
image acquisition, the image-processing algorithm for
the extraction of pipeline contours from images is
brie¯y reviewed. The outline of the proposed intelli-
gent system, in particular the modeling of the environ-
ment to include a cascaded Kalman ®lter, is described
in Section 3, and experimental results and conclusions
are presented in Sections 4 and 5, respectively.

2. Pipeline contour detection in the image plane

Periodic submarine pipeline inspections are per-
formed making use of ROVs that carry CCD cameras
and other sensors. The success of a survey heavily
relies on image understanding. In particular, the detec-
tion of the pipe contours represents the ®rst and
necessary step in controlling the motion of the ROV
along the pipeline. For this purpose attention is
focused on top view images (see Fig. 1), which show
the pipeline lying on the sea bed and allow the pipe
contours to be modeled by two straight lines. Thus,

Fig. 1. Underwater images acquired by the top camera mounted on an ROV.
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the tracking of the underwater pipeline can be per-
formed directly on the image plane by keeping the
pipe in a nearly symmetrical position around image
centre. In this Section important aspects concerning
image acquisition and the image±processing algorithm
for the extraction of pipeline contours are analysed.

2.1. General aspects

In the following paragraphs, the relationships
among some important operating parameters (i.e.
sampling frequency, ROV speed, image overlap and
spatial resolution), the in¯uence of the perspective
factor and the e�ects of motion disturbances in the
image plane are described. The acquisition and digi-
tisation processes are performed using a Matrox
Image Series processing board (IM-LC Image Series
Manuals, 1990). The images are digitised with a
sampling frequency that guarantees an established
percentage of superimposition between two consecu-
tive frames. Image overlap is necessary to increase
the robustness of the pipeline contour detection, and
to reduce the possibility of failure in the detection of
anomalies like cracks in the sheathing, anodes, etc.
(Tascini et al., 1996). Once the maximum time
required by image-processing operations at each
frame is ®xed, a trade-o� is made between a re-
duction in the sampling frequency, an increase in the
overlap between two consecutive processed frames
and an increase in the ROV's speed. Assuming a con-
stant sampling frequency (1/T), the speed (Vi) of the
ROV may be increased thus reducing the overlap (Si)
between two consecutive sampled frames. This is
schematically depicted in Fig. 2, where to the lower
speed V2 corresponds to a greater overlap, S2. For
example, given a vertical image dimension of 450 pix-

els, a sampling frequency of 1 frame/s and an average
spatial resolution of 3 pixel/cm (see below), when the
ROV moves at a speed of 1 or 1.5 knots (corre-
sponding to 150 or 225 pixel/s in the image plane)
the overlap is, respectively, of two-thirds or one-half
of the image.

As mentioned above, the shape of a pipeline can be
modeled by a pair of parallel straight lines. However,
owing to the in¯uence of perspective, the pipeline con-
tours do not appear parallel in the top-view images.
Thus, the model assumed for the pipe consists of two
straight lines with small deviations from the upright
position, concurrent at the top, in nearly symmetrical
positions with respect to the image centre. The known
constant value of the pipeline diameter can be used to
compute the perspective distortion factor and the
spatial resolution at each row in the image. For
example, the 60 cm diameter of the pipes we have sur-
veyed here can vary, in the digitised images, from 300
pixels at the bottom to 70 pixels at the top. In particu-
lar, an average spatial resolution of 3 pixel/cm may be
estimated in the central raster where the pipe diameter
is about 180 pixels.

The model adopted for the pipeline enables a simple
modeling of the e�ect of motion disturbances. For
inspection purposes, the ROV should track the pipe-
line at a constant distance and moving at a steady
speed. However, actual vehicle motion di�ers from
these constraints causing slight variations in the pipe-
line's position, orientation and size in the image plane.
In particular, a sway linear displacement causes the
pipe's contours to sideslip in the image frame
[Fig. 3(c)], a heave motion produces a variation in the
pipe size in the image [Fig. 3(d)], while pitch and yaw
angular displacements a�ect the slopes of the two
straight contour lines [Fig. 3(f) and 3(g)]. Due to the
cylindrical shape of the pipe, a limited rolling angle
does not produce signi®cant distortions in the image
plane [Fig. 3(e)]. Variations in the forward speed
(surge motion), on the other hand, do not a�ect the
pipe contour's position in the image plane [Fig. 3(b)].
Given a constant sampling frequency, what is varying
in this case is the overlap between two consecutive
images (Fig. 2).

