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The important interest and efforts devoted by industries and academic research institutions to electricity

production from renewable and clean energy with the maturity of existed technologies justify the

biggest exploitation of wind energy over the recent years. With the reduction in oil prices, renewable

energy is way forward for efficient and environment friendly energy generation. Out of all existing

available renewable energy, Wind Energy is the front runner owing to its ability of efficient power

generation and to produce energy at large scale. Due to the non linear nature of wind energy,

Optimization techniques are extremely critical as they are solely responsible for building an effective

wind farm. Layout optimization is performed by using soft computing techniques and are extensively

studied in the available literature. Therefore, this review paper highlights the significant research works

of wind farm modelling using optimization techniques. This work also addresses the new approaches

used in wind farm modelling. Further, it also presents a critical evaluation of existing research

methodologies used for wind farm layout optimization. Hence, the objective of this work is to benefit

scientists and new entrants in the field of modelling and layout optimization of the wind farm.
Introduction
In today’s world, the atmosphere is getting polluted with carbon-

dioxide and other global warming emissions, which trap heat and

hence steadily increase the average temperature of the planet

which creates a harmful impact on human health, environment

and climate. On the other hand, many sectors of energy are facing

a global recession due to the COVID 19 pandemic and also many

other factors. A typical example of the above statement is the oil

and gas sector, which is facing an appalling crisis due to fall in oil

price per barrel. The world is focused on increasing renewable

energy sources due to the reduction in oil prices. Renewable energy
*Corresponding author. Thanikanti, S.B. (sudhakarbabu66@gmail.com)
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and oil/gas energy sources focus on different markets, economics

of renewable energy are improving, the global dynamics of energy

is changing, renewable energy is larger, cleaner and hence they

provide a welcome diversity to the energy supply.

Renewable energy is mainly used to supply cleaner and efficient

electrical power. There are many types of promising renewable

energy sources such as wind, solar, fuel cells, micro-hydro, etc.

Among all, wind energy is now growing exponentially and has an

impact with great potential. Electrical energy demand is met by

means of wind turbine due to its multiple advantages like low cost

and very robust in nature.

In the modern world, the undisputed form of electrical energy

generation is the wind energy. The growth of wind farms is
1755-0084/ã 2020 Elsevier Ltd. All rights reserved. https://doi.org/10.1016/j.ref.2020.09.001

mailto:sudhakarbabu66@gmail.com
https://doi.org/10.1016/j.ref.2020.09.001


FIG. 1

Wind turbine system architecture.

FIG. 2

Power output of Wind Turbine.
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enormous which grew in size and ratio from very small wattage to

megawatts size. The conversion of wind energy to electrical energy

involves primarily two phases: the first stage is the conversion of

kinetic energy to mechanical energy for the wind generator of the

shaft to be driven. The critical converting devices in this phase are

the wind blades. The second stage is the mechanical energy

captured by wind blades and are further converted to electrical

energy via wind generators. The grid connection is highly driven

by the converter, it is extremely important to maximize the

performance of the first conversion, what can be done by using

variable speed generators as the conversion efficiency is very low

[1]. The most sort after research in wind farm technology are

performed on the areas, (a) wind farm layout optimization [2–5]

(b) Modelling approaches of wind turbines [6–8] (c) Cost reduction

(d) Grid planning and operation (e) Energy and power manage-

ment [9].

Recently, a number of numerical tools are under development,

some based on stochastic mathematical models, each presenting

specific features in terms of accuracy, convergence, stability,

robustness, and calculation speed [10]. Among the most promising

methods which have applied wind farm layout optimization, are

Greedy Algorithm [5,121], Multilevel Extended pattern search

algorithm [11] and Sequential convex programming (SCP) [12].

As of now, there is no single research article which summarizes the

research of wind farm layout optimization. Hence, a detailed

analysis of the existing technologies related to modelling techni-

ques, wind farm layout optimization and new approaches adopted

in wind farm technology are presented in this paper. This paper

will also highlight the significant concepts and governing equa-

tions of the types of models in a wind farm.

This work will also critically analyze the existing methodologies

in wind farm technology and provide possible solutions. The

objective of this paper is to provide a one stop solution to practic-

ing researchers and new entrants in the field of wind farm model-

ling and wind farm layout optimization. The following sections

are divided as follows: Sections ‘‘Modelling approaches used in

wind farm technology’’ explains the modelling approaches used in

Wind Farm Technology. Section ‘‘Objective function’’ expounds

the important inventions in objective functions. Section ‘‘Wind

farm layout using several optimization techniques’’ elucidates the

prominent works in wind farm layout optimization. Section

‘‘Novel approaches in wind farm optimization’’ elucidates the

novel approaches used in wind technology. Section ‘‘Critical

evaluation of existing research methodologies used for wind farm

layout optimization’’ presents a Critical evaluation of existing

research methodologies used for wind farm Layout Optimization

and conclusion of the article is presented in Section

‘‘Conclusions’’.

Modelling approaches used in wind farm technology
Wind turbines use the heavy winds to generate electricity. A wind

turbine is a machine that has a rotor with the propeller blades. For

the electricity generation, the blades are systematically arranged in

a horizontal orientation. The wind farms are placed in areas with

high wind velocity. As the velocity of the wind is higher, the blade

spin will be faster, thereby increasing the rotor speed to transmit

electricity to the generator. This produced electricity is supplied to

different stations through the electric grid. A wind farm consists of
many wind turbines that normally are 50 m long each in height

[13,14]. Air circulation increases with the increase in altitudes.

Hence, Wind turbines are generally constructed at higher alti-

tudes. It is noteworthy to mention that the mechanical power

during higher wind speeds must be controlled and maintained.

Fig. 1 illustrates the wind turbine system architecture. The figure

illustrates the various parts of Wind turbine system such as the gear

box and machine connected to the grid. The figure also highlights

the stages of conversion such as primary conversion and secondary

conversion.

The basic characteristics of the wind turbine system are pre-

sented in Fig. 2. The gearbox mechanism is responsible for the

conversion of low speed, high torque mechanical power to elec-

trical power. This conversion of mechanical to electrical power is

performed by the power electronic converters, transformers and

circuit breakers [15].

