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Global offshore wind turbine 
dataset
Ting Zhang   1, Bo Tian   1 ✉, Dhritiraj Sengupta1, Lei Zhang2 & Yali Si   3

Offshore wind farms are widely adopted by coastal countries to obtain clean and green energy; their 
environmental impact has gained an increasing amount of attention. Although offshore wind farm 
datasets are commercially available via energy industries, records of the exact spatial distribution of 
individual wind turbines and their construction trajectories are rather incomplete, especially at the 
global level. Here, we construct a global remote sensing-based offshore wind turbine (OWT) database 
derived from Sentinel-1 synthetic aperture radar (SAR) time-series images from 2015 to 2019. We 
developed a percentile-based yearly SAR image collection reduction and autoadaptive threshold 
algorithm in the Google Earth Engine platform to identify the spatiotemporal distribution of global 
OWTs. By 2019, 6,924 wind turbines were constructed in 14 coastal nations. An algorithm performance 
analysis and validation were performed, and the extraction accuracies exceeded 99% using an 
independent validation dataset. This dataset could further our understanding of the environmental 
impact of OWTs and support effective marine spatial planning for sustainable development.

Background & Summary
Offshore wind farms, which comprise a cluster, or array, of wind turbines, is widely accepted as renewable sources 
of energy and effective ways to reduce greenhouse gas emissions and promote a net-zero carbon economy. In 
recent years, 14 countries around the world have installed offshore wind farms on their coastal frontier. To date, 
although offshore wind farms cover only approximately 8% of the global renewable energy market and approx-
imately 3.5% of the global installed capacity, these numbers will increase substantially in the next few years1,2. 
Using the clean energy generated by offshore wind farms can help to achieve Intergovernmental Panel on Climate 
Change (IPCC) targets and meet the Sustainable Development Goals (SDGs) by regulating emissions and pro-
moting developments in the renewable energy sector (Goal 13), hence ensuring access to affordable, reliable, 
sustainable and modern energy for all (Goal 7).

Nevertheless, the potential environmental impacts of offshore wind farms, which are currently still under 
debate3,4, should be further investigated. To reduce the costs of construction and maintenance, most OWTs are 
located in close proximity to the coast. This area is very sensitive due to its influence on marine mammals, phy-
toplankton5, birds6,7, fish8, and invertebrates9,10, as well as the landscapes of local communities11. The spatial dis-
tribution and construction trajectory of wind turbines are prerequisites for environmental impact assessments to 
guide OWT spatial planning. This assessment directly involves the interest of developers, operators, and owners 
to balance income from renewable energy with ecological protection, thereby ensuring that OWTs are truly eco-
logically friendly and sustainable to meet the growing demand of energy.

To the best of our knowledge, there are 35 regional, national or international renewable energy databases 
that include OWT data12–16, including 11 international databases and 24 regional/national databases. The inter-
national offshore wind farm datasets, such as the 4 C Offshore Wind Database17 or The Wind Power18, contain 
project details for more offshore wind projects than other databases but are partly open and need to be paid when 
collecting high resolution information about these wind farm locations. Although open international offshore 
wind farm datasets, such as the global datasets of wind and solar farms (GBWSFs) built by Dunnett et al14., 
can be freely accessed, there are obvious omissions of turbine numbers and recording errors of wind turbine 
locations. For example, this dataset omits 70% (of the 50 wind farms, 35 are missing) offshore wind farm infor-
mation (i.e., the wind turbine number and specific spatial location information) when compared with the 4 C 
Offshore Wind Database17, United States Geological Survey (USGS) Wind Turbine Dataset (USWTD)15, United 
Kingdom Renewable Energy Planning Database (UK REPD)16, European Marine Observation and Data Network 
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(EMODnet) wind farm database19 and Open Power System Data (OPSD) renewable power plant database13 (refer 
to details in Online-only Table 1). Among these regional/national databases, the USWTD and OPSD provide the 
exact OWTs location. Although they do not have global coverage and updates of the latest installations, part of 
these data, such as the USA (USWTD) and Germany (OPSD) wind farms data, have been validated and can be 
referenced. Other databases, such as EMODnet, provide the number of turbines and spatial boundaries or the 
centroids of wind farms but lack information on their precise locations, while the UKREPD also suffers from 
inaccuracy of location, and only has an approximate centroid for each offshore wind farm. Therefore, to date, 
no global OWT dataset with accurate geographic turbine location information is available in the public domain.