2.2. The image-processing algorithm

The algorithm processes video images where the
pipe is viewed from the top. The central part of the
images, with better lighting, is considered. To over-
come the intrinsic non-uniform lighting of underwater
images the image is partitioned into horizontal strips
(regions), which, being more local, are less a�ected by
this disturbance (mainly present in the vertical direc-
tion). A spatial ®ltering is performed as the ®rst elab-
oration. Since in the image plane the model of the pipeFig. 2. Relationship between image overlap and sampling frequency.
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consists of two almost vertical straight lines, a vertical
edge detection (Ballard and Brown, 1982) is performed
on each acquired image. To overcome the lack of con-
trast in underwater images, the solution adopted is
based on an analysis of the cumulative pro®les to
select candidate contour points in the edge maps. This
pro®le analysis enables noise ®ltering to be performed
by means of a dense estimation of each edge map. The
dense estimation signi®cantly reduces the compu-
tational complexity by looking only for clusters of ver-
tical edges, without being misdirected by high-intensity
but isolated edge points. The key elements of this den-
sity pro®le analysis can be observed in Fig. 4. Six adja-
cent horizontal strips with dimensions, in pixels, H
and W are selected, starting from the bottom of the
edge map. The horizontal pro®le of each region is
computed and stored in a vector of W elements, where
each i-element is the sum of the grey levels of the H
pixels on the i-column of the region. This procedure,
performed by the image-processing board as a primi-
tive function, gathers in the i-element the information
contained in H pixels, emphasising the peaks related to
the candidate contour points, as well as lowering the
casual (not correlated) noisy contributions. Mean
value and variance are then computed for each pro®le.
Fig. 4 shows, in the lower part, two of the six pro®les
of a selected image, i.e. the ones related to the third
and the ®fth horizontal strips, starting from the top.

The number reported on the left of the central line
drawn over the pro®les denotes the mean value, while
the distance of the two extreme lines is related to the
variance.

Three tracking procedures, which di�er in the way
they perform the dense pro®le analysis, have been
developed for the detection of the pipe: initialisation,
narrow and broad search. Each procedure has been
optimised for a speci®c assignment. In particular, the
initialisation procedure is used in the so-called hooking
phase, i.e. in the detection of the pipe when data com-
ing from elaborations on preceding images and relative
to the position of the pipe are not available. The
narrow-search (NS) procedure is the normal working
state. NS is the faster and most robust procedure of
the three, as it exploits the information coming from
previous image processing. Finally, the broad-search
(BS) procedure is used when the NS procedure fails,
mainly as a consequence of abrupt horizontal and ver-
tical oscillations during frame grabbing. In addition to
the speci®c performances of each working mode, good
throughput in general situations is guaranteed by the

Fig. 3. Variations in position, orientation and size of the pipeline in

the image plane. a) Reference image; (b)±(g) e�ects of motion dis-

turbances on the next digitised frame.

Fig. 4. Pro®le analysis in narrow-search mode.
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architecture of the algorithm, which provides for an
e�ective management of the three procedures.

One of the tracking procedures extracts the two sets
of six points that are candidates to represent, respect-
ively, the left and right contour of the pipe. In general,
the six points of each group, represented by black cir-
cles on the edge map of Fig. 4, are not aligned. For a
robust estimation of the corresponding straight lines a
robust line-®tting algorithm, implemented by the `med-
®t' procedure (Press et al., 1992), is applied. At each
iteration step k, the coe�cients a(k) and b(k) of a
straight line y = a + bx are determined by minimising
the squared distances among the six points and the
straight line itself. In addition to the coe�cients a and
b, the average absolute deviation (abdev), the number
of valid (not discarded) points and the coe�cient of
linear correlation (cor) are computed. In the example
reported in Fig. 4, the pro®le analysis has been per-
formed by the NS procedure. In particular, the right-
hand contour has been found with a higher corre-
lation, 0.99 vs 0.95, and a smaller average absolute de-
viation, 0.80 vs 2.66, than the left-hand one. The
letters on either side of each strip denote whether the
point selected in the strip has been discarded (F) or
not (T) by the `med®t' procedure.