Different modelling approaches used in wind farm technology
Over many decades, there has been a genuine interest in Wind

farm modelling research. The important types of wind farm

modelling are broadly classified as follows and its detailed govern-

ing equations of each model are presented in this section.

Governing equations in wind speed profile in the wind farm
model
The governing equations in wind speed profile of the wind farm

model are detailed below [16]:

Logarithmic Law

u ¼ uref log h=z0ð Þ=log href =z0
� � ð1Þ
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TABLE 1

Description of the model/governing equations in model.

Reference Type of model Description of the model/
governing equations of the model

[6,23,24] Objective model In this works, the authors have
addressed the problem of
multiple objectives by combining
it into a single formulation.

Objective ¼
PNT

i
Costi

Ptot
(7)

The cost model is shown in the
numerator and the denominator is the
total power output

[7] Particle
wake model

In this paper, the authors have
deduced the particle wake model
which is primarily used to
understand the momentum
diffusion process.
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where u � speedof thewind; uref refers to the speed of the wind at the

reference height, z0 refers to the ground roughness and href is the

reference height and h refers to the hub center height.

Governing equations in linear wake model
The governing equations and most significant equations in the

linear wake model are as follows [6–20].

u ¼ u0 1 � 2a

1 þ a x
r1

� �2

2
64

3
75 ð2Þ

a ¼ 1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CT

p
2

ð3Þ
TABLE 2

Prominent works of authors in models used in wind turbine techno

Reference Type of make/model of wind technology 

[10] Turbine layout optimization model 

[25] Wake interaction model 

[26] 5 kW simulated wind power generator 

[27] Mathematical model 

[28–31] Surrogate modelling 
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r1 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a

1 � 2a

r
ð4Þ

a ¼ 0:5

ln h=z0ð Þ ð5Þ

where u0– Speed of wind, x – downstream distance from the wind

turbine that generates the wake, r1– Wake radius, a – Induction

factor, CT – Thrust exerted on wind rotor by air, Rw represents the

radius of the wake region at a specified section along the cross-

wind, calculated by

Rw ¼ ax þ r1

where a = entrainment constant, r = Turbine radius.

The wake flow equation can be given as follows:

ui ¼ u0i 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNT

j¼1

Aij

pr2i
1 � uij

u0j

� �" #2
vuut

0
@

1
A ð6Þ

where u0i and u0j are the wind speeds at the ith and the jth turbines

positions, respectively. They are equal to the inlet speed u0ð Þ of

wind farm. uij
� �

is the wind speed at the wind rotor of ith turbine in

the wake region of the jth turbine. NT is the number of wind

turbines in wind farm. ri is the rotor radius of the ith turbine. Aij is

the rotor area of the turbine inside ith and the jth turbine’s wake.

The description and the governing equations of the other two

models are detailed in Table 1. The prominent works by authors in

wind farm models are detailed in Table 2.

Objective function
A correct definition of the objective function is essential to solve a

complex non-linear problem. The following section discusses

about the formulation of objective function.
logy.

Remarks

This paper presents a modified version of the Jensen wake model.
Simulated data collected from six wind locations, all offshore, were used
to conduct numerical experiments.
The paper uses energy balance to create a mechanistic, linear model for
the wake interactions. This method can be used with standard
mathematical programming methods.
This paper describes a simulation system for the research and
development of wind power optimization using grid-connected power
generator. The simulations can produce fluctuant power that meets the
demand of optimization of wind power flow systems.
The author addresses the design thickness of the airfoil, by increasing
the thickness, better aerodynamic performance is observed. The optimal
design takes into account the complicated requirements and still shows
an overall improvement in the airfoil performance.
The paper uses surrogate modelling to optimize the layout of
hydrokinetic turbine layout. The method uses surrogate model
construction, experiment design, simulations of computational fluid
dynamics analyze the various parameter combinations and satisfy the
optimal criteria at a very reasonable computational time.



TABLE 3

Cost element contribution to CAPEX, DECEX, and OPEX.

Cost element CAPEX DECEX OPEX Sensitivity to
output

Turbine supply � – – Low
Turbine Installation � – – Medium
Foundation concept � – – Medium
Operations and maintainence – – � Medium
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Energy cost minimisation
The cost of the wind farm (WF) divided by the total power

production [20], is widely used in literature and is the most

commonly used objective function:

Costof Energy ¼ Cost

Ptot
ð8Þ

where ‘Cost’ represents the cost of the wind farm, Ptot is the total

power production modelled by a simple function which only

depends on the number of wind Turbines:

Cost ¼ Nwt ¼ 2

3
þ 1

3
e�0:00174N2

wt

� �
ð9Þ

The cost of energy is extremely important. The power improve-

ments, thereby improving energy efficiency in wind farm tech-

nology have eventually resulted in lower costs [21,22].

Maximization of annual energy production
The maximum of annual energy for a given distribution was

investigated in the following references [32–41]. Integration of

the wind turbine power combined with a wind speed distribution

over the wind speed spectrum can be defined as the annual energy.

AEP ¼
ZVmax

Vmin

P Vð Þf Vð ÞdV ð10Þ

where P(V) is the power curve of the wind turbine, f(V) is the wind

speed distribution.

Wind farm layout using several optimization techniques
Wind farm layout design optimization has taken number one

priority in the recent times and soft computing techniques are

being preferred to solve nonlinear problems compared to classical

analytical optimization techniques. It involves several constraints

like legitimacy and social issues, engineering and design that may

be logistic, economic, technical or environmental [42]. The main

area of concern is placement of wind turbines, optimization of

objective functions for energy maximization and cost minimiza-

tion. Additionally the constraints involve turbine proximity, farm

boundary, initial investment, noise emission level, hub height,

number of turbines and the type of turbine. The prominent works

in optimization techniques using several optimistion techniques

are detailed below (Table 3).