Satellite imagery is an important source of information for the identification of OWTs. However, widely uti-
lized passive optical images (i.e., Landsat 30-m resolution images) are often affected by clouds and mist over 
coastal zones, which makes it difficult to map wind turbines20. In contrast, SAR data from the Sentinel-1A/B 
satellite, which was launched by the European Space Agency in 2014, can collect information regardless of cloud 
cover, day or night and can be used to identify OWT objects, in which the presence of dihedral structures results 
in a drastic increase in backscattering21.

In this study, we build a global OWT dataset by applying a percentile-based yearly SAR image collection reduc-
tion and autoadaptive threshold algorithm on the Google Earth Engine (GEE) platform using more than 737,100 
Sentinel-1 SAR images. A method performance analysis, validation assessment and accuracy analysis were per-
formed using Google high-resolution imagery, multisource optical and radar satellite image data (i.e., Landsat 
8-OLI, Sentinel 2-MSI, Sentinel 1 data), ground unmanned real-time kinematic (RTK) drone investigation and 
other datasets (i.e., 4 C Offshore, USWTD, UK REPD, OPSD, EMODnet). Figure 1 depicts the data acquisition 
and processing steps using a flow diagram. Compared to the offshore wind farm dataset extracted or validated 
by aerial imagery, the wind turbine number obtained by our global OWF dataset will not be underestimated 
since available Sentinel 1 data do not lag actual installations by several months. Therefore, this dataset can also be 
used to analyse regional variations in OWFs, prioritize OWF planning, and assess their potential environmental 
impacts. The global OWF dataset will be updated annually and is currently free to download via Figshare22.

Methods
The global OWT dataset was developed by using geospatial technology and advanced mathematical operations 
on the GEE platform using earth observation Sentinel 1 SAR time-series imagery. These operations were per-
formed to map the spatial distribution of individual OWT in the global coastal zone.

Spatial extent.  The spatial extent of OWTs covers the global offshore area in each exclusive economic zone 
(EEZ)23. The EEZ database provides the maritime boundary prescribed by the 1982 United Nations Convention 
on the Law of the Sea over which a sovereign state has special rights regarding the exploration and use of marine 
resources. Based on this database, the extraction of OWTs was organized into 0.5° × 0.5° vector grids for the 
global coast. The main reason for this step was to reduce the computational memory of remote servers on the 
GEE platform as well as to select a systematic geographic extent for this study.

SAR image processing.  SAR images were collected and processed on the GEE platform. Imagery in the 
GEE ‘COPERNICUS/S1_GRD’ Sentinel-1 image collection consists of Level-1 Ground Range Detected (GRD) 
scenes, which process the backscatter coefficient (σ°) in decibels (dB). Each scene in GEE was preprocessed with 
the Sentinel-1 Toolbox using the following steps: (1) application of an orbit file that updates the orbit metadata 
with a restituted orbit file; (2) removal of low-intensity GRD border noise and invalid data on scene edges; (3) 
thermal noise removal, which eliminates additive noise in subswaths to help reduce discontinuities between sub-
swaths for scenes in multiswath acquisition modes; (4) radiometric calibration, which computes the backscatter 
intensity using the sensor calibration parameters in the GRD metadata; and (5) terrain correction using Shuttle 
Radar Topography Mission (SRTM) or Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) digital elevation model (DEM) products. This procedure basically converts data from ground range 
geometry. The concluding terrain-corrected figures are transformed to decibels through log scaling (10*log10(x)).