At start-up, or after an unhooking signal, the initia-
lisation procedure is performed. This procedure selects
for each pro®le the ®rst relative maximum, from both
the left- and right-hand sides, exceeding the sum
`mean + variance'. The abscissas of these two selected
points are associated to the ordinate middle value of
the strip to which the pro®le refers. The `med®t' pro-
cedure computes the two straight lines that best ®t
these points. When the resulting straight-line corre-
lation coe�cients (cor1, cor2) are near to 1, and the
mean absolute deviations (abdev1, abdev2) are very low
(`good straight lines', GSL), the current frame is con-
sidered successfully analysed and the NS procedure is
applied to the next frame. Obviously, the presence of
other vertical edges to the right or left of the pipe will
make the initialisation procedure fail on such frames.
The real e�ect is a delay in the hooking phase, which
has to proceed on successive frames. Anyway, the op-
erator can shorten the delay by interactively furnishing
two straight lines that approximate the pipeline con-
tours.

In NS mode the algorithm uses two bands of toler-
ance around the positions of the last GSL, and the
analysis of each of the six pro®les is performed by
determining the relative maximums that lie within
these bands. In the example of Fig. 4, the tolerance
bands are localised within the two pairs of thick paral-
lel straight lines. In particular, in the pro®le corre-
sponding to the third horizontal strip, starting from
the top, no candidate point has been selected for the
right-hand contour. In fact, there is no relative maxi-

mum exceeding the pro®le mean value within the toler-
ance band. In absence of rapid variations of the pipe
position in the image plane, this module succeeds in
following the pipeline by updating the GSL whenever
the straight lines found ®t the candidate points well.

As ROV motion di�ers from a constant speed and
from a straight track, two consecutive frames might
not be strictly correlated, and the prediction could fail.
If the NS mode fails (i.e. it is not able to determine a
su�cient number of valid points within the bands of
tolerance, or the straight lines obtained do not satisfy
some ®xed constraints), the algorithm commutes to BS
mode. In BS mode the algorithm considers the peaks
of each pro®le and assigns a weight to each peak on
the basis of its width and height. Using these weights,
the algorithm looks for pairs of peaks, which will
become candidate contour points, using the infor-
mation on the apparent diameter of the pipe in the
frame where the current GSL were found. Again, the
straight-line coe�cients obtained are analysed and,
eventually after the updating of the GSL, the algor-
ithm either returns to NS mode or, if failures in the
pipe detection repeat for a ®xed number of consecutive
frames, signals an unhooking condition. The output of
the image-processing algorithm consists of the two
pairs of straight-line parameters.

3. The intelligent guidance and inspection system

In the Introduction it was mentioned that this work
is part of a research project aimed at the development
of an intelligent guidance and inspection system. In
such a system, preliminary detection of the pipe is
required, both for inspection and for guidance pur-
poses. In the ®rst case, i.e. in checking the status of
the pipeline looking for the presence of anomalies,
slight errors in the computed contour lines do not in-
¯uence the inspection process. In contrast, even rela-
tively small errors in the position and orientation of
the pipe contours in the image plane and, more
seriously, the many variations from one frame to the
next, negatively a�ect the ROV guidance control. In
fact, a lack of precision in the position measurement
leads to continuous action by the motion controller,
and a consequent overload for the thrusters.

The image-processing algorithm described in the pre-
vious section may provide inaccurate results, or even
fail, as a consequence of two main factors: bad image
quality and camera motion. The lack of contrast due
to scarce illumination and the presence of suspended
particles are typical problems in underwater imaging.
The presence of marine growth on the pipe, sea bed
settlements, auxiliary structural elements, breaks in the
external sheathing of the pipe and alien objects near
the pipe are possible causes of badly detectable pipe
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contours. In addition, as a result of ROV manoeuvres

and of the consequent camera motion, the position

and orientation of the pipeline in the image plane may

vary greatly with respect to the previous frame. Even

if the three search modes for the contour extraction

procedure operate correctly, independently of the rela-

tive position of the pipe to the image, noisy values of

the two parameters a(k) and b(k), characterising each

contour line, may result. This occurs mainly as a con-

sequence of misplaced tolerance bands (sway and yaw

motion), or a di�erent diameter size (heave motion).