Genetic algorithm
Genetic algorithm is used to improve population of random candi-

date solutions, best known as chromosomes by repeated application

of selection, crossover, and mutation operators. In every cycle, the

fitness of the said chromosome in the population is estimated using

an objective function. The genomes, also known as the decision

variables of the designatedchromosomesarechangedaftera seriesof

crossover and mutation operators, to create new chromosomes for

the subsequent generation. Thecrossover probability enunciates the

probability of each designated chromosome to be mated with a

different chromosome. Ideally, two parents produce two offsprings,

with some exceptions [43].

There are primarily two methods, arithmetic and linear cross-

over. While two parents produce two offsprings in the first one, the
two parents produce three offspring in the latter. Once produced,

the two fittest offsprings replace their parents in the population

[44,45]. The purpose of mutation is to generate new genetic

material in the population and preserve the population diversity.

This usually amounts to changing a random part of a gene of an

arbitrarily picked chromosome. The most widely used method is

the uniform mutation operator where a random element of the

chosen chromosome is switched to another feasible arbitrary value

[44]. As only characteristics of fitter chromosomes have a higher

chance of being passed on to the following generation, the gross

fitness of the population betters over time. The algorithms con-

tinues until the maximum number of generations have been

created or an acceptable fitness value has been attained. The

authors have used the parallel selection method in multi objective

genetic algorithm (MOGA) in which the initial step is to create

some starting individuals arbitrarily. Following which the genetic

algorithm will separate them into two equal halves, out of which

one is used for calculation of farm efficiency and the other is for

calculation of cost per unit power.

A fixed percentage of the individuals will be picked for the

crossover mutation, usually the random mate selection method

in MOGA is deployed for this purpose. The highest probability of

selections is given to the individuals with the best fitness in the

sub-population, these designated individuals are then combined

into a single population for crossover and mutation. While we

cannot presume that with this selection method the fitness value

in each generation will definitely improve, it will most certainly

prevent false convergence or premature phenomena. This will,

however, ensure that the MOGA will reach global search and

optimization [46]. The downside of using random mate selection

method is, one cannot prevent the participation of poorer indi-

viduals in the selection process, since the distance between the

champion and medicore could have a large euclidean distance.

Although, it does have advantages of avoiding premature as

compared to other selection methods [46].

Related works:

The authors in Refs. [2,3] investigates the effect of pursuing

different aspects of internal structural geometry as compared to a

sequence of wind turbine blade design created with altering struc-

tural configurations. The main considerations of investigation are

the geometry of the structural spar done by changing the width of

the spar caps along with the number and location of shear webs

that are inclusive if the span wise starting and ending location.

In Ref. [4] authors developed a structurally optimized model for

wind turbine composite blades considering a parametric FEA

(finite element analysis) model and GA (genetic algorithm) model.

The idea of the optimization model is to minimize the mass of the

composite blades with multiple criteria, constraint, like, number
87
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of unidirectional piles, thickness of shear webs and locations of

spar cap which are considered as the design variables. The mass of

the optimized blade has been lowered by 17.4% compared to the

intial design, now weighing 228 kg, which indicates that blade

mass can be considerably reduced by using the current optimiza-

tion model. The model is also capable of perfectly determining the

optimal structural lay-up of composite blades as demonstrated in

the paper.

In paper [6] the use of different hub heights for wind turbines is

assessed. Using Genetic algorithm for various wind conditions

proved that optimizing the height will yield more power with

the same number of turbines. The below figure is plotted between

power output (MW) and generations. Fig. 3 below clearly shows

that with increase in height, the output of power is higher. Further,

the genetic algorithm with definitive point selection is implemen-

ted by author in Ref. [47].

Greedy algorithm
The layout of the wind turbine is optimised by the usage of the

greedy algorithm [48]. Most of the research considered identical

hub height for the wind turbine and used two dimensional grid

system to identify the position of the wind turbines.

Related Works:

The author in Ref. [5] uses the greedy algorithm to explain the

wind turbine layout optimization with multiple hub heights. The

two models, linear wake model and particle wake model are used

to estimate the wake flow calculation over flat and complex terrain

respectively.

Using the greedy algorithm over the genetic algorithm incurs

low computational cost and gives better results, as the layouts with

multiple hub heights can increase the total power output and

reduce the cost per unit output significantly, essentially for com-

plex terrain wind farms. The flowchart representation of greedy

algorithm is presented in Fig. 4. The flowchart details each process

flow of the algorithm.

In greedy algorithm a set of resources are recursively divided

based on the maximum, immediate availability of that resource at

any given stage of execution.

Two conditions define the greedy paradigm.
� Each stepwise solution must structure a problem towards its

best-accepted solution.
� It is sufficient if the structuring of the problem can halt in a

finite number of greedy steps.

Important characterstics of greedy algorithm
FIG. 3

Power output Vs generations.
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� There is an ordered list of resources, with costs or value attribu-

tions. These quantify constraints on a system.
� You will take the maximum quantity of resources in the time a

constraint applies.
� For example, in an activity scheduling problem, the resource

costs are in hours, and the activities need to be performed in

serial order.

En, Er are the set of normal and abnormal links in the road

network, i = 1,2,3, . . . m; m is equal to the number of links

belonging to Er. i = 1,2,3,.. .,m; m is equal to the number of links

belonging to Er. Ie’ is the ratio of cie to cie’ it represents the

importance of a given link e. cie is system-wide travel cost after

repairing i links and link e is repaired in the last. E is the set of all

links in the road network.

Multilevel extended pattern search algorithm
A pattern search can be defined as a purely deterministic search

algorithm [49,50] which uses a defined set of pattern directions to

traverse potential solutions. To aid the escaping of local minima,
FIG. 4

Greedy Algorithm.
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attributes are infused stochastically into the search which are the

extensions provided to the EPS.

As a first step, a broad range of turbine locations is established

using a randomized initial layout of turbines which do not specifi-

cally assign starting locations. Secondly, to avoid favoring indi-

vidual turbine movement the search order is randomized. Lastly,

to pick the weakest turbines, a popping algorithm is used and it

tries to assign a new random location to the selected turbines until

a certain number of attempts are complete or the superior global

evaluation is used for the relocation of the turbine [49,50].

Related Works:

The authors in paper [11] discuss a system of modelling advances

that can be used for computational optimization of wind plants.

