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Abstract: Sea waves constitute a natural phenomenon with a great impact on human activities,
and their monitoring is essential for meteorology, coastal safety, navigation, and renewable energy
from the sea. Therefore, the main measurement techniques for their monitoring are here reviewed,
including buoys, satellite observation, coastal radars, shipboard observation, and microseism analysis.
For each technique, the measurement principle is briefly recalled, the degree of development is
outlined, and trends are prospected. The complementarity of such techniques is also highlighted,
and the need for further integration in local and global networks is stressed.

Keywords: dynamic measurement; sea state measurement; wave buoys; satellite remote sens-
ing; coastal radars; shipboard sea state observation; microseism observation; networks for sea
waves monitoring

1. Introduction

Sea waves are produced as a response to wind energy transfer at the air–sea interface.
Short surface waves form at the sea surface, increasing the surface roughness and, thus,
the wind stress and the wave height. This process continues until the waves have reached
equilibrium with the wind forcing. In a vertical plane, sea waves are formed in two
extremes: wave crests and troughs. The vertical distance between crest and trough is
defined as the wave height, whereas the wave period can be defined as the time it takes for
two consecutive crests to pass through a fixed point. Wave sizes vary from centimeters in
length (ripples or capillary waves) to kilometers (storm surges and tides), but historically,
the measurement of waves in the open sea has aimed at recording information on wind
waves, with a wavelength from meters to hundreds of meters.

An apparently random sea surface can be thought of as the sum of many simple
wave trains, whose parameters can be defined via a time domain approach (zero-crossing).
However, introducing the wave spectrum in the frequency domain is a more efficient
way to formalize this concept. Using harmonic analysis, each wave recording is broken
down into a large number of sine waves of different frequencies, directions, amplitudes,
and phases. This approach, defined as Fourier analysis, provides an approximation of
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the irregular shape of the real sea wave, recorded as the sum of trigonometric functions
(sine curves); each frequency and direction describes a component of the wave that has an
associated amplitude and phase.

The wave height is usually expressed as significant wave height Hs, defined as the
mean value of the highest one-third of wave heights [1], or it can be estimated from the
spectrum obtained from a time series of sea surface elevation. The vertical displacement of
the sea surface over time in a fixed position, measured with a non-directional instrument,
can be represented as a sum of sinusoidal signals in frequency f. Assuming random phases
and adding the square of all the amplitudes in a small frequency range, we obtain a non-
directional wave frequency spectrum S(f ) of the wave signal (with dimensions m2/Hz).

Wave spectra can be estimated using spectral estimation methods—either non paramet-
rical, such as the fast Fourier transform (FFT) following a proper estimation procedure [2],
or parametrical, based, for example, on autoregressive moving average (ARMA) modeling
of the time history [3].

Directional instruments can also measure horizontal displacements. The goal of
directional wave measurement is to obtain accurate estimates of the two-dimensional
energy distribution in frequency f and direction θ, without any preliminary assumptions
about the shape of the distribution. The sea surface can be described by the two-dimensional
spectrum of waves in frequency and direction S(f,θ), expressed as the product of the non-
directional wave frequency spectrum S(f ) and the directional distribution, as follows:

S( f , θ) = S( f )
[

a1 cos θ + b1 sin θ + a2 cos(2θ) + b2 sin(2θ) + ∑∞
n=3(an cos(nθ) + bn sin(nθ))

]
, (1)

where n is the summation index. It is currently highly recommended that all directional
wave measurement devices reliably estimate the energy of the wave S(f ), which is related
to the wave height, and the first four coefficients of the Fourier series a1, b1, a2, and b2
in Equation (1), which defines the directional distribution of this energy [4]. The com-
bination of S(f ), a1, b1, a2, and b2, or any other equivalent parameters [5], forms the set
of “first-5” spectral wave parameters. They provide basic information (significant wave
height, peak wave period, and average wave direction in the peak wave period), as well
as a further set of sea state information to be used for a wide range of applications. Fur-
thermore, the first four moments of the directional distribution are the mean direction of
the wave (the first moment), the directional spread (the second moment), the skewness
(the third moment, defines how the directional distribution is concentrated), and the
kurtosis (the fourth moment, defines the peakedness of the distribution).

Significant advances have been made in the measurement of waves over the past
decades, and numerous measurement devices are now available that operate on different
principles, some of which are well-established while others are still under development.
Here, several measurement techniques are reviewed, including buoys, satellite observa-
tion, coastal radars, shipboard observation, and microseism analysis. For each technique,
the measurement principle is recalled, the degree of development is outlined, and trends
are prospected. In any case, standardized measures are essential to ensure consistency
between the different stations, so much so that it is necessary to define reliable measurement
networks and integrate information at the regional level. This last aspect is thus highlighted
at the end of the paper

2. Wave Buoys
2.1. Drifting Buoys

Buoys, whether moored or drifting, have the ability to communicate, in a programmed
way, in real time via satellite telecommunication systems, transmitting acquired observa-
tions to collection centers. The collected data are used in different applications, including
research, environmental monitoring, weather forecasts, validation of oceanographic and
meteorological models, as well as safety at sea and coastal defense works planning [6].

There are many different types of drifting buoys and moored buoys, depending on
the application and measurements required in different seas and oceans. Drifting buoys
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are floating platforms without any type of anchor, and can be divided into three different
categories: surface drifter, subsurface floats, and ice buoys. Surface drifters (see Figure 1)
provide a unique representation of surface current dynamics, and can supplement satellite
observations to study climate-scale problems. Generally, drifters are characterized by a
surface buoy and a drogue moving below the sea surface and attached by a long, thin tether.
Batteries, sensors, and other electronics are contained in the buoy, whereas the drogue is
an underwater anchor, a cylinder of four to seven sections, with a large hole through the
middle of each section, giving the drogue the appearance of a holey sock [7]. The holes are
important because they create lots of small areas of turbulence to slow its larger slipstream
speed and improve its stability when moving. In this way, its speed and direction can
be made to better match those of the actual currents. Drifters also measure temperatures,
salinity, air pressure, and surface wind speed and direction. A drifter that is not tethered
to its drogue is a good wave following device, and is a potential tool for global wave
measurements. A drifter can also be used to yield high-quality directional wave spectra
by installing on it a downward-looking acoustic Doppler current profiler (ADCP), used to
derive two-dimensional spectra from wave orbital velocities, or a global positioning system
(GPS), to measure the motion of the drifter at frequencies greater than 0.01 Hz. Whereas
ADCPs are expensive, GPS sensors are relatively cost-effective and easy to install. Thus,
wave drifters are generally developed based on GPS receivers and deployed in the open
sea. Directional wave spectra (DWS) drifters are a new generation of GPS-based tracking
devices, able to compute the “first-5” directional Fourier coefficients (a0, a1, b1, a2, b2) used
to derive wave parameters such as significant wave height, swell direction, and directional
spread, among others [8].

Figure 1. A drifter neatly compressed for deployment (left) and with the nylon drogue fully
extended (right), as it will be in the water once the cardboard wraps dissolve. Photos cour-
tesy of National Oceanic and Atmospheric Administration (NOAA)—Atlantic Oceanographic and
Meteorological Laboratory.

Autonomous systems used to profile the deeper waters of oceans are called floats, simi-
lar to drifters, because they are unmoored and measure currents, temperature,
and salinity. Floats are programmed to drift below the sea surface at different depths,
forced by both horizontal currents and surface waves. Measuring waves accurately using
floats is possible, and relatively inexpensive. One of the main applications involves an
Inertial Motion Unit (IMU)-type device consisting of tri-axial accelerometers, rate gyros,
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and magnetometers. IMUs provide an accurate measurement of accelerations and tilts.
Further upward-looking ADCP is also applicable. To change their buoyancy, floats are
equipped with simple mechanical pumps, bladders, and other devices, allowing them to
fluctuate between different depths. Data sending takes place after the floats rise to the sea
surface periodically to send data via their satellite antenna [9].

The main application of both surface drifters and subsurface floats is to measure
ocean trajectories, which are useful for both visualizing ocean motion and determining
the time-evolving velocity fields. Lagrangian analysis of ocean velocity data reveals that
very different kinds of circulation patterns occur in different regions, and shows the
interactions between currents, topography, and coastlines. A recent experiment has shown
the possibility of obtaining wave measurements from floats via measurement of the pressure
difference between the top and the bottom of the float [10].

Ice buoys are mainly used to track the dynamic and thermodynamic evolution of
drifting Arctic and Antarctic sea ice, and to acquire meteorological and upper oceanographic
data [11,12]. They can sit on sea ice in the open Artic or Antarctic Ocean to evaluate the
seasonal evolution of the thermohaline structure of the ocean during ice formation/freeze
up. Depending on how the platform sits on the sea ice, snow depth and ice thickness
variations may be derived from either ultrasonic range finders, such as those on automatic
weather stations (AWS) or ice mass-balance thermistor strings, or solid-state sensors [13,14].
Generally, ice buoys measure the ice motion using an inertial motion unit (IMU), performing
measurements at 10 Hz and transmitting the full wave spectrum, geographical location,
and battery power status at predefined intervals [15]. In most cases, these buoys are part of
a wider buoy network, which includes moored wave buoys, automatic weather stations,
GPS buoys, and data loggers that transmit the data via satellites in real-time. In research
applications, ice buoys used for wave spectral data detection via onboard accelerometers
have been deployed in marginal ice zones during the period of ice formation (pancake
ice) [16].