Thus, the insu�cient accuracy of the algorithm for

pipeline contour detection in the image plane described

in the previous section has led to the development of

an enhanced vision system, capable of supporting the

guidance of an ROV in real time. In particular, an

active vision system is proposed, to predict changes in

the scene and to direct computational resources to

con®rm expectations, by exploiting the temporal con-

text in the image sequence and by dynamically adapt-

ing the processing mode. The ROV guidance task

relies on the reconstruction of the relative position of

the ROV (or equivalently of the camera, assumed ®xed

to it) with respect to the pipeline. The task of the

active vision system may be formulated directly in

terms of the image plane, as keeping the pipe in a

nearly symmetrical position around the image centre.

In the context of active perception (Aloimonos et

al., 1987; Bajcsy, 1988) arti®cial intelligence techniques

have been applied to machine-vision problems for the

explicit representation of goals and goal-directed per-

ceptual processing. Such vision systems require the

modeling of the observer and the world in a synergistic

way, and an analysis of the interrelationship between

action and perception. In particular, the system

described here uses a framework that permits the en-

vironment to be modeled in terms of descriptions that

are qualitatively di�erent. An elementary model of the

world (pipeline) or, better, of its representation in the

image plane, is adopted. This enables a simple model-

ing of the e�ect of the motion of the observer (camera)

on the representation of the world. Finally, world evol-

ution is represented by means of a discrete-time space-

state representation which, by including the model of

known motion e�ects, is able to predict future world

changes. In the following section, a Kalman ®ltering

technique (Jazwinski, 1970; Ledermann, 1980), devel-

oped to reduce the e�ect of noise on the estimation of

these parameters, is described. In addition, the

Kalman ®lter (KF) computes a prediction of the two

parameter values in the following sampled (k+ 1)-th

image. The predictive capabilities of the ®lter speed up

the image-processing algorithm and make it more

robust.

3.1. Environment modeling

A discrete-time state-space representation of coe�-

cient evolution, frame by frame, is derived in this sec-

tion. In the discussion that follows, a camera inertial

with the ROV is assumed. In addition, the camera and

ROV reference systems are made coincident. Thus,

each motion deviation perceived by the sensors, and

each motion control instruction given by the operator

manoeuvring the ROV, refers both to the vehicle and

to the camera. The assumptions made, however, do

not restrict the validity of the results. A simple refer-

ence transformation would apply if the two reference

systems did not coincide. Furthermore, when indepen-

dent camera motions are allowed, simple additional

computations are needed to account for the relative

motion of the camera and the ROV.

Assuming X(k) = [a(k), b(k)] as the state vector, the

system equation that describes the system's dynamic

behaviour is as follows:

X�k�1��F�k�X�k��W�k��D�k�U�k� �1�
where F is the transition matrix, which relates the

values of coe�cients a and b at time k to time k+ 1.

For inspection purposes, the ROV has to follow a

straight path, constantly tracking the pipeline. Thus, in

normal conditions, the position of pipeline contours in

the image plane is not expected to vary from one

frame to the next. The transition matrix F thereby

takes on a particularly simple form, i.e. F is equal to

the identity matrix. The vector U(k) represents an ex-

ogenous input, which accounts for deviation of the ve-

hicle track from a straight path. More precisely,

known perturbations of the lateral position (Dy) of the
vehicle, that is, of the camera, with respect to the

centre line of the pipe, and/or perturbations of the

orientation (Dj) in the horizontal plane, are con-

sidered. Roll and pitch angular perturbations are in

general limited, and their e�ects have been modeled by

the system noise vector W(k). Heave motion is

assumed to be limited as well. As a matter of fact, this

assumption is not satis®ed during the entire survey

process, but since variations in the vehicle depth are,

in general, single events, it can be piecewise veri®ed. A

future enhancement of the system will include these

motions, taken from readings of the altimeter sensor,

in the U vector of known system perturbations.