This technique involves accurate cost and power modelling,

effects of varying atmospheric stability and partial wake interac-

tion. This algorithm is used to validate this advanced modelling

system for multiple wind scenarios. The multi level pattern algo-

rithm is presented in Fig. 5.

Particle swarm optimization (PSO)
The PSO algorithm mimics the behavior of a swarm as a simplified

social system, mainly inspired by the swarm intelligence of birds

flocking or fish schooling [51,52].

Related Works:

The authors [53,54] uses model predictive control and a binary

particle swarm optimization (BPSO) system with time-varying

acceleration coefficients (TVAC) to address the optimal placement

of wind turbines within the farm. The aim being extraction of

maximum turbine power output with a minimum investment

cost, the BPSO-TVAC algorithm takes into account uniform and

non-uniform wind speeds with variable direction characteristics

and applies to a 100 square cells test site.

The authors in paper [55] attempts to optimize offshore wind

farm layouts, by optimizing the position of the wind turbines

in the wind farm to ensure maximum energy production. A

penalty function method is introduced in this paper to

account for a restricted zone due to limiting factors of wind

turbine placement like marine traffic, shipwrecks or seabed
FIG. 5

Multi level pattern algorithm.
conditions. The particle swarm optimization algorithm with

multiple adaptive methods (PSO-MAM) is a stochastic algo-

rithm that can simulate a layout to find a feasible solution

which can out-do the baseline layout of a reference wind farm

(RWF).

The Unrestricted wind farm Layout Optimization (UWFLO) is a

novel approach [56] which determines both optimal farm layouts

as well as selection of suitable turbines based on the rotor diameter

which will enhance the net power generation.

Ant colony algorithm (ACO)
Ant colony optimization (ACO) has been yet another algorithm

developed to address discrete optimization problems [57], the

algorithm reproduces the behavior of a real ant and the colony

in the process of looking for food [58].

Related Works:

The authors in Ref. [59] adapt the ant colony algorithm for

maximizing the desired energy output, it takes into account wake

loss which is determined by wind turbine location and wind

direction. The results show this method produces better results

than evolutionary algorithm. The ant colony algorithm is pre-

sented in Fig. 6. The flowchart details the steps presented in the

algorithm.

Characteristics of Ant colony algorithm

The Ant colony algorithm mimics the real ant colony behaviour

while they look for food.
� Ants randomly explore the area to find food.
� After finding a source, the ant returns back to its nest.
� During traversing, ants leave a trail of pheromones.
� Pheromone quantity increases according to food quantity
� The follower ants of the first ant go after the pheromones

deposited by the first ant.
� As a result of this transaction, the deposition of the pheromone

on the trail will be strengthened.
� The quantity of pheromones in each traversal will evaporate.
� If there are two paths to get to the same source of food, the ant

finds the shortest path between their nest and food with the

help of the freshpheromones.
89



FIG. 6

Ant colony algorithm.
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The first step consists of initialization of the pheromone trail.

Each ant constructs a complete solution to the problem according

to a probabilistic state transition rule which depends mainly on

the state of the pheromone. Finally, quantity of pheromone is

updated in two phases; an evaporation phase where a fraction of

the pheromone evaporates, and a reinforcement phase where each

ant deposits an amount of pheromone which is proportional to

the fitness of its solution. This process is iterated until a stopping

criterion.It is shown in below in the form of pseudocode.

m = number of ants in population, T is number of iterations

(generations), ij = portion of entire solution (trail), Ni = neighbor-

hoods of location i, l indicates number of neighborhoods,Q
ijt = amount of pheromone on trail ij at time t, D

Q
ijt = addition

of pheromone on trail ij at time t, r = evaporation factor (0 < r < 1),

hij = heuristic regarding trail ij, a, b are relative importance of

pheromone and heuristic respectively.

Sequential convex programming (SCP)
SCP is applied to maximize the objective function and to study the

optimal wind farm layout problem.

Related Works:

Theenergyproductionofdownstreamwindturbinesinawindfarm

reduces due to wind speed and elevated levels of turbulence caused by

wakes from the upstream wind turbines, which reduce the overall

efficiency of the farm due to the wake interference. The authors in Ref.

[12] present an efficient solution to optimize the placement of wind

turbines to generate maximum wind farm power output.

Random search algorithm
The random search (RS) algorithm for wind farm layout optimi-

zation in the previous study [60] was based on a continuous

formula and refines the results obtained by GA [61] for an ideal
90
test problem presented in Ref. [20]. While in this study, adaptive

mechanisms are added to the algorithm to the same problem and

subsequently for the Horns Rev 1 WF. To minimize the computa-

tional cost, a strategy similar to that adopted by Wagner et al.

[62,63], is applied to evaluate the layouts.

Related Works:

The random search (RS) algorithm [64] is based on a continuous

formulation which begins from an initial feasibility layout and

proceeds to improve the layout iteratively in the feasible solution

space by adding adaptive mechanisms.

Evolutive algorithm
Evolutive algorithms mainly consider two operators to generate

new individuals or potential solutions. The method is the roulette

wheel wherein the parents with the highest NPV have a higher

chance of selection. The paper describes five types of crossover

operators applied in a random way [65].

Related Works:

The authors discuss optimum wind farm configuration problem

along with evolutive algorithm to optimize the layout [66]. The

results are compared with previously published works and test

cases used as performance evaluation of the proposed algorithm.

Novel approaches in wind farm optimization
This section will describe the approaches that will use optimiza-

tion techniques along with a specific method. This section will

help the readers to understand the usage of specific methods such

as mixed Linear Programming methods and mathematical pro-

gramming techniques. Also, this section highlights more practical

case studies of usage of optimization techniques in Wind Farm

modelling.

The authors in Ref. [67] have applied wind farm optimizations

for lands that are owned by different people which includes a

traditional penalty technique that depends on the type of wind

farm land division. The traditional approach could be quite cum-

bersome in the case of complex divisions, a new method is dis-

cussed in this reference. The approach is to repair infeasible

solutions prior to fitness evaluation rather than having a penaliz-

ing term during evaluation of the fitness function. Results from

three types of farm divisions were compared to prove the efficacy

of the method proposed. In Ref. [68], the authors developed a

novel mathematical programming technique for layout optimi-

zation. To account for the multi-turbine wake effects the authors

consider the Jensen’s wake decay model.