2.2. Moored Buoys

The last type of buoys focused on in this paper is moored buoys (see Figure 2),
a category that encompasses a large number of platforms (either small and cheap or rela-
tively large and expensive) anchored in fixed positions to derive long-term observations
under many various atmospheric conditions and with different oceanographic sensors.

Several platforms have been developed for moored buoys; they can vary from a
few centimeters in height and width to over ten meters, but all different sorts of moored
buoys had been developed to capture and model information about ocean dynamics on the
surface, determining the directional spectrum of waves in the open sea. Data are usually
transmitted in real time and disseminated via the global telecommunication system (GTS)
of WMO for use by national meteorological centers.

These data can be used to greatly improve forecasting and warnings for severe
storms, since wave patterns have been verified to exhibit negative bias at maximum wind
speeds [17–19].

A buoy wave-measurement system has some typical components, such as the plat-
form (comprising the hull and the mast), the power system (e.g., sealed lead acid gel
batteries charged by solar panels), the electronics payload (i.e., data acquisition systems,
nautical light, GPS receivers, and one or more data transmitters), the sensors (wave and
meteo-oceanographic sensors), and the mooring. Wave buoys can be spherical, cylindrical,
discus-shaped, or boat-shaped [20]. Plastic and foam construction has spread in recent
years for hulls, but the current trend is to use aluminum or marine alloy steel as a construc-
tion material to prevent the release of microplastics into the sea. Mooring methods depend
on the depth of deployed waters and cost factors; essentially, there are three typical systems:
all chain mooring (used in shallow water), semi-taut mooring, and inverse-catenary moor-
ing [21,22]. The buoys must be moored carefully; tensions are to be avoided so that their
movements are not affected by the mooring and they can adequately define the free surface.
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Moorings that allow the buoy to float freely and actively rotate within a well-defined guard
circle can be made of steel-linked chain and wire rope, synthetic fiber rope, or bungee cord.
Synthetic ropes (nylon, polyester, polypropylene, or advanced fibers) do not noticeably
corrode or deteriorate in seawater, and their strength to immersed weight ratio is excellent,
so they are often used for buoy moorings.

Figure 2. The Capo Mele moored buoy is a Fugro Oceanor SEAWATCH Midi 185 (radius of 1.85 m).
It is located at about 3NM from Andora port (Liguria, Italy). Thanks to a weather station 2 m above
sea level, the buoy measures wind (direction, intensity, gust), atmospheric pressure, humidity, and air
temperature. The observed marine parameters are wave significant height and maximum peak, wave
period and direction, current intensity and direction from 3.5 to 70 m, and sea surface temperature.
Photo courtesy of Regional Agency for Environmental Protection of Liguria Region (ARPAL).

Several methods have been described to determine the directional spectrum of waves
in the open sea using moored buoys; a full account of the physical principles on which
they are based has been given in [23–26], while an in-depth study of the evolution of these
devices was given in [27–29]. The spectrum of the sea surface is not exactly reproducible
analytically, but under certain wind conditions the spectrum acquires a characteristic shape.
With experimental tests, parametric spectrum models have been obtained consisting of
approximate expressions that can adapt to the spectrum of sea surface elevation. Among
the many proposed similar models are the Pierson–Moskowitz model and JONSWAP [30].
These spectra were experimentally derived under fully developed wind conditions in the
generation area in deep water, and can be used to relate the shape of the spectrum of the
wind waves. To measure the directional spectrum of wind waves using moored buoys,
an FFT is generally performed on the buoy displacement data. Considering only the “first-
5” Fourier coefficients, this produces a smoothed version of the directional spectrum, as the
coefficients are averaged to decrease the variance of the estimate. After that, the directional
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wave spectrum is calculated from the average coefficients using an appropriate weighting
function [31,32].

Moored buoys either follow water particles (typically spherical shaped), referred to
as wave-following or translational buoys, or they follow slopes (typically disc-shaped),
referred to as surface-following or pitch and roll buoys. These essentially involve a set
of inertial sensors, such as accelerometers and tilt sensors, for the determination of heave
pitch and roll angles [28]. Accelerometers are used to detect the axial acceleration of the
buoy concerning the inertial system, which is then used to calculate the real-time position
of the buoy by integrating twice. The gyroscopes acquire the reference coordinates that are
essential for the aforementioned positioning. Gyroscopes require no external information
and have no optical or electrical connections to the external environment. However, because
gyroscopes contain weak parts that rotate at high speeds and can produce drift, they are
less reliable for long-term high-precision operation.

These sensors’ wave height and directional frequency spectra estimations are based on
measurements of three concurrent time series, which can be transformed into a description
of the sea surface via a 6-degrees of freedom non-linear equation of motion in the sensor to
provide good integral wave parameter estimates (height, peak period, mean direction at the
peak period, etc.), and by using the Maximum Entropy Method, an adaptive data procedure
capable of obtaining a spectral estimate of higher resolution than FFT based on shorter
data records, which fits an autoregressive model to the data to derive directional frequency
spectra [33]. A triaxial accelerometer measures acceleration in three mutually perpendicular
directions. It does so using a single accelerometer unit measuring the acceleration along
each axial direction (x,y,z), while double integration of the triaxial acceleration derives the
buoy motion along (x,y,z). Sensor systems can sample at rates ranging from approximately
1 Hz to 10 Hz or more; furthermore, the sampling period can vary from about 17 min to
more than 35 min. These variations all contribute to the differences in the measured waves.

In the most widely used water particle-following buoys, a heave–pitch–roll sensor
is mounted, along with two horizontal hull-fixed accelerometers and a compass to de-
termine directional wave information. A common alternative configuration uses three
accelerometers to measure total accelerations along the mutually orthogonal axes of the
buoy (x,y,z), and three angular rate sensors to measure rotation rates; slope-following
buoys use a similar sensor package. Pitch and roll angles, dz/dy and dz/dx, are crucial for
deriving directional wave information from data buoys; a gimbaled gyroscope sensor is
typically used to provide the pitch and roll information, but this may also be derived from
the outputs of a triaxial angular rate sensor, using magnetometers or a dedicated motion
package [34]. The Fourier coefficient estimates are derived directly from the measured
accelerations and linear wave theory [35,36].

For a slope-following system, the coefficient estimates must include various corrections
for the mooring response of the hull, which is trigonometrically related to the four Fourier
directional coefficients [37,38]. To calculate the directional wave parameters, the buoy
will use both angular motion data and surface elevation data in the frequency domain by
measuring the correlation between the slopes of the north–south and east–west angles and
the lift dataset. Then, it will calculate the directional coefficients. The vertical direction
used is that along the axis of the buoy itself, rather than the true vertical in relation to
the Earth, but this can cause serious errors. The gimballed sensors have an integrated
mechanical system used to keep the accelerometer vertical when the buoy and the sensor
are tilting. These have been used operationally since the early 1970s to determine pitch and
roll angles [39].

In recent years, the trend has been to migrate from these fixed and gimballed ac-
celerometers to electronic motion packages housing triaxial accelerometers combined with
digital magnetometers and compass packages that cover nine degrees of freedom, in order
to measure the motion of the buoy and translate it to the free surface. The cost, power
consumption, and size of these are significantly lower, and the greater challenge remains
the returning of high-quality Fourier coefficients for directional estimators. Strap-down
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accelerometers, due to their low cost and low maintenance requirements, are a very com-
mon type of sensor. Compared to a traditional gimballed accelerometer, a strap-down
accelerometer significantly reduces the cost and size of the system and does not require
any external inputs or devices. However, due to errors in manufacturing and propagation
errors in the onboard calculations, a strap-down accelerometer can produce a significant
error, especially in low-cost systems [40]. These mechanical and electrical components can
be combined, on a micrometric scale, to obtain a microelectromechanical system (MEMS).
The analysis package (payload) acquires the raw signal and transforms it into an estimate
of the free surface, from which directional estimators (the Fourier coefficients a1, b1, a2,
and b2 in Equation (1)), frequency spectra, and integral wave parameters are ultimately derived.

To derive more accurate measurements, it would be preferable to have buoys built
to carry out wave measurements only, because in this way the hydrodynamic response
of the hull and the software filters used can be optimized. However, for reasons of cost-
effectiveness, many buoys are designed to measure more parameters than wave data,
especially in deep water, so the accuracy of these buoys’ wave estimates can be significantly
compromised (for directional and non-directional waves). In fact, since the information
on directional waves is derived from the movements of the buoy via the motion sensors
installed onboard, through a mathematical transfer function that resolves the response of
the buoy to the wave motion, it is quite evident that some specific characteristics of the
buoy, such as the shape and dimensions of the hull and the superstructure, the material
composition and the characteristics of the mooring, have a considerable influence over the
estimate of the free surface. This is especially noticeable at low energy levels and when
the measured wave signal is weak due to increased signal noise, such as in the cases of
short and long wave periods. As has been pointed out, although it is known that each
buoy should have its transfer function calculated for the deployment configuration based
on the aforementioned physical factors affecting its movement, in most cases, this is not
feasible [41]. Many buoys are developed as a part of projects for which a single transfer
function is generally implemented according to the design conditions. It therefore becomes
important to determine the transfer functions necessary to correct the variation caused by
waves when the moored buoys do not exactly follow the surface of the wave. For example,
it is necessary to compensate for the response of large buoys [40]. A comparison test of
six different buoys with a variety of manufacturers, shapes, sizes, sensors characteristics,
and mooring configurations showed general agreement for the integral wave parameters,
but significant differences for the spectral parameters [42].