In this study, Sentinel-1 imagery from interferometric wide (IW) swath mode and in vertical-vertical (VV) 
polarization is selected for the analyses. This configuration was selected because it is more effective in detecting 
offshore emissions, as shown in Fig. 2, than other configurations. We selected three regions of interest for three 
types of objects in the offshore areas of the East China Sea and the North Sea, including tidal flats, open water and 
OWTs. The histogram distribution of the digital number (DN) values in the near-infrared band of the Sentinel-2 
MultiSpectral Instrument (MSI) and the backscattering coefficients in the Sentinel-1 VV and vertical-horizontal 
(VH) polarization bands of these regions are compared. The results showed that the backscattering coefficients of 
wind turbines in the Sentinel 1 VV band have higher separability when distinguishing them from open water and 
tidal flats. From Fig. 2, it is obvious that if the maximum backscatter coefficient is less than 0 dB in a particular 
grid, then this grid does not contain a wind farm. Therefore, we can directly exclude some grids from the analysis 
according to the following criterion in Eq. (1):

=





≤retain or not if BC dB
include otherwise

Grid( ) exclude 0 ( )

(1)

max

OWTs extraction.  OWTs extraction was performed systematically by applying five steps: (1) removal of 
floating or temporarily mobile objects, (2) extraction of high-backscatter objects, (3) morphological operations, 
(4) removal of large and very small objects, and (5) postprocessing of data records. A detailed explanation of each 
segment is as follows (Fig. 3):
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1) Removal of floating or temporarily mobile objects
Taking advantage of the Sentinel-1 time-series data, advanced statistical analysis was applied to the composite 
images. After preprocessing the Sentinel-1 data and storing them as an ‘ImageCollection’, we filtered them by a 
date range and spatial boundary to obtain an annual composite of ‘VV’ images for each selected grid. The per-
centile and mean values of a series are commonly used in statistical measures that we applied to identify floating 
or temporarily mobile objects based on the frequency of appearance in the image. We then removed floating or 
temporarily mobile objects, such as ships and vessels, by comparing their mobility with stable objects, such as 
OWTs. The percentile and interval mean values between 80–100% were applied to the features in the series using 
the ‘intervalMean()’ reduction method on the GEE platform.

2) Extraction of high-backscatter objects
Selection of an optimal threshold value is the most important step in object extraction. However, because of 
the variability in global ocean water on the SAR backscatter coefficient, it is necessary to apply an autoadaptive 
threshold to different ocean regions. The histogram for a grid without wind turbines generally has one peak in 
the lower values (water body) and no peak in the higher values (OWTs usually have values greater than 0 dB), 
which can be reflected from the median of the lowest and highest values. We used a grid-based backscatter filter 
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Fig. 1  Flow diagram showing the data acquisition and processing procedures in generating the global offshore 
wind turbine (OWT) dataset.

https://doi.org/10.1038/s41597-021-00982-z


4Scientific Data |           (2021) 8:191  | https://doi.org/10.1038/s41597-021-00982-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

with an automatic adaptive threshold (T) to distinguish high-backscatter objects from the different ocean water 
backgrounds having low backscatter values. The threshold is defined as the median of the lowest and highest val-
ues, termed here the ‘half min-max threshold’. We then obtained a binary image based on the comparison of the 
backscatter coefficient (Eq. (2)) with T (Eq. (3)), and the equation is defined as follows:

=





≥if BC T
otherwise

Binary decision 1
0 (2)

BC BCT
2 (3)

max min=
+

where T is the dynamic threshold, BC is the backscatter coefficient of each pixel in the grid, BCmax is the backscat-
ter maximum, and BCmin denotes the minimum value in the grid.

3) Morphological operation
Because the binary images produced by the previous step are distorted by noise and textures, a morphological 
analysis was employed to enhance the high-backscatter image objects. Morphological processing methods for 
erosion and dilation can correct these distortions by accounting for the form and structure of the image. Both 
erosion and dilation processing techniques are a collection of nonlinear operations related to the shape or mor-
phology of features in an image. The value of the output pixel for dilation is the maximum value of all the pixels 
in the neighbourhood, which makes objects more visible and fills in small holes in the objects. The value of the 
output pixel for erosion is the minimum value of all the pixels in the neighbourhood, which removes islands and 
small objects so that only substantive objects remain.
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Fig. 2  Extractability analysis of OWTs in the East China Sea (top panel) and North Sea (bottom panel). Each 
panel consists of a Sentinel-2 MSI true-colour image (a and d) and a Sentinel-1 image in vertical-vertical (VV, b 
and e) and vertical-horizontal (VH, c and f) polarization modes. Individual histograms show the digital number 
(DN) and backscatter values for the regions of interest highlighted in green, blue and red, which correspond to 
wind turbines, open water and tidal mud/sand flats, respectively.
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4) Removal of large and minute objects
Knowing the number of pixels in an object can be helpful for masking irrelevant objects of different sizes. An 
area-size-range filter algorithm (20 < number of pixels < 200) was used to eliminate large and very small objects 
such as islands, oil platforms and small noise objects. In the GEE platform, the ‘connectedPixelCount()’ method 
was used to compute the number of pixels in each object.