In Ref. [69], A mixed Integer Linear Programming method

(MILP) should be used to solve two fold problems that deal with

investment cost and operation cost, this is a better approach than

solving them as independent issues. The MILP is a reliable and

effective approach. Cost of energy loss must not be neglected as

they influence the financial results, the expense is comparable to

cable laying and influences the design approved for the internal

network. The algorithm has practical use in the design process of

the wind farm.

In Ref. [70], a brand new method which involves simultaneous

layout plus control optimization are followed by the authors. The

results are compared to various other approaches as layout and

control optimization using both grid based and unrestricted coor-

dinate design methods for both ideal and also realistic wind
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conditions. The technique yields close to 1–3 kW more power for

each turbine as compared to self optimum control technique

whereas unrestricted coordinate method produces 1–2 kW more

power for each turbine turbine when compared with the grid based

method.

In Ref. [71], the authors consider the landowner participation as

well as a number of turbines as a binary string variable, in cases

where continuous availability of land for wind farm construction

cannot be assumed. The authors provide an enhanced levelled

wind farm cost model which takes into account remittance fees to

decide the optimal placement of turbines in three landowner

involvement scenario and couple of land-plot shapes. The sys-

tem-level cost-of-energy (COE) optimization model is tested for

the two different shapes of the plot, i.e., equal sized square plot and

unequal rectangular plots. The results produced were realistically

comparable to the original COE data. Irregularly shaped land plots

too are handled easily by the model and result show landowner

remittance fee accounts for close to 10% of all the operating costs.

Larger plots always incur higher remittance costs. This particular

model helps wind farm developers locate crucial plots for success-

ful layouts and optimal positioning of the turbines with actual

estimates of profit and cost.

In Ref. [72], the current trend involves researchers focusing on

advancing optimization algorithms and enhancing wind farm

models based on two designing methods, i.e., grid based method

and unrestricted coordinate method. These two methods are

explained in the paper by taking three unique grid situations

for producing best optimization solutions using grid based meth-

ods and pitched against the results obtained from the unrestricted

coordinate method. Additionally, cost models like Mosetti’s and

Chen’s model are employed to study the impact on the results of

optimization.

In Ref. [73], A parametric aerodynamic optimization study is

discussed to produce the blade design for a unique implementa-

tion of a vertical axis wind turbine, the technique was put on to

enhance the cross-sectional and two-dimensional geometry of the

blades in the turbine. In order to compare the geometries, a non

dimensional coefficient of energy was used as the fitness function,

to assess the blade performance unsteady viscous computational

fluid dynamic simulations were employed as well as to accommo-

date the transient nature of the given physical process moving

meshes were considered. For the blade cross sections a unique

parameterized approach which involves circular arcs was devel-

oped. The entire optimization process was created in 2 stages:

Experiments designed based on response surface fitting to explore

the parametric design space and use of Nelder Mead simplex

gradient based optimization procedure.

In Ref. [74], the current model uses turbine induction factor as a

function to calculate the wind velocity for the wake behind the

turbine, this factor is usually considered as 0.324 in all previous

approaches. But as an improvement the induction factor is calcu-

lated for the wind turbines based on Blade Element Momentum

theory. This accounts for the blade profile, wind speed and the

angular velocity of the turbine. The important conclusion of this

method is that varying blade profiles and differing operational

conditions obtain different induction factors, this greatly affects

the calculated power gain from a farm. Hence, influencing the

farm layout in the optimization process.
In Ref. [75], When considering an offshore wind farm, the port

should be installed and designed in an efficient way to minimize

factors like transportation cost of required components within the

port. Two MILP are developed to establish the optimized port

layout in which the shape of the internal areas present in the port

maybe rectangular with the possibility of other dimensional con-

figurations. The final shape of the required port area may be

treated as a convex or a concave polygon. For small-sized pro-

blems, MILP can be used while for medium-sized problems while

for medium sized issues, Meta heuristic methods like variable

neighborhood search (VNS) can be applied. These methods are

used on random data sets.

In Ref. [76], the authors approach the optimum layout design for

onshore farms in which the wind load is decided based on sto-

chastic fields. Metaheuristic search algorithms designed around

discrete variants of harmony search are employed. Wake effects

and influence of wind direction are considered to solve the opti-

mization problem. The results show the efficiency and applicabil-

ity of putting together metaheuristic optimization along with

stochastic methods of implementing wind loads for an optimized

wind farm layout.

In Ref. [77], The author covers an approach that include both

warm and cool thermal packed beds where the heat engine as well

as pump function on a reciprocating Joule cycle which makes use

of argon as dealing solution. Results mainly focus on trade surfaces

for complete efficiency, power and energy density, this is conveyed

as fairly dull effectiveness vs. energy density trade off. This is used

to guarantee a heightened storage density that could be accom-

plished by using a reduced efficiency penalty. Loss thanks to

irreversible heat transfer and pressure fall within the winter reser-

voir are negligent. Hence, the effectiveness is primarily affected by

processes of expansion and compression.

In Ref. [78], Computational fluid dynamics is used to simulate

the output of two straight-bladed vertical-axis wind turbines and

further analysed and optimized by adapting the Taguchi method.

There are various factors considered like the incoming flow angle

(b), turbine spacing (S/d), tip speed ratio (k), blade angle (/) and

rotational direction (RD). In addition, there are four levels taken

into account to influence the output of the dual turbine system.

Based on this, an orthogonal array of L16 is designed. The factors

stated above are ranked in the order of the strength as

k > b > RD > S/d > /. After analysing the signal-to-noise (S/N)

ratio, it is deduced that the five factors can be optimized to

maximize the power generated by the system, and this optimum

solution occurs at k = 2, b = 120 either counter-clockwise or clock-

wise, / = 0 and S/d = 3. The flow velocity can be enhanced in the

regions that are beyond, between and beyond the two turbines but

drops significantly in the wake regions. As compared to a single

turbine system, using the optimum conditions and factors for the

dual turbine system can improve the mean power coefficient by

9.97%.