A recent development in buoy sensors is to derive wave parameters and the directional
wave spectrum using the buoy GPS output velocities, representing the velocities of water
particles. Comparisons of simultaneous GPS-derived and buoy-measured directional wave
spectra showed good agreement [43]. There are numerous studies comparing the advan-
tages and disadvantages of buoys using GPS and traditional buoys using accelerometers,
highlighting that the levels of accuracy and the fields of application of the two technologies
are very close [44,45].

Using a GPS receiver to measure wave parameters does not require subsequent cali-
brations or complicated processing to extract the wave data (it can be done by applying
a high pass filter). GPS buoys, which are typically more compact in size, can facilitate
three-dimensional movement with an accuracy of 1–2 cm up to wave periods of 100 s,
and an accuracy of between 0.5% and 1% of the measured value. On the other hand,
the energy consumption of the buoy is high, and moreover, errors and distortions of the
GPS measurements are possible due to the multipath of the antenna and interference from
various sources. Wave measurements using GPS have been pioneered by several research
groups and manufacturers [46], but recent advances in technology and lower prices are
paving the way for global implementation [8].
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3. Satellite Remote Sensing

In this section, the physical basis and logic components of satellite microwave remote
sensing are reviewed first. The goal is to provide a unitary and solid framework of the
fundamentals. In Section 3.2, a brief summary of the main value-added products, out of the
ones focused on the sea wave, is given. Special reference to operational services is made.
Finally, in Section 3.3, the use of microwave remotely sensed measurements in sea waves
monitoring is reviewed.

3.1. Background

Satellite microwave (MW) remote sensing represents a special observational tool
especially for regions that are not easily accessible for in-situ measurements. Further,
due to the MW’s propagation and interaction peculiarities, satellite measurements are
independent of solar illumination providing a denser revisit time [47]. This is of particular
relevance to the ocean environment, since it is the main locus of dynamical processes,
and in some areas only a few in situ measurements can be made, for instance in the
Southern Ocean. Furthermore, MWs are much less dependent on cloud cover [47].

MW remote sensing also involves some critical features that must be considered.
Satellite MW remote sensors are narrowband systems that estimate the complex reflectivity
of the ocean surface in an “imperfect” manner. The main objective criteria for defining such
imperfections are the resolutions—the radiometric resolution, the spatial resolution and
the spectral resolution. The additional temporal resolution or revisit time depends on the
sensor swath and scanning configuration, as well as the platform height.

MW satellite sensors can be passive or active: in the passive case, when there is no
source of illumination onboard the satellite, the electromagnetic data received at the sensor
antenna are those naturally emitted by the marine scene; in the active case, an electromag-
netic pulse is transmitted by the sensor antenna into the ocean, and the corresponding
electromagnetic signal reflected by the environment is received by the sensor [47]. In both
cases, random measurements occur because of the random nature of the scene.

Another important point is the observational scale. Some satellite sensors are meant
to observe geophysical phenomena at large scales, and therefore they are called large-scale
sensors, while some others operate at small scales, and are called small-scale sensors.
In general terms, the spatial coverage is paid for by a coarser spatial resolution [47].

MW remote sensing calls for the solution of three subproblems: measurements, for-
ward modeling and inverse modeling. The first subproblem is relevant to the accomplish-
ing of not only high-quality measurements, but also to the proper design of the sensor.
The second subproblem is sometimes neglected in modern blind approaches; once a proper
geophysical quantity of interest is defined, it is important to investigate whether the ob-
served measurements are related to said geophysical quantity. In a formal sense the forward
model calls for the development of a theoretical relationship between the observable quan-
tity at the sensor and the geophysical quantity. Further refinement leads to a semi-empirical
geophysical model function (GMF) that is appropriately tailored with reference to the
geophysical quantity and the sensor of interest. The third subproblem is known as the
inverse problem, and calls for the quantitative estimation of the geophysical quantity of in-
terest via a proper set of measurements. This latter problem is usually non-linear, ill-posed,
and affected by noise. Despite these challenges, MW remote sensing is able to generate
high-quality geophysical products that greatly contribute to the advancement of marine
science and operational services.

Passive MW sensors are known as MW radiometers, and collect the electromagnetic
field data naturally emitted by the environment at their receiving antenna. MW radiometers
are large-scale sensors, and their spatial resolution is not fine [47].

Radar altimeters are large-scale nadir-facing active sensors. This peculiar nadir-facing
configuration and its spatial resolution makes the measurements sensitive to large-scale
sea surface slopes. Therefore, the radar altimeter is the best MW sensor for sea state
estimation [34,48–51].
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Scatterometers are large-scale off-nadir active sensors. The primary application of
scatterometers is the indirect measurement of near-surface (local) winds over the ocean.
Such scatterometer winds are routinely assimilated into Numerical Weather Models [52–55].

Synthetic Aperture Radar (SAR) is a narrowband-coherent, i.e., phase-preserving,
off-nadir-active MW imaging sensor. The design of SAR is meant to enhance the spatial
resolution, and it is used for applications that are not time-variable within the coherence
time or integration time of such sensors. The SAR is a small-scale sensor that, although it is
mainly optimized for defense and geophysical applications, has gained more and more
interest in marine applications as well [47].

3.2. Review of the Main Marine Value-Added Products

Let us briefly review the main marine value-added products associated with the MW
satellite sensors but the ones related to sea waves that are reported in much more detail in
Section 3.3.

Standard multichannel MW radiometers have different beams, each associated with a
frequency, and for each beam the horizontal/vertical polarization powers are measured.
The combination of the different channels, each characterized by a frequency and a po-
larization, allows for producing some key operational added value products for marine
applications. Satellite MW radiometers provide a valuable picture of the global sea surface
temperature (SST) at about 25 km [56]. In other cases, SST maps are also obtained by MW
and infrared radiometer measurements. At the same scale, MW radiometers operationally
provide wind speed maps [57]. The accuracy of such latter products has been assessed
in various ways, and in rain-free cases, matches that of an active sensor [58,59]. MW
radiometers are routinely used to monitor hurricanes [60].

Two special classes of advanced MW radiometers have also been developed. The first
class includes the fully polarimetric radiometer onboard the WindSAT, which is used to
estimate the sea surface wind field [53,61]. In the second class we find the L-band MW
radiometers, i.e., those onboard the European Space Agency (ESA) SMOS and NASA
Aquarius satellites [62,63]. They are designed to accurately estimate the sea surface salinity
at a global scale.

The gold standard for estimating the sea surface wind field is provided by the scat-
terometer. The estimation of the wind field from such measurements requires significant
processing, and involves the solution of a nonlinear inversion problem. The mathematical
core of the first phase calls for the minimization of an objective function—that is, a convex
function of the residual between the measurements and the GMF [54]. The wind estimation
approach results in multiple solutions associated with local minima in an objective function,
formed from the noisy backscatter measurements. The second step is known as the dealias-
ing step, and allows the selection of the best solution. It has been demonstrated that in the
set of possible solutions, or aliases, there is a true solution, and that it is possible to identify
it with only external information [54]. Scatterometer winds are routinely assimilated into
numerical weather models [59].

The Synthetic Aperture Radar (SAR) is a small-scale off-nadir active imaging sensor
that integrates a set of echoes to achieve a fine spatial resolution. In very simple terms, such
integration can be described as an offline processing approach that coherently combines
the echoes properly corrected by the different traveling paths [47]. The calibrated complex
image is the product used most commonly to extract the geophysical information of
interest. In the case of the SAR, the electromagnetic modeling of sea surface scattering
calls for a long wave and short wave sea surface model. Furthermore, in the case of
SAR, ocean dynamics affect the image formation, and different models for this have been
proposed in the literature [64]; the main dispute is between the distributed surface (DS) [65]
and the velocity bunching (VB) model [66]. Because of the dynamic influence of the ocean
environment in SAR imaging, a debate on focus adjustments emerged in the early days [67],
but nowadays, SAR image processing is performed for a static scene, and so the residual
information is retained [67].
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The marine applications of SAR measurements are diverse, but the only one that
has been considered to support operational services is related to marine oil pollution
and vessel monitoring. Such applications are particularly benefitted by polarimetric SAR
measurements [68,69].

3.3. Sea Waves Monitoring

In this subsection, the focus is on ocean wave products as generated by MW satellite
remote sensing measurements.

The gold standard for the estimation of the Significant Wave Height (SWH) is the
radar altimeter. It transmits pulses into the sea surface to accurately estimate the distance
between the satellite and the sea. The electromagnetic interaction in this case is governed
by the Kirchhoff scattering model, showing a dependence on large-scale sea slopes.

Two main physical problems must be considered. First, the interpretation of the
(averaged) pulse time delay in terms of distance, then the semi-empirical modeling of the
received echo and its use in the inversion process.

Accurate range estimation calls for two main subproblems to be considered: the precise
orbit determination of the satellite, and the effective electromagnetic wave propagation
speed. The first subproblem requires the use of precise positioning measurements. This
benefits from high-precision positioning signals, such as GPS [48]. Furthermore, the use of
high satellite altitudes allows us to limit the atmospheric drag, to obtain a more regular
Earth gravitational field and to better track the satellite from the ground.