Under the hypotheses that the ROV motion occurs

on planes parallel to the plane in which the pipe lies,

and that the depth Zt of the vehicle, i.e. of the camera,

is known and constant (angles of pitch and roll negli-

gible), the equations that correlate di�erent camera

positions with straight-line parameters a and b in the

image plane are (Conte et al., 1996):
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a � ÿl�B sin a� A sinj cos a�
�B cos a� A sinj sin a� �2�

b � A cosj
�B cos a� A sinj sin a� �3�

where the angle a is the inclination of the camera with

respect to the normal axis of the pipe (supposed known

and constant), l represents the camera's focal length,

and the j angle is the orientation of a reference frame

centred on the camera with respect to that centred on

the pipe. Parameters A and B in Eqs. (2) and (3)

depend on the pipe radius R, on the lateral displace-

ment Yt and on the depth Zt. Their expressions are:

A � Zt ÿ Kj
KjZt � Yt

K 2
j � 1

�4�

B � Yt ÿ KjZt � Yt

K 2
j � 1

�5�

where Kj is equal to:

Kj � ÿYtZt2R
���������������������������������
Y 2

t � �Z 2
t ÿ R2�p

Z 2
t ÿ R2

: �6�

Hence, the matrix D, which characterises the parameter

variation with respect to known (from navigation sen-

sors) perturbations Dy and Dj, has the form:

D�k� �
@a

@j
@a

@y

@b

@j
@b

@y

26664
37775

â�k�;b̂�k�

: �7�

To complete the state-space representation, the output

of the image-processing module (IP module in Fig. 5)

needs to be related to the state variable. This is done

by the following observation equation:

Z�k� � H�k�X�k� � V�k� �8�
where the observation matrix H is simply constituted

of unit elements, and V(k) represents the measurement
noise.

Given the state-space representation of Eqs. (1) and
(8), a KF that recursively estimates the state of the sys-
tem is derived. System noise W(k), due to unknown
camera motion, and observation noise V(k), resulting
from the contour-extraction procedure, are modeled as
Gaussian and white, mutually uncorrelated and inde-
pendent from time to time. Under these hypotheses,
the KF is optimal in the sense of the minimisation of
the mean square error. For the state estimate at time
k, denoted as XÃ (kvk), the following expression holds:

X̂�kjk� � X̂�kjkÿ 1� � K�k��Z�k� ÿH�k�X̂�kjkÿ 1��
�9�

where XÃ (kvkÿ 1) denotes the prediction of the state
value at time k, based on the information gathered up
to time kÿ 1, and K(k) is the Kalman Gain matrix
(Ledermann, 1980).

Predictions are given by:

X̂�k� 1jk� � F�k�X̂�kjk� �D�k�U�k�: �10�

3.2. The system architecture

The ®ltering process described in the previous sec-
tion is separately applied to each contour line. At each
step k, Eqs. (9) and (10) return both an estimation and
a prediction of the two parameters a and b characteris-
ing each contour line. The overall system architecture
is shown in Fig. 5. The KF module receives as input
the pairs (a, b) of contour-line parameters resulting
from the image-processing module (see Section 2.2).
The navigation data module accounts for known per-
turbations included in the system by the U(k) vector
[Eq. (1)].

Predicted values aÃk + 1vk,bÃk + 1vk are fed back to the
image-processing module, while ®ltered data aÃkvk,bÃkvk

constitute the ®nal output of the system. These data
are displayed on the screen monitor in the form of two
straight lines, superimposed on the currently analysed
image [Fig. 6(c), 6(f)].

The feedback action performed by the KF enables a
reduction and/or a better localisation of the tolerance
bands, thus improving the performance in the search
for candidate contour points. In fact, the better localis-
ation of the tolerance bands is a direct consequence of
the availability of noise-free data which, furthermore,
combine the e�ects of known disturbances. Indirectly,
this implies a longer retention of the system in the NS
mode, even with a reduced tolerance band. In ad-
dition, the contour±detection procedure takes advan-
tage of the estimated parameter values by reducing the
number of failures, and the consequent calls to the
three procedures.Fig. 5. Architecture of the pipeline-detection module.
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The whole system, consisting of the KF cascaded
with the image processing module, turns out to be
computationally quite convenient since the number of
implemented ®lters is limited. More e�ective noise re-
duction could in principle be obtained by ®ltering the

information at an earlier stage, namely when points
belonging to the pipe contour are selected. This, how-
ever, would imply the use of a greater number of ®l-
ters. Another advantage of this structure is that it
gains in ¯exibility by separating the action of the ®lter

Fig. 6. Results of dense pro®le analysis and contour straight line estimation: (a)±(c) without Kalman ®lter; (d)±(f) with Kalman ®lter.
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from the contour-extraction process. The contour-
extraction procedure could be modi®ed in accordance
with the available hardware and the characteristics of
the acquisition process without in¯uencing, in this sol-
ution, the ®ltering stage.