In Ref. [79], the stability is discussed by the authors and reactive

power management through an isolated hybrid type of the Off-

shore wind-diesel-tidal turbine, this system is prone to losing

stability due to uncertain input parameters and load, hence mak-

ing reactive power management an urgent requirement. This

power management is made possible through the use of FACTS

devices.
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In Ref. [80], the authors describe a maintenance model which

will evaluate the joint redundancy as well as formulate the imper-

fect block opportunistic model, hence reducing the loss of load

probability and the total life cycle cost for a wind farm. The

approach is to enable different thresholds of reliability for imper-

fect maintenance that include failed and working turbines, pre-

ventive and proactive dispatching of the maintenance team.

Additionally, to evaluate the performance metrics of the farm like

the various types of turbines, delays in the maintenance, activa-

tion, duration and considering the limitation on availability of

maintenance teams. Sensitivity analysis is performed on this data

and the multi-objective particle swarm optimization algorithm is

used to drive pareto optimal solutions. A comparative study with

the current policies show the advantages of the proposed system.

In Ref. [81], The application discussed in this paper addresses a

gradient based optimization algorithm to solve previously con-

strained physical model. In every iteration, the performance and

flow of array configuration are predicted using a two-dimensional

finite element shallow water model. Using the fraction of time

used by the flow the power is extracted using the turbine position

and tuning parameters. The solution is derived by solving the

associated adjoint equations. The method is designed to backtrack

the computation to tuning parameters and turbine positions,

making the gradient almost independent of the number of

turbines.

In Ref. [82], the authors present a non-linear mathematical

programming model to solve land-use constraints and other heavy

constraint practical problems using a continuous-variable layout

optimization of the wind farm. This effective method makes use of

the accurate gradient data pertaining to the problem constraint

and objective. The results are then compared to the genetic algo-

rithm in certain wind farm layout optimization test cases. When

the method is applied to cases of high dimensionality and con-

straints proves effective reduction in computational cost and an

increase in wind farm efficiency.

In Ref. [83], the paper talks about a hybrid evolutionary method

or a quadratic assignment problem-genetic algorithm to solve

restrictions due to a turbine arrangement in farms with the candi-

date selection approach. Initial candidate point selection

approach discussed, is adapted by four cases to show optimal

design efficiency. Along with previously addressed wake effects,

rotor diameter and turbine hub height, the algorithm accounts for

restrictions on prohibiting places for placement, load bearing

capacity and changing wind direction and velocity. The

approaches show a 3% improvement in efficiency for one case

and reasonable impact on the remaining.

In Ref. [84], The author propose a definite point selection

algorithm and an area rotation method to ascertain optimal

dimensions for the wind farm, thereby facilitating the farm to

face maximum free stream velocity. The points are used for the

placement of the turbines for maximum efficiency while allowing

for the minimum safety operation distance. This method has the

potential to identify zero-wake effects points in the farm. This

provides better overall power for a fixed number of turbines as

compared to previous methods.

In Ref. [85], The paper describes the optimization of blade

development process by considering the trailing edge flap con-

trollers and individual pitch to estimate the impact they have on
92
energy cost. The parameters considered are twisted, blade chord,

material distribution, width of the spar cap and also includes costs

of the turbine to create a mass model from the present simulation

codes. Constraints considered are fatigue damage, resonant fre-

quency, rotor thrust and ultimate stresses. NREL 5 MW was used as

the reference turbine to estimate the gain of this optimization,

estimating to 1.05% levelized cost of energy with collective pitch

control and 1.17% with individual pitch control. Using trailing

edge flaps additionally increases it to 1.27%. The main parameters

of consideration for optimizing the design are ultimate stresses in

the spar cap, rotor thrust and blade deflection.

In Ref. [86], particle filtering approach is discussed which

describes an optimized model for wind farms that have least wake

effect and most power generation, although the constraints are the

farm boundary and gap between two adjacent turbines which are

factored into the solution. It has been used to optimize cases with

different wind speed and direction distribution. This method

shows results comparable to evolutionary strategy and colony

algorithms discussed above.

In Ref. [87], deep learning can be used in Wind farm optimiza-

tion. The primary contributions of the experts are automated

suggestion process for harm detection in drone inspection pic-

tures, accuracy in the suggestion model attained through skilled

details augmentation and publication of wind generator inspec-

tion information sheet. Vestas is one of the leading companies in

R&D of Wind farm technology. Vestas product portfolio covers all

wind classes across the world and ambition to lower the cost of

energy faster than anyone in wind energy through various opti-

mization techniques [88]. The author in Ref [110]. presents a novel

approach based on the characteristics of all Wind turbines effec-

tively available in the market, thus mainly focussing on Wind

turbine selection rather than on mere wind turbine best allocation.

To conclude, this section outlays the various novel works carried

out in the field of Wind farm optimization.

Critical evaluation of existing research methodologies
used for wind farm layout optimization
Due to the ever increasing power demands and concern over the

environmental impact of conventional fossil fuelled power plants,

Wind energy has rapidly developed [111]. Wind energy has expe-

rienced an amazing expansion in the previous years. The global

collective capacity of wind power development has amplified

twenty times in a 10 year period and is anticipated to get much

more quicker in the future [89]. Most developed countries are in

the mission to produce 20% of electricity by wind energy by the

year 2030. Hence, wind energy is the next potential replacement

source of clean energy.

Wind Farm optimisation is very important in offshore plat-

forms. Accurate optimization of wind farms in offshore platforms

help in high cost reduction and also energy savings. There are

many works from authors [115–120] which highlight the impor-

tance of energy yields based on control strategy and accurate wind

farm layout optimization.

It is important to mention that there is very little uniformity of

wind farm modelling proposed by all researchers. Also, there is no

in-depth information about the constraints used and codes of the

various algorithms. Also, the manufactures data sheet gives only

limited values. This section will present an evaluation of all the
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research performed on wind farm layout optimization. The per-

formance parameters such as (1) algorithm complexity, (2) Con-

vergence speed and computational domain, (3) soft computing

techniques, (4) comments on wind farm optimisation using MPPT

approach, (5) hardware implementation, (6) Cost statistics of wind

farm optimization are selected to generally categorize the meth-

ods. Table 4 summarizes all the discussed optimisation techniques

into catergories such as convergence speed, Wind Behaviour,

complexity level, computational domain and Hardware

Implementation.