The accurate estimation of the range depends on the corrections of the vacuum
speed [48]. The main atmospheric corrections are required due to the ionosphere and
troposphere, the latter of which is characterized by two terms: dry tropospheric correc-
tion and wet correction. Other corrections are related to sea surface scattering, and are
collectively known as sea state bias. In order to most effectively estimate such correc-
tions, dual-frequency radar altimeters are typically used, and a side radiometer sensor is
deployed onboard [48].

With reference to the semi-empirical modeling of the received echo, it must be un-
derlined that the radar altimeter is optimized for the open sea, and the reference average
echo waveform is the Brown model [48,49]. The echo waveform can be used to estimate
the free parameters of the model by comparison with real (averaged) measurements. Such
an inversion process is known as retracking, and allows us to estimate the range with
centimeter-level precision, as well as the SWH [34,48,49].

The fluctuations in range measurements due to tides, atmospheric pressure, and ocean
waves must be filtered out to estimate the sea surface height (SSH). The deviation in SSH
from its mean over a few decades is known as the sea level anomaly (SLA).

In Figure 3, the global SWH map measured by the ESA ERS-2 radar altimeter during
the 1995 boreal summary is shown.

Currently, efforts are being made to enhance the radar altimeter inversion process
in coastal regions [49–51]. There are two main approaches that may co-occur in real life;
the first seeks the resolution enhancement of the measurements by exploiting the partial
correlations of the return, and the second looks for special forms of the semi-empirical
waveform model [49].

The radar altimeter-derived SLA and SWH products are assimilated at ECMWF. These
products are also used for climate studies; see Figure 4.
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Figure 3. SWH global mapping. Courtesy of ESA. https://www.esa.int/ESA_Multimedia/Images/
2002/03/Significant_Wave_Height_Measured_by_the_ERS_Radar_Altimeter#.YZvksOv7zJs.link
(access on 21 December 2021).

Figure 4. Global mean sea level (seasonal signals removed). Climate Change Initiative. Courtesy of
ESA. https://climate.esa.int/en/news-events/coastal-observations-boosted-new-reference-satellite/
(accessed on 21 December 2021).

https://www.esa.int/ESA_Multimedia/Images/2002/03/Significant_Wave_Height_Measured_by_the_ERS_Radar_Altimeter#.YZvksOv7zJs.link
https://www.esa.int/ESA_Multimedia/Images/2002/03/Significant_Wave_Height_Measured_by_the_ERS_Radar_Altimeter#.YZvksOv7zJs.link
https://climate.esa.int/en/news-events/coastal-observations-boosted-new-reference-satellite/
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We now consider the use of SAR measurements. It is here necessary to underline some
special imaging characteristics of the SAR. It is a phase-preserving, i.e., coherent, imaging
sensor, which, given its proper SAR processing chain, generates fine-spatial resolution
images by means of two very different scanning mechanisms: in the range or across-track
direction, the spatial resolution is given by linearly modulated chirp pulses traveling back
and forth at the speed of light, i.e., effectively instantaneously; in the azimuth or along-track
direction, the spatial resolution is given by the platform motion that composes the temporal
long array, i.e., at a velocity that is appropriate for time-varying environments [70].

Since the SAR is a coherent sensor, within each resolution cell there occurs a physical
phenomenon known as fading, which can be modeled as the sum of independent elemen-
tary scattering centers that distinguish each other within sea-free scenes via the scene’s
micro roughness, i.e., at the scale of the electromagnetic wavelength. The manifestation of
such a fading process on the SAR image is known as a speckle [70]. Although the speckle
is often taken to be uninformative, and in several automatic procedures it is reduced at
expense of spatial resolution, this is untrue, and in ocean scenes, it can be related to the sea
state [71,72].

Because of the SAR’s incident angles, the small-scale backscattering is, for low to
moderate sea states, modeled by resonant Bragg backscattering, i.e., due to ripples in
the range of the microwave wavelength. Hence, longer waves are imaged indirectly
under amplitude and phase modulation processes, known as Real Aperture Radar (RAR)
and motion-induced effects, respectively [73]. The RAR process can be described by a
linear function (weak modulation), which relates the NRCS to the long sea wave field: the
RAR Modulation Transfer Function (MTF) [73]. The RAR MTF is modeled by three terms:
the tilt modulation term, the range bunching modulation term and the hydrodynamic
modulation term. The motion-induced effects are SAR-specific mechanisms, and are due
to the SAR azimuth channel acquisition mechanism. The radial component of the orbital
motion associated to the long sea waves generates an extra Doppler shift with respect
to stationary scenes [73], giving rise to velocity-bunching phenomena. In fact, since the
scattering elements are characterized by different orbital velocities, they are non-uniformly
displaced in the SAR image plane, and so the apparent positions of the scattering elements
are bunched and spread out. The radial component of the orbital acceleration is responsible
for the degradation of the azimuthal resolution. Since both orbital acceleration and orbital
velocity vary along the flight direction, they can produce a wave-like pattern on SAR
images. However, for certain radar and sea parameters, the wave pattern can be severely
distorted or completely smeared out [73,74].

For azimuthal traveling waves, the imaging may be highly nonlinear, while the
imaging process is always linear for range-traveling waves and for quasi-range-traveling
waves [73,74].

Hence, the estimate of the sea directional spectrum via SAR images is not a trivial
task. The leading paper on the subject is [75], wherein an iterative ill-posed procedure is
described. The inversion algorithm was refined in [76].

Important advancements have been made in this area, and are described in [77–80].
In [77,78], a new approach exploiting the cross-spectra of the individual SAR is presented
and discussed. The real part of the SAR cross-spectra is exploited to retrieve the ocean
wave spectra, while the imaginary part is exploited to solve the SAR-inherent 180◦ ambi-
guity. In [79], further advancements on the cross-spectra approach have been presented.
The analysis shows that the benefits of Sentinel-1 SAR high-quality wave-mode measure-
ments can be further extended towards shorter-scale waves.

Although classical techniques provide reasonably accurate wave measurements, espe-
cially for swell waves, they face two main problems: the rough knowledge of the RAR MTF,
and the need for reliable a priori information to make the inversion process convergent.

A new parameter, called MACS, is also defined, and is associated with the range-
detected ocean wavelengths of 15–20 m [79]. This parameter has the advantage of not
calling the non-linear inversion scheme [75,77]. In [80], this parameter is exploited for
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global analysis. Along the same conceptual idea has been designed one the sensor onboard
of the China France Oceanography Satellite (CFOSAT): the SWIM. It is a Real Aperture
Radar (RAR) that observe range travelling waves at high spatial resolution while filter out
the azimuth travelling waves [81].

In [82], a study based on deep-learning and co-located radar altimeter and ESA
Sentinel-1 SAR data offers remarkable results. The deep learning approach has been
implemented for low-level SAR cross-spectra, used to estimate the SWH.

In [83–85], fully polarimetric SAR measurements are exploited. Physically, the ap-
proach benefits from the dependence of the polarimetric Cloude–Pottier decomposition,
i.e., the eigenvector dependence, on the orientation angles. Such an approach is feasible for
high-quality fully polarimetric SAR sensors, such as Radarsat-2. The main advantage of this
approach is that the complex hydrodynamic MTF [74] does not need to be estimated [83,84].
In [85], a validation of the polarimetric approach with Radarsat-2 measurements is per-
formed. The analysis shows good agreement with buoy data [85].

Because of the non-linear relationship between the SAR image spectra and the ocean
spectra [73–75], several empirical approaches have been explored to estimate the SWH
using SAR images, e.g., in [86,87], two polarimetric approaches are presented.

A popular and effective approach is the so-called azimuth cut-off approach [88–93].
It was first proposed in [88]. It uses physical phenomena directly associated with the SAR
azimuth channel’s image formation [73–75]. In very simple terms, the azimuth SAR channel
is unable to image ocean wavelengths smaller than the azimuth cut-off. Such a cut-off is
empirically related to the sea state, and in some cases it can also be interpreted in terms
of wind speed [89,90]. The actual implementation is rather complex, and affects the final
quality of the estimate [90], but the enhanced quality of the new SAR sensors, such as that
onboard the ESA Sentinel-1 missions, makes the azimuth cut-off approach very promising.

Let us finally consider another method for observing sea waves: along-track SAR
interferometry [94–97]. The along-track SAR interferometer measures complex image
correlation using two SAR acquisitions that are in all respects similar except for the (small)
time difference. The phase difference, i.e., the along-track polarimetric phase, can be related
to the ocean wave spectra, allowing its estimation. In fact, the sea surface radial velocity
can be determined by the interferometric phase of each resolution unit, and then the wave
spectrum is obtained from the radial velocity. However, this method is still affected by
velocity bunching.

An alternative approach, based on across-track airborne SAR interferometry, has been
also proposed [98]. It employs a well assessed procedure meant to estimate the Digital
Elevation Model over stable scenarios to the marine case. Of course it must be operated
with the two SAR antennas of the interferometer acquiring at the same time (single-pass
mode) and this is not feasible by satellites at present time [98].

The fundamental advantage of these methodologies is related to the fact that while
the amplitude spectra depend strongly on the NRCS modulation of ocean long waves,
which is roughly known, the phase difference is related to the ocean wave spectrum in a
known manner.