5) Post-processing of data records
We converted the raster to the vector data type (using the ‘image.reduceToVectors()’ method in the GEE platform) 
and obtained the latitude and longitude coordinates for the individual wind turbines. As OWTs are constructed, 
the backscatter coefficient increases rapidly, and hence, the information about the installation dates of the wind 
turbine foundations can also be extracted from yearly ‘VV’ images. Figure 4 shows an example of the changes in 
a wind farm constructed in Belgium in different years, and the backscatter coefficient increases when wind tur-
bines are installed. The identification of drastic annual change points was performed by the Mann-Kendall (MK) 
test24,25 over each wind turbine. Individual wind turbines were taken as the central point to make a buffer area of 
200 m, which was used to extract the maximum backscatter coefficient as the input parameter of the MK test. This 
step was performed to avoid the mismatch of the extracted wind turbine central position due to image shifts over 
time. The MK test is a nonparametric statistical test for which UFk and UBk are two important time statistics; here, 
the statistical sequence UFk is the result of the backscatter coefficient value from January 2015 to December 2019, 
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Fig. 3  Illustration of the steps used in OWTs extraction. (a) The East China Sea; (b) The North Sea. (c) and I: 
Original SAR images, (d and j) remove mobile objects, (e and k) extract high-backscatter objects, (f and l) apply 
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and UBk is the inverse value (from December 2019 to January 2015). When an intersection occurs between UFk 
and UBk, the value falls within the 95% confidence interval (U0.05 = ±1.96), and then the corresponding times of 
the intersection are considered the installation dates of the wind turbine foundations. This operation was carried 
out in MATLAB.

Data Records
This dataset provides geocoded information about global OWTs from 2015–2019; it identified 6,924 wind tur-
bines that comprise more than 10 nations. Data are available at 10 m spatial resolution, providing an explicit 
dataset for planning, monitoring and managing marine space. Global OWT dataset are publicly available for 
download from Figshare22 and can be visualized at https://arcg.is/0zu09X using an active ArcGIS online account.

The global OWT dataset is referenced to the WGS84 datum and stored in Shapefile (.shp) format. Each record 
consists of seven attributes: centroid latitude (centr_lat), centroid longitude (centr_lon), continent, country, 
sea area (sea_area), appearance year (occ_year) and month (occ_month). Description of these are tabulated in 
Table 1.

Technical Validation
Method performance assessment.  OWTs extraction is subject to uncertainties that arise from various 
background factors in the analysis grid, including tidal flats, turbidity of water bodies, and floating or temporarily 
mobile objects. Thus, to assess whether the extraction method has a high performance and whether the OWTs 
result outputted from GEE has a strong stability, we perform a sensitivity analysis of the wind turbine extraction 
against increasing SAR images to reveal that the amount of SAR image data that we utilized is enough to ensure 
the stability of the extracted results with various background factors. By calculating the precision (P) (Eq. (4)), 
which refers to the extracted real wind turbine number relative to the total extracted wind turbine number, recall 
(R) (Eq. (5)), which refers to the extracted real wind turbine number relative to the total real wind turbine num-
ber, and the comprehensive evaluation index (C) (Eq. (6)), which integrates the P and R value, we quantitatively 
evaluate the robustness of the extraction method.
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Using 1 to 40 images in the 2019 SAR image collection, Fig. 5 displays two examples of the extracted accu-
racy change for turbid water bodies and tidal flat backgrounds along the Shanghai coast (Shanghai Lingang 
Demonstration Wind Farm) and the Jiangsu coast (Jiangsu Rudong Offshore Intertidal Demonstration Wind 
Farm), China. The results reveal that the comprehensive evaluation index of the extracted wind turbines increased 
from 21.88% to 99.10% when 15 images were applied to the Shanghai Lingang Demonstration Wind Farm 
and increased from 83.78% to 99.04% when 20 images were applied to the Jiangsu Rudong Offshore Intertidal 
Demonstration Wind Farm. Since the Sentinel-1 satellite has a 12-day or 6-day revisit cycle, our analysis results 
indicate that using an annual average backscattering coefficient (covering more than 20 images) for OWTs extrac-
tion can ensure an extraction accuracy greater than 99% regardless of the background.