Cell technologies
There are five types of modelling approaches used for wind farm

technology. The first type of model is the wake interaction model

which is linear or mechanistic in nature. Most authors have used

the linear wake. The other four types of models namely the turbine

layout optimization model, simulated wind power generator

model, mathematical model and surrogate model are not widely

used for wind farm layout optimization as it is more complicated

in nature for real time implementation.

Convergence Speed and computational domain
The primary cause is the fact that the dynamic and static char-

acteristics of large scale wind turbines differ from the traditional

power plant systems. Thus, novel theories for modeling wind

generator methods are required. Optimization techniques are a

solution to solve this complex problem due to its non-linear and

dynamic nature. Hence, optimization techniques with faster con-

vergence speeds are necessary.

The convergence quickness is very dependent on the specific set

of constriants. Hence, it is noteworthy to mention that conven-

tional algorithms and methods is very limited as known set of

constriants and values are used. If we deeply analyse we can also

understand optimization techniques are comparable to adaptive

conventional algorithms in terms of performance. It is due to

changes in steps, constraints and values, we notice an enhanced

and better performance. In Refs. [2–4] GA is implemented for

standalone wind systems; convergence is accomplished at less

than 0.3 s with less steady state oscillations. Recently new domains
TABLE 4

Summary of Optimization Techniques in Wind Farms.

S. no Name of the method Convergence
speed

1 Genetic algorithm [2,3,4,6] Normal 

2 Particle swarm ptimization
[51,52,113]

Good 

3 Binary Particle swarm
optimization [54]

Good 

4 Multilevel extended pattern
search algorithm [11]

Good 

5 Greedy Algorithm [5,121] Good 

6 Ant Colony Algorithm [58] Good 

7 Random Search Algorithm [93] Good 

8 Evolutive Algorithm [65] Good 

9 Definite point selection [84] Normal 

10 Quadratic Interpolation Optimization [90] Normal 

11 Simulated Annealing [94] Good 
of evolutionary algorithms have emerged to handle Wind Farm

applications. Among all the algorithms presented in the previous

section, the greedy algorithm [5,121] stands tall in terms of

convergence value and It is noteworthy to mention that theoreti-

cal error in this method is 0.0001%. In the evolution algorithm

[65] the convergence characteristics are achieved in very less

generations and very minimum computational effort.

There are four types of objective functions used for wind farm

layout optimization. The first objective function is the minimiza-

tion of the cost of energy which has been predominately used in

most papers. The second objective function is Maximization of

Annual Energy Production, the third objective function is Mini-

mization of Blade Mass and the fourth objective function is

multidisciplinary optimization. Minimization of the cost of

energy is the objective function used in most papers due to its

manifold advantages such as computational speed and less com-

plexity compared to the other objective functions.

Algorithm complexity
The complexity ranking for soft computing techniques on the

basis of algorithm complexity can be expressed in terms of the

amount of computation involved, complexity and number of

steps, although this would be an indirect comparison. Essentially,

multilevel extended pattern search algorithm occupies highest

complexity ranks while factoring in the computational time

and memory.

According to procedural and implementation complexity the

following soft computing wind farm optimization layouts tech-

niques are ranked. (1) Multilevel extended pattern search algo-

rithm [11] (2) Greedy Algorithm [5,121] (3) Ant Colony algorithm

[58] (4) Quadratic Interpolation Optimization [90] (5) Particle

Swam optimization [53] (6) Binary Particle Swarm Optimization

[54] (7) Genetic Algorithm [2,112] (8) Definite Point Selection [91]

(9) Evolutive algorithm [92] (10) Random Search [93] (11) Simu-

lated Annealing [94].

Comments on soft computing techniques
PSO has been employed to solve the majority of the control issues

of energy development for MPPT or perhaps Maximum Power
Wind
behaviour

Level of
complexity

Computational
domain

Hardware
implementation

Mean Moderate Discrete Difficult
Mean Moderate Continuous Moderate

Mean Moderate Continuous Moderate

Mean High Continuous Difficult

Mean High Continuous Moderate
Mean High Continuous Moderate
Mean Low Continuous Easy
Mean Moderate Continuous Moderate
Mean Moderate Discrete Moderate
– High Discrete Difficult
Mean Low Not Specified Easy
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FIG. 7

Cost effective wind Farm structure.
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Point Tracking. This is completed for each fixed and adjustable

speed wind turbines, the concept is usually to estimate the correct

tip speed ratio for adjustable wind generator and rotor velocity for

repaired wind turbines to produce optimum energy annually [95].

Additionally, PSO shows simpler implementation and faster con-

vergence compared to GA [96]. The best way to go is Hybrid

algorithms to address the complexity of power system problems.

Existing algorithms take considerable computational time to pro-

vide in-depth analysis, while what essentially is required is a turn

around time in milliseconds. This prospect of parallel processing

has great scope for improvement [97]. Power supply systems must

be reliable as they are critical for renewable sources that mainly

depend on the weather [98], hence digital control [99] or intelli-

gent control based on Neural Networks [100,101] should be used as

control strategies for the optimal sizing of renewable generators.

Comments on wind farm optimization using MPPT approach
Most wind farm optimizations are conducted making use of the

optimum power point method. It is conducted using the wake

design and is very associated with distant relative positions of the

wind generator and input wind velocity. Thus, additionally, it

justifies the choice of the wind farm area. Installation and wind

turbine placement is dependent on the wind direction [105]. The

wake loss can go down when the distance between wind turbines

along prevailing wind direction must be greater compared to the

vulnerable wind direction [106].

Hardware implementation
The authors in Refs. [107] present a series of studies of various

optimization techniques showing processor speed, function calls,

number of cores used, and total Random Access Memory (RAM)

installed in the system. The inference deduced from this study is

the conventional algorithms such as the basic genetic algorithm

and simple particle swarm optimization approach are simpler, less

complex and require less memory. Whereas advanced algorithms

and methods such as preconcoditioned sequential quadratic pro-

gramming require higher memory but have faster convergence.