The output of the system consists of the ®nal restitu-
tion of the two-straight line equations, and their visu-
alisation over the analysed image. Moreover, the active
vision system has been developed with the respect of
all the constraints imposed by the guidance control
module. Thus if the feedback action represented by a
dashed line in Fig. 5 were made operative, visual gui-
dance of the ROV could be realised.

4. Results

The e�ects of the introduction of the KF module in
the system are demonstrated in this section. In particu-
lar, the candidate contour points selected by the pro-
®le-analysis procedure, and the two resulting pairs of
contour straight lines, with or without the KF, are
compared. The e�ectiveness of the cascaded ®lter on
sequences of 1000 frames is also discussed.

The basic processing of the contour-detection pro-
cedure, i.e. dense pro®le analysis and contour straight-
line estimation, can be traced in Fig. 6. The edge map
resulting from the spatial ®ltering of the image in
Fig. 1(b) is shown in the background of Fig. 6(a) and
6(d). Even if the same edge map is processed by the
contour-detection procedure, the resulting black points
and straight lines are di�erent in the cases where
Kalman ®ltering is applied [Fig. 6(d)], or not
[Fig. 6(a)]. In fact, in the two cases the pairs of points
selected for each pro®le may even be di�erent as a
consequence of the bands of tolerance being centred
on di�erent positions, that is, based either on the most
recently found GSL, or on the straight lines predicted
by the KF. Moreover, di�erent tracking procedures
and, consequently, bands of tolerance of di�erent
width, may be activated, depending on whether or not
the ®ltering process is applied. The horizontal dense
pro®les relative to each strip are depicted in Fig. 6(b)
and 6(e), where the two black circles in each pro®le
correspond to the pair of selected points. In particular,
the pro®les of Fig. 6(b) were analysed in BS mode,
while those of Fig. 6(e) were done in NS mode. In the
pro®les relative to strips 1, 2, 3 and 6 the di�erent
selections of the left point should be pointed out.
Consequently, the application of the `med®t' algorithm
gives di�erent contour lines, with di�erent linear corre-
lation coe�cients. As can also be visually veri®ed by
the better line ®tting in Fig. 6(d), the correlation coe�-
cient is higher when the ®lter is active. Finally, in
Fig. 6(c) and 6(f) the resulting straight lines are super-
imposed on the original grey-level image. It should be

pointed out that even if the result in Fig. 6(c) is clearly
wrong, the previous image-processing algorithm could
nevertheless not discard it, being physically possible,
for example as a consequence of a combined yaw and
heave motion. In contrast, the pipeline detection sys-
tem including the KF is more reliable because it does
not require additional veri®cation, and can justify
abrupt parameter variations only if they have been
predicted. In the case of Fig. 6 there were no yaw or
heave motions, and the better performance of the sys-
tem with the embedded KF is due to the di�erent
tracking procedure used to analyse the frame. In fact,
when contours are not well de®ned, like the left-hand
contour in Fig. 6, many peaks of similar weight may
result within the tolerance bands, particularly in BS
mode where wider bands are taken. In contrast, the
well-de®ned right contour in Fig. 6 has no competi-
tors, so even a wider band does not in¯uence the can-
didate-point selection. As the application of the KF
allows the frame under examination to be processed in
NS mode, the selection of left-hand points may be per-
formed by using a more tightly focused search, by
which noisy peaks are excluded even if they have a
higher weight.

The e�ect of a sway motion between successive
frames can be traced in Fig. 7, where a sequence of
four frames and the relative processing results are
shown. In consequence of the previous elaborations,
frame (a) is processed in BS mode when the KF is not
applied, as can be visually noticed by the absence of
the narrow tolerance bands (central column in Fig. 7).

In any case, the contour-detection procedure gives
the same results as when using the KF (right-hand col-
umn in Fig. 7). In addition, GSL are found so that
frame (b) can be processed in NS mode.