Since SAR has the unique ability to indirectly measure the sea’s directional spectra,
it is important to assess the quality of such SAR-derived wave spectra [99]. In [99], a quality
analysis of the key characteristics is performed based on a physical/statistical approach.

4. Coastal HF Radars

Coastal HF (High-frequency) radars are land-based remote sensing instruments that
have attained great popularity in the last few decades, even though they are still considered
an “emerging” observation technique by the Global Ocean Observing System. The reason
for their wide distribution [100] lies in the fact that they are able to provide synoptic data
(i.e., simultaneous over a relatively large area), repeated in time at unprecedentedly high
spatial and temporal resolutions.
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Their essential principle is based on the backscattering of an electromagnetic signal
by the sea surface. This phenomenon gives rise to a spectrum of backscattered signals
(see Figure 5). The main peaks correspond to the first-order scatter from the so-called
Bragg waves. They are the result of a coherent resonance, analogous to the Bragg effect
that emerges in atomic lattice detection by X-rays. These Bragg peaks occur when the
wavelength of surface ocean waves is approximately half as long as the wavelength of
the transmitted signal, as first observed in [101] and later clarified in [102–106]. These
first-order peaks provide information about surface currents, whose velocity (radial ve-
locity with respect to the antennas) can be inferred in relatively simple terms from the
Doppler shift associated with the presence of a current underlying the surface wave trains,
as reviewed in [107].

The continuum surrounding the first-order (dominant) peak represents the higher-
order scattering, partly due to the nonlinear interactions between surface ocean waves.
This portion of the spectrum is the source of information regarding surface gravity waves.
Its inversion is based on the relationship, established in [108–110] and further developed
in [111,112], between the backscattered signal and the ocean wave directional spectrum.
The inversion of an integral equation allows us to retrieve wave parameters such as wave
height and mean direction, as well as dominant wave period. Several approaches have
been applied to carry out such a reconstruction, as reviewed in [113].

Figure 5. Main characteristics of a typical HF radar spectrum [114].

The inversion process is far more complex than that of the first-order spectrum, and is
subject to a number of theoretical limitations, as thoroughly discussed in [115].

At the lower end of the measurable wave height range, i.e., at low sea states, the main
limitation is related to the low signal-to-noise ratio, which is frequency-dependent (HF
radars operating at higher frequencies can detect lower sea states), and this prevents the
accurate detection of very low wave heights [115]. At the higher end of the measurable wave
height range (high sea states), as well as in the case of very intense surface currents, first-
and second-order peak regions may not be well separated, meaning the wave spectrum
is not well defined. This effect is also frequency-dependent, and as a rule of thumb,
the upper threshold for accurate wave height detection can be estimated by Equation (2):

hthr =
2
k0

, (2)



Sensors 2022, 22, 78 15 of 36

where k0 is the radar wavenumber [116,117]. Wave heights above hthr will be under-
or overestimated.

HF radars can be divided into two different categories, Direction Finding and Beam
Forming systems [118]. Direction Finding instruments are characterized by a compact
structure, with closely spaced or even co-located transceiving antennas; these systems
provide information on the wave field that is not resolved in azimuth. This means that
the outcome of the inversion in this case will represent an azimuthal average around
the transceiving system, thus necessitating the use of circular statistics [119]. Parameters
are thus derived over a circumference centered on the transceiving antenna’s location
(the so-called range cell). Its radius should not be too long, to ensure a sufficiently strong
signal, but not too short, to avoid breakers and the influence of local bathymetry [120,121].
On the other hand, Beam Forming, also known as Phase Array, radars utilize arrays of
antennas, which introduces additional logistical issues in the installation and maintenance
processes, and they are unable to reconstruct wave directional spectra on a grid.

As with any measurement instrument, and in particular remote sensing ones (even
land-based, such as HF radars), validation is a non-negotiable prerequisite for scientific
utilization. Validation proceeds through the intercomparison of measurements provided
by different instruments. As discussed in [122], this is a very delicate issue, as metrics have
to be devised to compare the outputs of different instruments that typically provide very
varied results. A preliminary assessment of differences in the measurement principles,
of their inherent constraints, and of biases due to different sampling rates and similar issues
has to be preliminarily carried out. After considering the above, and comparable outputs
have been produced, proper validation can be undertaken.

The typical touchstone of HF radar-derived wave parameters is represented by data
obtained with different kinds of wave buoys [120,123–127]. However, other systems have
been used for validation, including a bottom-installed current meter equipped with a
pressure transducer [128] and satellite altimeter data [129]. More recently, the output of
a sensor for directional wave measurements installed on an ADCP mounted on a MEDA
elastic beacon was used [130]. Finally, impressive intercomparison experiments, utilizing
several moored buoys along with a number of coastal weather stations and model outcomes,
have recently been described [131].

The most common first validation step involves the superposition and qualitative
comparison of data in time: this has been done in the past for relatively limited short
periods, starting from the 1980s and early 1990s [132,133] up to very recently [134–137],
with only a few exceptions, such as [138]. In recent years, such simple validations have
been carried out in the framework of investigations over longer time periods, such as in
the yearly analysis by [120], and in multi-annual ones [127,139,140].

The next (quantitative) step is building scatterplots and estimating statistical param-
eters, such as correlation coefficients [141]. This is also a very straightforward type of
analysis for any data validation, and is extremely common, even though some caveats have
to be taken into account [142]. Examples of simple correlation statistics of HF radar-derived
wave parameters vs. in situ and/or remotely sensed data can be found throughout the
relevant literature. A number of additional statistical descriptors used to validate HF radar
data vs. buoy data (and vs. model outputs, see below) have recently been introduced [127].

A further step in the data validation process would be the comparison of frequency and
directional spectra [115,143,144], which is not straightforward. As to the former, Krogstad
et al. [122] underlined how the simple superposition of spectra measured by different
instruments (e.g., buoy and HF radar) may not yield consistent results because of sampling
differences, possibly solved by looking at the mean spectral ratio for specific frequency
ranges and building some kind of spectral calibration on this basis. The direct comparison
of directional spectra is also unlikely to provide robust results, but may nonetheless provide
interesting information.

Once validated, HF radar data may, in turn, be used for the validation of numerical
wave models, becoming the benchmark themselves, and thus inverting the perspective.
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This is the case reported in [145], which represents probably the first example of this,
and such an approach was recently employed in the Gulf of Naples [130]. The latter paper
compares HF radar-derived wave parameters with two different wave models, a coarse-
and a high-resolution one. The authors find quite a good agreement between the two data
sets, even though caution needs to be applied in this, as the above-mentioned theoretical
limitations of the inversion procedures for radar data might affect the two extremes of
observed sea states. By following this path and strengthening the sea-truth function,
as was already done for surface currents [146], HF-derived wave parameters can also be
assimilated into models [147–149].

To give a few examples of some recent results and applications, Figure 6 shows
the results of a multiyear analysis carried out in the Gulf of Naples [127], where wave
parameters were drawn from a network of three HF radar systems located in Portici,
Castellammare and Sorrento (PORT, CAST and SORR in the map), utilizing data collected
between May 2008 and December 2012 from a 5 km-radius range cell (red arcs in the map).
Validation data for the seasonal variability, spanning from November 2015 through to
December 2018, were derived from a sensor for directional wave measurements installed
on an Acoustic Doppler Current Profiler, itself mounted on a MEDA elastic beacon just
off the urban littoral of the city of Naples. The figure shows the modulation, in terms
of direction and wave height, of the wave climate in the locations sampled, which show
site-specific differences due to the bathymetry and morphology of the Gulf. A strong
seasonal variability in the parameters shows up quite clearly, with higher wave heights in
autumn and winter, as can be expected on the basis of the local and regional meteorological
conditions (as detailed and discussed in the paper).

Figure 6. Seasonal rose diagrams for the waves measured between May 2008 and December 2012
by three HF radar stations installed in the Gulf of Naples, and between November 2015 and De-
cember 2018 by an ADCP mounted on a MEDA elastic beacon: (a) winter; (b) spring; (c) summer;
and (d) autumn (the maps show the locations of the different instruments and the extension of the
range cell utilized around the radar antennas). Adapted from [127].
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Figure 7 is an example of the use of HF radars during extreme events on the Spanish
coast [121]: it shows very good qualitative agreement between buoy and HF radar-derived
wave heights (SWH in the figure) in the course of two storms that occurred in 2017 and 2020
(Figure 7). The grey shaded columns and the black line are the hourly sea surface height
(SSH) and the meteorological tide recorded by a tide-gauge located in Tarragona (TG1),
respectively; the blue line represents wave buoy measurements provided by a Seawatch
instrument deployed off Tarragona (B1); the red and green lines are the radar data derived
with different versions of the proprietary manufacturer’s software used for the inversion
(green line not present in the 2017 data). The pink dashed lines are the lower and upper
limits of wave height detection derived from the theoretical constraints discussed above.

Figure 7. Comparison of measurements collected by different instruments during two storms that
occurred in 2017 and 2020 (adapted from [121]). The abbreviations in the plots are explained in the
main text of this paper.