It’s also noteworthy to point out that the gradient based strategies

have done much better in finding the relative optima particularly

for scaled-down wind farm sizes. Also, latest research shows that

wind farm using optimisation techniques are extensive in the

offshore region [102]. The energy production in offshore wind

farms are highly dependent on the model type (wake interaction

model, turbine layout optimisation model, simulated wind power

generator, mathematical model and surrogate model), control

strategy and optimisation technique [103,104].

Hence, the algorithms categorised are easy, moderate and diffi-

cult in Table 4. This categorisation is based on the number of steps

the algorithm takes for execution, computational time and con-

vergence speed. Hence, the algorithms with least number of

execution steps, least computational time and faster convergence

speed is categorised as ‘Easy’. The algorithms with high number of

execution steps, high computational time and slow convergence

speed is categorised as ‘difficult’.

Cost statistics of wind farm optimization
The algorithmic optimizations have been thorough in the prior

sections. This section will detail on the price degree optimizations
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on Wind Farm. The estimated price of wind farms is based on the

following factors such as the turbine supply, turbine installation

etc. Each cost element is decided to becoming a part of the capital

spending (CAPEX) and the functional expenditure (Decommis-

sioning expenditure or opex) (DECEX) [109].

Turbine supply
The rotary engine costs are decided based upon the worth per

turbine in concert with tower. The turbine producers have furn-

ished these values through various considerations with the policy

makers of the offshore wind business. This value thus does not vary

due to the layout unless the whole range of turbines or perhaps

invest capability changes.

Turbine installation
The rotary engine installation costs are backed promote values for

vessel costs as well as capacities. These costs are modelled by

scheming the anticipated time required to invest all of the turbines

at the specific locations. The value design differs from typical

methods through the work of the algorithms.

Foundation concept
The cost of transition piece and delivery of an invented foundation

to the set up port are embodied by the foundation conception

prices. Wind power facility layout improvement tools are generally

deployed in first stages of the wind farm design at the objective

elaborate the value of soil testing. Soil surveys are very crucial prior

to the assembly of the wind farm as soil that is loose is able to

damage or perhaps collapse the wind farm. Hence, economical

models are needed dependent on correct soil surveys.

Maintenance and operations
The maintenance and operations costs are supported anticipated

maintenance and operations expenses, is within the 5–100 MW to

1000 MW. The maintenance and operations costs are classified as

operational expenditure as these are incurred annually during the

time of operation. Fig. 7 details the areas of concentration to

reduce and optimise wind farm cost.

Future research trends in wind farm technology
Within the last 15 years, maturity has been reached by turbine

technology. The developments in horizontal turbine performance
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methods as well as strategies are able to end up to more cost

reductions and within the near future, wind energy will have

the ability to replace Gas and Oil. The main conclusion that will

be obtained from this particular assessment would be that the

amount of analysis documents that will utilize optimization strat-

egies to unravel for the maximum horizontal turbine blade, aero-

foil type and rotor like challenges have exaggerated significantly in

the recent past. The authors anticipate long haul optimization

challenges are likely to be set as multi disciplinary problems. Thus,

to place the final remarks, the writers have broadly classified the

future research trends in wind farm technology.

1 The majority of the papers presented illustrates the works

contemplating optimizing the power system topology and

the mechanics topology. The two factors are co related that

ought to be considered at exactly the same period in wind

farm planning stage, therefore, in the future, a general cost

effective wind farm may be found. Efforts should be put on

the information exchange, along with an alternative man-

agement system to verify the collaboration between different

sections. General electric along with the wind farm industry

is switching to some digitization stage where together with

the assistance of analytics and data for creating superior

design for better problem solving. Customized aerodynamic

efficiency and analytics platform upgrades the trouble shoot-

ing and enhances better and efficient usage of the wind Farm

[108].

2 Exhaustion load is the change seen in a material under the

influence of stress created during cyclic stacking. It causes the

decrease of wind farm lifetime because of the wake turbulence.

In the event that closer dispersing is orchestrated between two

Wind turbines, the weakness burden will increment. Exposi-

tory models are expected to assess the weariness heap of the

entire wind farm in the future.

3 Unwavering quality is a significant factor for the exhibition of

wind farm at Offshore. Since the activity and support is expen-

sive and tedious for offshore wind farm, it is important to have

a safe electrical framework. In any case, greater unwavering

quality consistently reacts to greater venture. Henceforth, the

electrical framework configuration should find the trade off as

indicated by the down to earth necessities.

4 Heuristic calculation and scientific programming strategy are

both pertinent in fathoming the wind farm enhancement. For

wind farm with a predetermined number of Wind turbines,

numerical programming strategy has its one of a kind focal

points as fast convergence and robustness. The improvement of

offshore wind farm is towards enormous limit within excess of

100 Wind turbines. In such a case, the heuristic calculation will

show its preferred position since it can get another ideal

arrangement quicker, and adopting innovation can be effec-

tively received to additional computational speed.

5 Wind farm noise control is another area interest in the present

trend and will continue further [114]. Previous research on

wind farm layout optimization has been generally aimed at

achieving the minimum investment costor maximum cap-

tured energy. The approach in Ref. [114] focuses on an optimal

layout for a wind farm considering its noise, without sacrific-

ing power production.
Conclusions
Wind farm increasingly attracts worldwide attention due to its

contributions in reducing carbon emission as well as the potential

value of higher energy production efficiency. In this paper, the

most important papers on wind farm layout optimization techni-

ques are systematically reviewed. The concepts behind types of

models used in wind technology are highlighted as well. The

different works on soft computing techniques for wind farm layout

modelling are elaborated in detail. In the critical evaluation sec-

tion, the research methodologies are reviewed in terms of base

factors such algorithm complexity, computational speed, objec-

tive functions, optimization techniques, cost statistics and hard-

ware implementation. Hence, this paper will be useful to the

researchers and new entrants as it is one step solution for the

research of wind farm layout optimization.
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