TP
TP FP

P
(4)

=
+

TP
TP FN

R
(5)

=
+

No. Attributes Data type Description

1 centr_lat Float Latitude of the wind turbine centroid

2 centr_lon Float Longitude of the wind turbine centroid

3 continent String Continent on which the wind turbine is located

4 country String Country in which wind turbines is located

5 sea_area String Sea area in which the wind turbine is located

6 occ_year Integer Year in which the wind turbine foundations were installed (yyyy)

7 occ_month Integer Month in which the wind turbine foundations were installed (mm)

Table 1.  List of attributes and their descriptions in the global OWT dataset.
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Fig. 5  Sensitivity analysis of the comprehensive evaluation index on wind turbine extraction against increasing 
the SAR images at (a) Shanghai Lingang Demonstration Wind Farm and (b) Jiangsu Rudong Offshore 
Intertidal Demonstration Wind Farm, China. The wind turbine objects accurately identified by our method 
are represented by a solid green point, and the falsely identified wind turbine objects are represented by a solid 
orange point.
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=
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+
P R

P R
C 2

(6)

where TP is the number of accurately identified wind turbine objects, FP is the number of falsely identified wind 
turbine objects, and FN is the omission number of wind turbine objects.

Accuracy assessment.  Validation of the global dataset was conducted using an independent accuracy 
assessment approach. Here, we generated a validation set that consisted of 50 random offshore wind farms, cov-
ering 2,663 wind turbines using three methods. Reference data include (1) the high-resolution aerial imagery 
and Google images; (2) the comparison and corroboration across multiple source datasets, including the OWTs 
in the 4 C Offshore17, USGS USWTD15, UK REPD16, EMODnet19, OPSD13 and GBWSF14 databases; and (3) a 
comprehensive visual examination and an extensive internal review by the authors using Sentinel 2-MSI data or 
Landsat 8-OLI imagery with true colour composition and Sentinel 1 data after floating or temporarily mobile 
object removal.

The use of aerial imagery for verification was conducted for October 2019. One offshore wind farm on the 
Jiangsu coast, China, covering 155 wind turbines, was validated by unmanned aerial vehicle (UAV) aerial pho-
tography images collected by a ground unmanned real-time kinematic (RTK) drone. All the photography images 
have geographic information, and Fig. 6 shows the specific location information of two wind turbines in that 
large wind farm. Furthermore, six other wind farms in China were also cross-validated with Sentinel 2-MSI data, 
Landsat 8-OLI imagery and Google high-resolution imagery in Google Earth (Fig. 7). In addition, 43 wind farms 
in North America and Europe covering six countries were selected, referenced and cross-validated using different 
national/international dataset sources. All the wind turbines (covering 50 wind farms) in the validation dataset 
were double examined for visual inspection using the Sentinel 1 data. Specifically, two authors who had sufficient 
backgrounds in remote sensing and GIS separately obtained these data source images country by country from 
the GEE platform and cross-validated the position and number of OWTs. The validation dataset is also publicly 
available for download from Figshare22.