Figure 8 shows an application in wave energy extraction [140]; studies on the same
line have been carried out in the past, in particular in and around the Wave Hub site,
specifically developed for this purpose [145]. In such cases, the possibility of using the
spatial distribution of directional spectra over a grid, rather than an azimuthal average,
may be important, leading to the utilizing of phased-array HF radar systems. Figure 8
shows the monthly mean fields of wave potential distribution in an area off the coast of
Chile, underlining the strong temporal and spatial variability. This variability, quantified
in terms of indexes and coefficients in the paper, is an important piece of information for
planning the installation of marine energy infrastructures.

As demonstrated by the above and several other papers over the last few years, HF
radars have been proven to be able to provide reliable measurements of significant wave
height, period and direction over shorter and longer periods, allowing us to highlight
spatial and temporal variability in the wave climate, as well as details on the propagation
of waves inside enclosed coastal areas, contributing significant information related to
extreme storm events [121,124,127] and supplying valuable inputs for applications of
various types. We have now realized that the multifaceted dynamics displayed by the
coastal ocean call for integrated observation strategies. The present and the future of ocean
measurement both lie in observation networks that complement, and interact with, each
other. As illustrated in [100], in 2012, a global HF radar network was established and
has been growing exponentially ever since. Even though it was planned primarily for
monitoring surface currents, such a joint effort might effectively contribute to broadening
the possibilities of measuring waves in synergy with other networks, helping us to grasp
the richness of the phenomena developing in this extraordinary environment.
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Figure 8. Wave potential monthly mean fields estimated on the basis of data provided by a phased
array HF radar system installed off the coast of Chile [140].

5. Shipboard Sea State Estimation
5.1. Brief Review of the State of the Art

The seminal idea of detecting sea state parameters using the onboard measurement
and analysis of ship motions dates back to the mid-1970s, when the first pioneering re-
search was undertaken by Takekuma and Takahashi [150] for ships without forward speed.
The first attempts at including the ship speed and, consequently, the Doppler shift effect
were made in the mid-1980s for ships in head and bow seas [151–155], and slightly later
for ships advancing in following seas [155], including the well-known 1-to-3 multivalued
problem that occurs when the sea spectrum is transferred from the encounter to the absolute
frequency domain.

In the last twenty years, this topic has been widely investigated throughout the world,
and several advancements have been made to improve the analysis of ship motions and
the assessment of sea state parameters. In particular, most of these research activities
have been devoted to accounting for the above-mentioned 1-to-3 multivalued problem,
and to developing reliable strategies to reconstruct the sea spectrum from the encounter
to the absolute frequency domain. Besides this, additional efforts have also been devoted
to improving the effectiveness of the spectral reconstruction methods, given that the
hydrodynamic modeling of a ship advancing in a seaway provides some challenging issues
that may lead to errors in the assessment of the main sea state parameters, among which
are the significant wave height and period. In this respect, Pascoal et al. [156] estimated the
wave spectra from the frequency analysis of a reference 59 m offshore supply vessel at zero
and low advance speed by minimizing the cost functional based on the sequential quadratic
programming and genetic algorithm techniques. Pascoal and Soares [157] proposed a fast
iterative procedure for the assessment of directional wave spectra, based on Kalman
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filtering, and applied it to a typical 70 m long vessel. Nielsen and Stredulinsky [158]
analyzed a set of full-scale motion measurements, obtained during the sea trials conducted
on the research vessel CFAV Quest, and compared the estimated sea state conditions against
the relevant ones gathered by the wave radar processor Wave Monitoring System (WaMoS-
II), installed on the considered vessel. Montazeri et al. [159] developed and applied a
simplified parametric approach to estimate the wave parameters, based on the spectral
moments of resembled sea spectra and a partitioning method to separately estimate the
wind and swell components. Nielsen [160] developed an improved method to transform
the wave spectrum from the encounter to the absolute frequency domain, consisting of two
pseudo-algorithms, the former based on the spectral moments of the resembled spectra,
the latter consisting of an optimization method, applied to a class of parametric spectra.
Brodtkorb et al. [161] developed an online sea state assessment algorithm, based on the
analysis of heave, roll and pitch motions, with no a priori assumptions related to the wave
spectrum shape. The algorithm was implemented in a dynamic positioning model and
tested through real simulations under different sea state conditions. Piscopo et al. [162]
developed a new wave spectrum reconstruction procedure, based on the combined analysis
of heave and pitch motions, and tested it against a set of numerical simulations carried out
on the reference S175 containership, with different sea state conditions, speeds and heading
angles. Nielsen and Diez [163] compared the estimated sea state conditions, gathered
from an in-service containership, with the relevant values obtained from a hindcast study,
and discussed some aspects concerning the effect of the vessel speed on the reliability
of the measured data. Finally, Pennino et al. [164] applied a parametric wave spectrum
resembling procedure to a set of real motion measurements, taken onboard the research
vessel “Laura Bassi” during an oceanographic campaign in the Antarctic Ocean carried out
during January and February 2020, and compared them against a set of weather forecast
data provided by the global-WAM model.

5.2. Methodology

The employment of a vessel as a complex system capable of measuring sea state
conditions is encouraged by the variety of sensors and recording instruments, commonly
installed onboard modern ships, and capable of measuring the motion and accelerations
at specific points. In this respect, any vessel can be regarded as a “wave buoy” that,
by means of a proper hydrodynamic model, can be employed to detect the main sea state
parameters, namely, the significant wave height, the wave peak period and the spectral
shape, according to the flow-chart depicted in Figure 9, which is mainly based on three
subsequent steps: (i) onboard measurement of ship motions and accelerations; (ii) data
analysis according to the wave buoy analogy by frequency or time-domain methods,
and (iii) assessment of main sea state parameters by parametric or non-parametric models.
Nevertheless, the wave buoy analogy still provides some challenging issues, mainly related
to the complex hull forms that make the hydrodynamic modeling of a ship advancing in a
seaway difficult, particularly when compared to a wave buoy, whose geometry is markedly
simpler. Furthermore, the ship advances in a seaway at a certain speed, which implies that
the Doppler shift effect needs to considered. These topics will be outlined in the following.

5.2.1. Onboard Measurement

Ship motions and accelerations can be assessed by a variety of sensors, installed
onboard the ship, or even by low-cost measurement systems, such as common smart-
phones [164], which are generally equipped with several built-in sensors that provide raw
data at high sampling rates (i.e., motion sensors, accelerometers and gyroscopes). These
datasets can be analyzed separately or jointly in order to provide the time series of heave,
pitch and roll motions to be further analyzed by means of the wave buoy analogy.
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Figure 9. Typical flow chart of sea state onboard measurements.

5.2.2. Data Analysis

The analysis of ship motions and accelerations is generally based on the linear assump-
tion between the amplitude of the incoming waves and the ship’s responses, which allows
for the employment of the ship complex transfer functions and the relevant Response
Amplitude Operators (RAOs) [165]. In this respect, it should be remembered that the ship
RAO depends on the frequency-dependent added mass, radiation damping and restoring
force, which are generally assessed via boundary-elements methods. Hence, if the ship
response is assumed to be linearly dependent on the height of an incoming wave with
encounter circular frequency ωe, the amplitude of the ship motion response depends on the
RAO value at the same frequency. This assumption is generally true for mild to moderate
wave climates, while some errors arise in harsh weather conditions, as some nonlinearities
occur. The measured data are analyzed by frequency or time domain models.

Most past research activities have been based on the employment of frequency domain
models [166,167], such that the measured ship motion spectra in the encountered frequency
domain are directly embodied to resemble the wave spectrum in the absolute frequency
domain by means of the ship RAOs, as depicted in Figure 10. This method is based on
some additional assumptions [165], namely: (i) ocean waves and ship motions are ergodic
random processes, so they can be regarded as stationary, in a stochastic sense, over a suffi-
ciently long period; (ii) ship speed and course are constant over the measurement period.
These assumptions allow the employment of the standard fast Fourier transformation (FFT)
method for the assessment of the ship motion spectra in the encountered frequency domain.

Figure 10. Sea state assessment by frequency domain analysis.

As regards the time domain models, most of the research in this field has been carried
out in the last decade alone. In this case, the assessment of sea state parameters is performed
after solving the ship motion equations in the time domain by means of a proper algorithm,
such as the one developed by Pascoal and Soares [157] and based on Kalman filtering, after
introducing the wave in phase and quadrature components as state variables. A typical
flow-chart of the sea state assessment by time-domain analysis is depicted in Figure 11.
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Figure 11. Sea state assessment by time domain analysis.

5.2.3. Assessment of Sea State Parameters

After detecting the wave spectrum or the elevation time history, the assessment of the
main sea state parameters, namely, the significant wave height, the wave peak period and
the spectral shape in the absolute frequency domain, can be performed by parametric or
non-parametric models. The former are based on the detection of the unknown parameters
of a given analytical spectrum, such as Bretschneider or JONSWAP, while the latter assumes
a non-negative constraint on the spectral amplitude if the spectral shape is not specified a
priori, based on the equivalence of the 0th-order spectral moment. Obviously, when the
sea spectrum is resembled from the encounter ωe to the absolute ω frequency domain,
the following equation holds:

ωe = ω − ω2ψ, (3)

with ψ = U/g cos µ denoting a nondimensional parameter, depending on the ship speed U
and the heading angle µ between the ship route and the prevailing wave direction, which, in
turn, equal 180 and 0 deg for the head and following seas, respectively.
The dependence between the encounter and the absolute frequencies is uniquely deter-
mined when µ ≥ 90 deg, i.e., ψ ≤ 0, while the well-known 1-to-3 multivalued problem
occurs when µ < 90 deg, i.e., ψ > 0, as depicted in Figure 12.