The presence of noisy peaks within the tolerance
bands leads to the selection of candidate points that
result in acceptable straight lines (cor1 = 0.95,
cor2 = 0.97), but do not account for the left-shift of
the pipeline in the image plane as consequence of the
sway motion. This does not occur when using the KF,
where GSL are obtained (cor1 = 0.99, cor2 = 0.98).
The further left-sway motion in frame (c) does not
interrupt the NS mode when the KF is active, but it
causes a failure in the other case, thus requiring a call
to the BS procedure. Again, owing to the availability
of good information about the pipe diameter, the BS
procedure gives the same results as when using the
KF. In addition to the double processing on the same
frame, the switch to BS mode produces a further inac-
curacy in the extraction of the left-hand straight line
of the succeeding frame (d) (cor1 = 0.98), with respect
to the corresponding one, obtained using the KF
(cor1 = 0.99). Summing up, the four-frame sequence
required only 4 NS procedure calls when using the KF
vs 7 (=4 NS + 3 BS) tracking procedure calls in the
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other case. In addition, less-accurate straight lines were
found without the KF.

To test the performance of this active vision system
using the only available pre-recorded video image
sequences, it was assumed that the operator controlling
the camera behaves as an active vision system, at least
in keeping the pipe within each frame. Fortunately,

this is the case in all the pre-recorded image sequences.
The e�ectiveness of the cascaded ®lter was tested in
the laboratory on video-recorded sequences. 1000
frames for each sequence were digitised at a constant
sampling frequency and stored, in order to compare
the performance of the system when the ®lter is
applied and when it is not. Synchronised motion data

Fig. 7. Processing of a frame sequence. Results of pipeline contour extraction for the image on the left with (right column) or without (central

column) the Kalman ®lter.
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were extracted from available navigation data. A ®rst
advantage of the ®lter application is the reduction of
the overall processing time, as a consequence of both
the lower number of procedure calls (e.g. 1252 vs 1550
in the sequence analysed in Table 1) and the greater
percentage of calls to the NS procedure, which is the
fastest mode. In fact, these two factors greatly com-
pensate for the small overload of the KF. A second
important advantage is the increased number of suc-
cessfully processed frames due to the prediction of the
®lter, which allows for a better focused search. In the
example examined in Table 1 the successfully pro-
cessed frames were 93.8% vs 88.3% in the absence of
the ®lter. An average increment of about 5% was also
obtained for the other sequences.

The system, implemented on a PC equipped with an
Intel-Pentium CPU and a Matrox Image-LC image
processor, is able to detect and track the pipeline,
working in real time at a maximum frame rate of
about 7.4 frame/s, using images with a vertical dimen-
sion of 450 pixels. Thus, a simulated ROV speed of
5.5 kn can be reached, with an image overlap of
almost 3/4, or an ROV speed of 7.4 kn if 2/3 image
overlap is acceptable. This is a speed that is much
higher than that normally reached in inspection mis-
sions; consequently, by adopting a lower speed, the
extra processing time may be used for solving other
tasks involved with pipeline inspection, such as the
detection of cracks in the sheathing of the pipe.

5. Conclusions

The aim of this work was to contribute to showing
the feasibility of an automatic real-time vision system
for supporting human operators in pipeline inspection
and ROV guidance. The proposed intelligent system
uses very simple geometric models (straight lines) for
reducing the computational cost, and for obtaining
fast and simple computational procedures. An image-
processing algorithm, exploiting the information com-
ing from the processing of the previous frames to
extract the parameters characterising the pipeline, has
already provided good performance (Tascini et al.,
1996). The overall robustness of this algorithm has

been increased in the integrated vision system pre-
sented in this paper. The e�ects of motion on the
image-acquisition process, that is, the consequent dis-
placements of the straight lines in the image plane,
have been included in the equations of a KF cascaded
with the image-processing module. The feedback
action of the cascaded KF improves the reliability of
predictions, and provides a more accurate localisation
of the ROV relative to the underwater pipeline. Thus,
the active vision system can better support the gui-
dance of the ROV, so as to keep the pipe in a nearly
symmetrical position around the image centre.
Performance evaluation, accomplished by laboratory
simulations using navigation data and images acquired
during underwater surveys, has proved the improve-
ments obtained over a previous system.
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