Fig. 6  Jiangsu Rudong Offshore Intertidal Demonstration Wind Farm validation by unmanned aerial vehicle 
(UAV) aerial photography in 2019 along the coast of Jiangsu, China. (a–c) are the positions of this region in 
global areas, (d and f) are the side-view aerial photography images at the validation sites, and (e and g) are top 
views of the individual wind turbines in (a and b), respectively.
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The use of three methods to generate the independent validation dataset was motivated by the lack of a con-
sistent set of global outvalidation data of OWTs for accuracy assessment. To report the precision metric, we cal-
culated the ratio of accurately identified wind turbine objects to all detected objects in our dataset. The precision 
of the dataset is 100.00%, 99.54%, 99.09%, 99.71%, 99.48%, 99.62%, and 99.84% in the United States (number 
of wind farms = 1, number of wind turbines = 5), the United Kingdom (number of wind farms = 21, number of 
wind turbines = 1,120), Germany (number of wind farms = 8, number of wind turbines = 536), Denmark (num-
ber of wind farms = 8, number of wind turbines = 388), China (number of wind farms = 7, number of wind tur-
bines = 410), Sweden (number of wind farms = 2, number of wind turbines = 64) and the Netherlands (number 
of wind farms = 3, number of wind turbines = 140), respectively (Online-only Table 1). The identification error is 
attributed to the met mast and offshore substation located inside or near the wind turbines, which are extracted 
with the wind farm, such as the OWFs in EnBW Baltic 2 and Arkona, Germany. To calculate recall, we subtracted 
falsely detected objects from all detected objects and divided them by all instances (using the data in the valida-
tion dataset). As expected, all recall values reach 100%, meaning that there are no omission wind turbines in the 
validated areas (Online-only Table 1).

Therefore, our validation shows that studies that use this OWT dataset need to note the purpose that these 
data serve. If the met mast and offshore substation near the wind farm do not matter, then this dataset has an 
acceptable accuracy. Compared to other databases that only provide approximate spatial location information 
and turbine numbers16,19 or incomplete, inaccurate information14, our dataset has a high resolution spatiotempo-
rally. A visual comparison (Fig. 8) with the GIS OWTs data in the GBWSF, USWTD, EMODnet, and OPSD data-
sets can also confirm that our dataset has good coverage and high location accuracy and can further complement 
other databases as a consistent set of globally full coverage and high credibility OWT datasets.

Fig. 7  OWTs validation using 1 m high-spatial-resolution imagery from Google Maps obtained on 2016-12-12 
at the Longyuan Putian Nanri island demonstration wind farm, Xinhua Bay, China. (a–c) are the positions of 
this region in global areas, the background map in d is Google high-resolution imagery, and the background 
map in e is 23 SAR image composited data after floating or temporarily mobile object removal. The wind 
turbines are represented by a solid green point, and the objects in blue boxes in d and e represent floating or 
temporarily mobile objects, including the ships. The objects in the orange boxes in d and e represent the offshore 
substation, which is easy to extract with wind turbines.
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Fig. 8  A visual wind turbine coverage and number comparison for our database with the GBWSF, USWTD, 
EMODnet, OPSD datasets in the wind farm in Germany, Denmark, the United States, Vietnam and China, 
including (a) Horns Rev 2 and 3, (b) Amrumbank West, Nordsee Ost, Meerwind Ost, (c) Wikinger and Arkona, 
(d) Block Island, (e) Bac Lieu, and (f) Jiangsu Rudong. The wind turbines in our dataset are represented by solid 
green points; the wind turbines in the OPSD dataset are represented by solid purple points; the wind turbines 
in the USWTD dataset are represented by solid orange points; and the wind turbines in the GBWSF dataset are 
represented by black pushpins. The wind farm status in the EMODnet dataset is shown by points and polygons 
with different colours. The yellow box indicates the plan status; the blue box indicates the production status; and 
the blue pushpins indicate the centroid of the wind farm. All are labelled with the corresponding wind turbine 
numbers.

https://doi.org/10.1038/s41597-021-00982-z


1 1Scientific Data |           (2021) 8:191  | https://doi.org/10.1038/s41597-021-00982-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Usage Notes
The dataset derived from satellite imagery provides the spatiotemporal distribution of global OWTs from 2015 
to 2019. This dataset has the potential to further elucidate the impact of OWTs on coastal ecosystems, support 
biodiversity conservation and environmental impact assessments, and help generate sustainable development 
strategies for offshore wind energy.

We take no responsibility for any third-party use or analysis of the data, nor do we endorse any third-party 
opinions or conclusions reached using these data. We also ask that users notify the authors of any errors or omis-
sions identified in the data so that they can be corrected.

Code availability
All the code and processing scripts used to produce the results of this paper were written in GEE, MATLAB. Links 
to scripts and data for analyses can be found in the GitHub repository at https://github.com/tzhang-edu/GOWT.
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