Figure 12. The 1-to-3 multivalued problem between the encounter and the absolute wave frequencies.

In the latter case, some issues arise when the sea spectrum is transformed from the
encounter to the absolute frequency domain, provided that, when ωe is less than 1/4ψ,
three absolute frequencies are detected, so that the amplitude of the wave spectrum and
the absolute wave frequencies are not uniquely determined. This issue can be managed by
some approximate techniques [165].
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5.3. Future Improvements

The concept of the “wave buoy analogy” is still not widely used in practice, even
though it is mature enough to be comparable with other well-stablished technologies, such
as the wave radars that are commonly installed onboard modern ships. In this respect,
the assessment of sea state parameters by the measurement and analysis of ship motions
can be considered as complementary to all the other technologies, even if some weak points
need to be further improved, such as the following:

• The analysis of nonstationary data that may compromise the accuracy and reliability
of sea state estimates;

• The selection of the most suitable ship motions to be endorsed in the assessment of
sea state parameters, depending on the ship’s operational conditions;

• The employment of different types of sensors to improve the reliability of the measure-
ment system, based on sensor fusion techniques.

The solution of these main issues will be helpful in developing a network of ships
acting as wave buoys, and in enlarging the wave data and statistics that are available
throughout the world.

6. Measurement Based on Microseism Observations
6.1. Microseism

Nowadays, seismologists are able to derive rich information via the study of signals
that, until a couple of decades ago, were considered to be just noise, such as the so-
called microseism. This is the most continuous and ubiquitous seismic signal on Earth,
and is mostly generated by the ocean–solid Earth interaction [168–170]. On the basis of
its source mechanism and spectral content, microseism is generally classified as primary,
secondary, or short period secondary. Primary microseism (hereafter referred to as PM),
also called “single-frequency” microseism, shows the same spectral content as the ocean
waves (period 13–20 s), and its source is associated with the energy transfer of ocean
waves breaking/shoaling against the shoreline [169,170]. Secondary microseism (SM),
also known as “double-frequency” microseism, has shorter periods (5–10 s) and higher
amplitudes than primary microseism, and it is likely to be generated by interactions
between waves of the same frequency traveling in opposite directions [168,170,171]. Short
period secondary microseism (SPSM) is characterized by a period shorter than 5 s, and its
source mechanism is generally linked to local nearshore wave–wave interactions, influenced
by local winds [172,173].

Microseism amplitudes are characterized by clear seasonal modulations. At temperate
latitudes, microseism amplitudes reach their maximum values during the winter seasons,
when the oceans are stormier, and their lowest values during the summer seasons [174].
However, such a modulation is different between low- and high-latitude areas: in the
former, noise amplitude is mostly stable over the year, that could be because of the negligible
seasonal changes close to the equator; in the latter, the modulation pattern is different, as the
sea ice drastically reduces the energy transfer from the ocean to the solid Earth [174–179].
Figure 13 shows a spectrogram of the vertical component of the seismic signal recorded
at an EPOZ station (installed close to the coastline of Eastern Sicily, Italy) in 2010–2017,
as well as the median spectrum of the spectra composing the spectrogram. The median
spectrum is characterized by peaks falling roughly within the bands SPSM, SM and PM.
The spectrogram illustrates the amplitude’s seasonal modulation, as expected at temperate
latitudes, with maxima during the winter seasons and minima during the summers.
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Figure 13. (a) Spectrogram of the vertical component of the seismic signal recorded by the EPOZ
station (installed close to the coastline of Eastern Sicily, Italy) in 2010–2017. (b) Median spectrum of
the spectra composing the spectrogram in (a). SPSM, SM, and PM and the corresponding dashed
rectangles indicate the frequency bands characterized by short period secondary microseism, sec-
ondary microseism, and primary microseism, respectively. The acronym PSD in both color bar of
(a) and y-axis of (b) indicates power spectral density (modified from [180]).

6.2. Applications

Due to its features (primarily, continuity over time and space), microseism investi-
gations have broad applications, such as the imaging of the crust and upper mantle by
seismic noise tomography [181,182], and the detection of seismic velocity changes in both
tectonic and volcanic areas [183,184].

In addition, the aforementioned source mechanism make microseism useful to infer-
ring climate changes [174,175,185]. In particular, Grevemeyer et al. [185] used a 40-year-long
record of wintertime microseism (1954–1998) to reconstruct the wave climate in the north-
east Atlantic Ocean. They detected an intensification in the occurrence rate of strong
microseism activity, due to the increase in the sea wave height that took place in northeast
Atlantic Ocean in the second half of the analyzed period.

Finally, several authors have explored the ability of microseism analysis to provide
quantitative information on the sea state, mainly in terms of sea wave height [171,186–192].
Bromirski et al. [187] analyzed buoy and seismometer data collected during the period 1997–
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1998 in California and derived site-specific seismic-to-wave transfer functions. Ferretti et al. [191]
defined an automatic procedure, based mainly on a set of empirical relations [189,190],
for estimating significant sea wave heights in near real-time from the spectral energy
content of the microseism, and presented an application in the Ligurian Sea (Italy). Other
authors have applied a more physics-based approach to quantitatively link microseism and
sea wave height [170,171,193,194]. Cannata et al. [180] analyzed the microseism recorded by
six seismic stations located close to the Eastern Sicilian coastline, and proposed a machine
learning-based approach to calculate a regression model for reconstructing the temporal
and spatial variation in sea wave height using the microseism recorded at multiple seismic
stations in different frequency bands.

Despite the good correlation found in these papers between microseism amplitude
and sea wave height, there are limitations [34,195]. First, the relation between these
phenomena can be time-varying. Indeed, in the case of secondary microseism, if the
opposing waves are generated by coastal reflection, a particular relation is valid. How-
ever, when the opposing waves are due to two uncorrelated wave systems, that relation
is not valid anymore [34]. In addition, the locations of the microseism sources can be
difficult to determine, and so the wave parameters in a given location in the sea can be
difficult to define. This second issue can be solved using multiple sparse stations [192,196]
or station arrays (that is, a certain number of seismic stations placed at discrete points in a
well-defined configuration [197,198]).

6.3. Advantages of Microseism Monitoring

Microseism can be a valid complementary tool for monitoring sea wave activity.
Indeed, although the microseism does not contain direct information on the sea state,
and there could be limitations in deriving sea wave data from the microseism (see Section 6.2),
there are several advantages. First of all, seismic stations have lower costs of both in-
stallation and maintenance compared to other instruments routinely used for sea wave
monitoring. In addition, microseism is recorded continuously with a sampling frequency
from tens to hundreds of Hz and is acquired at a very high temporal resolution. The spatial
resolution depends on the number of stations installed close to the coastline [180]. Further-
more, in most areas, it is not necessary to install a seismic network specifically to record
the microseism and then for sea wave height monitoring, but it is possible to use the seis-
mic stations installed to monitor seismic and volcanic activities. In particular, broadband
seismometers (that is, seismometers able to detect very weak ground motions over a wide
frequency band, which extends from tens of seconds to tens of Hz) installed worldwide are
very useful for microseism studies, as they record the whole microseism band [175,176].
Finally, as seismometers were among the first geophysical instruments to be installed on
Earth, one of the greatest areas of interest regards the possibility of deriving very long time
series of microseism amplitude, which could highlight the long term variability in sea wave
activity [34,184].

7. Networks for Sea Wave Monitoring
7.1. The Added Value of Networking for Marine Weather Forecasting

The variability in sea wave conditions can greatly affect marine operations, off-shore
and coastal infrastructures, and environmental aspects. This may be relevant to climatic
patterns associated with large-scale currents, and to the parameterization of air–sea flows.
For all these reasons, the required spatial and temporal resolutions necessitate extended
networks of homogeneous sensors. Long time series of systematic and simultaneous
observations (at the surface, in the water column, or at stations onshore), carried out with
the goal of collecting wave data at sufficient spatial and temporal densities, are crucial to
ocean exploitation.

For hundreds of years, collections of visual estimates of sea waves have been used to
derive wave statistics, based on the appearance of the surface of the sea with reference to
the Beaufort scale. These have been suitable for use by marine officers and for producing
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climate summaries on a global scale, such as the U.S. Navy Marine Climatic Atlas of the
World or the UK Marine Data Bank. These atlases of ocean weather observations have
long been the only global source of observed data, and are also used for design purposes.
Starting from this information, it was also possible to organize continuing and readily
accessible archives of global climate information, such as the International Comprehen-
sive Ocean Atmosphere Data Set (ICOADS) [199,200]. Nowadays, numerical modeling
and satellite missions—the main sources of wave information at the global scale [201]—
are combined with in situ data for calibration and validation [202–204]. To meet these
needs, the design and maintenance of real-time sea wave monitoring networks is an es-
sential activity in any monitoring program. The observations derived from moored buoys
are considered to be better quality than ship observations with regard to the accuracy
and reliability of measurements [205,206]. Other techniques are presented in this paper.
It is clear that, in order to effectively describe the state of the sea, a system is needed that
integrates in situ and remote observations with numerical modeling in order to achieve
the spatial and temporal resolution that the description of such a complex phenomenon
requires. In fact, if the numerical models can meet the need for continuous data over time
and with a high spatial resolution, a fundamental aspect in the development of a model is
the verification of the reliability of the predictions of the model itself, because this outlines
the behavior of the model in different meteorological situations, highlighting its systematic
characteristics and assessing its reliability, under both average and extreme conditions,
long periods and in the current situation. A good verification system allows one to not only
understand where to intervene to make improvements, but above all, it allows for the best
use to be made of the fields provided by the model according to the forecast objective.

7.2. Standards for Design and Management of a Sea-Waves Monitoring Network

There are specific criteria for the design of a network, depending on the purpose of the
monitoring, related to specialized operators who conduct monitoring activities and possess
specific training and experience. Generally, most sea wave networks are managed by
different governmental entities in charge of national weather programs or environmental
monitoring and protection programs; research centers mainly contribute to sampling and
data analysis. Observation systems are also used to provide commercial services, which
are sometimes dedicated to very restricted groups of users and are generally not composed
of an observational network. The shared and integrated management of existing observing
systems would be preferable, in order to obtain a more efficient monitoring system.

The basic guidelines for designing meteorological observation networks, including
marine wave monitoring networks, are provided by the WMO, the United Nations spe-
cialized agency for international cooperation and coordination in the observation of the
Earth’s atmosphere and its interactions with the land, oceans, weather, and climate it
produces [207]. The objective of the WMO is to support the meteorological activities of the
Member States through the definition of good practices in the field of meteorological obser-
vations, to promote an adequate level of uniformity and standardization in the practices
and procedures used for the measurements, and to facilitate cooperation in observations.
The WMO Integrated Global Observing System (WIGOS) addresses the observation needs
of the WMO, including the main areas of the standardization of observation tools and
methods, related metadata, and file formats. It provides an overview of all operating
systems for the matrixes associated with the Earth’s atmosphere; moreover, it contributes
to the co-sponsored observation systems supporting the activities of the WMO [208,209].
The observations collected are subjected to quality controls according to the technical
standards defined by the WMO Instruments and Methods of Observation Program (IMOP)
and subsequently made public through the WMO Information System (WIS).

The Intergovernmental Oceanographic Commission of UNESCO (IOC) is the organiza-
tion responsible for marine science within the United Nations. The IOC allows the Member
States to coordinate ocean research and services, as well as related activities regarding
oceanographic measurements focused on sustained ocean observing and data manage-
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ment activities, encompassed in the Global Ocean Observing System (GOOS) and carrying
out regional activities through GOOS Regional Alliances [210], the observing program
area of the Joint WMO-IOC Technical Commission for Oceanography and Marine Meteo-
rology (JCOMM), and the International Oceanographic Data and Information Exchange
(IODE). The implementation of the international program is carried out by the Member
States through their operational structures, such as government agencies, navies, and
oceanographic research institutes. Several global thematic groups, observation networks,
and regional alliances have been established with the agreement of member states to work
together and ensure long-term sustainable ocean observation. Within JCOMM, standards,
procedures, and recommendations have been developed to provide all marine data and
product users with an integrated marine observation data management service system
based on cutting-edge technologies to meet changing global needs [211]. The JCOMM has
also set itself the ambitious goal of coordinating the long-term updating and maintenance of
an integrated system for the observation and management of global marine, meteorological
and oceanographic data.

The WMO guidelines state that the identification of the best equipment should take
into account the monitored parameters, the location of the station, and the purpose of
the monitoring activity. The station spacing and interval between observations should
correspond with the desired spatial and temporal resolution of the meteorological variables
to be measured or observed. The location of each station should be representative of the
conditions in space and time. The total number of stations should, for the sake of finan-
cial cost, be as small as possible but as large as necessary to meet scientific requirements.
The success of a directional wave measurement network largely depends on the use of
reliable and effective instrumentation that can be operated from the sea surface, across
the water column, from the seafloor, or remotely. Moored and drifting buoys, ships,
and stationary platforms can support complex payloads, allowing the co-located measure-
ment of many of the GOOS Essential Ocean Variables (EOV), and they are relatively easy
to upgrade and equip with additional sensors [212].

Figure 14 shows the NOAA Observing System Monitoring Center (OSMC) dashboard
in support of the goals of JCOMM, taking into account the global observational capability
of sea waves over the first nine months of 2021. This dashboard provides a point of access
into the integrated data streams and attendant metadata for the continuous global ocean
observation efforts, derived from sea wave global networks (DBCP, ARGO, SOT/VOS,
GLOSS) and distributing wave data from the Global Telecommunication System (GTS).

Figure 14. Global sea wave monitoring networks reporting on GTS during the first nine months
of 2021; drifting buoys (blue dots), moored buoys (red squares), ships (green icons), others (black
crosses). Map generated by: http://osmc.noaa.gov/Monitor/OSMC/OSMC.html (accessed on 29
October 2021).

http://osmc.noaa.gov/Monitor/OSMC/OSMC.html
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7.3. Globally Integrated Sea-Waves Monitoring Networks

Observing sea waves from drifting and moored buoys has a long history. Buoy projects
are now mature, and these technologies benefit from decades of field experience and in-
ternational collaboration. The Data Buoy Cooperation Panel (DBCP) maintains a huge
catalog of wave buoy programs that supply data for operational and research purposes.
The DBCP operates through the following action groups (and buoy programs): Global
Drifter Program (GDP), Tropical Moored Buoy Implementation Panel (TAO/TRITON,
PIRATA, RAMA), European EUCOS Surface Marine Programme (E-SURFMAR), Inter-
national Arctic Buoy Programme (IABP), International South Atlantic Buoy Programme
(ISABP), North Pacific Data Buoy Advisory Panel (NPDBAP), International Buoy Program
for the Indian Ocean (IBPIO), and International Programme for Antarctic Buoys (IPAB).
The USA, Canada, Australia, Japan, and European countries are the major participants,
but other countries with great potential to make contributions, such as India and China,
are now joining in the cooperation.

The Lagrangian drifters deployed by GDP have been observing essential climate
variables (ECV) since 1979. The objective of GDP is to maintain a global array of sur-
face drifting buoys (satellite-tracked) to meet the need for an accurate and dense set
of in situ observations on a global scale. These EOV and ECV are essentially the near-
surface currents, sea surface temperature, sea-level atmospheric pressure, winds, salinity,
and waves [6]. The first generation of the GDP, the Surface Velocity Program (SVP), played
an important role in the TOGA program. The SVP drifters were the simplest version of
drifters, and can only measure two parameters: ocean currents and sea surface temperature.
With additional sensors, such as barometers, sonic anemometers, conductometers, and GPS,
the performance of the drifters can be enhanced further to adapt to different applications.

The global tropical moored buoy arrays (TAO/TRITON, PIRATA, RAMA) are used
to monitor large-scale phenomena, such as El Niño and the Southern Oscillation (ENSO),
showing the importance of the annual variability in the global climate. They are deployed
at depths of up to 6000 m. Measurements taken by the mooring include surface variables,
as well as subsurface temperatures down to a depth of 500 m [213]. The Tropical At-
mosphere Ocean (TAO) and the Triangle Trans-Ocean Buoy Network the Pacific Ocean
(TRITON) mooring array were successfully fielded to span the Pacific Ocean, with the
immediate ability to forecast El Nino phenomena up to a year ahead of their peak [214].
TAO/TRITON was built over the ten-year period 1985–1994, and is presently supported by
the NOAA National Data Buoy Center and the Japan Agency for Marine Earth Science and
Technology. The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA)
was designed to study ocean–atmosphere interactions in the tropical Atlantic that affect
regional weather and climate variability on seasonal, interannual, and longer time scales,
and is motivated by the goal of understanding and better predicting certain phenom-
ena, such as tropical Atlantic interannual to decadal variability and climate change [215].
It was first established in the mid-1990s, and is supported by France (Meteo-France, CNRS,
IFREMER), Brazil (INPE, DHN), and the USA (NOAA). The Research Moored Array for
African–Asian–Australian Monsoon Analysis and Prediction (RAMA) was designed to
study the Indian Ocean’s role in monsoons. The array was initiated in 2004 and has since
grown through the formation of new partnerships that currently include Indonesia, China,
the USA, and the Bay of Bengal Large Marine Ecosystem (BOBLME) program.

The European EUCOS Surface Marine Programme (E-SURFMAR) is an optional pro-
gram involving seventeen European meteorological services (Belgium, Croatia, Cyprus,
Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, The Netherlands,
Norway, Portugal, Spain, Sweden, and the United Kingdom) that coordinates, optimizes
and progressively integrates the European meteorological services’ activities in surface
observations over the sea, including drifting and moored buoys, and voluntary observa-
tional ships. The program is responsible for the coordination of buoy activities carried
out by the European meteorological services, and supports a Data Buoy Manager (DBM)
to manage these activities [216,217]. In recent years, sea wave data from European research
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and operational centers have also been made available through the Copernicus Marine
(CMEMS) and EMODnet data portals, with increasing adherence to the emerging FAIR
Principles for data publication.

The International Programme for Antarctic Buoys (IPAB) maintains collaboration
among national groups and international programs deploying buoys on the sea ice and a
network of drifting buoys in the Southern Ocean.

The implementation of new assets must take into account the limits and potential
of each sea wave collection methodology in relation to the different purposes to which
a systematic monitoring activity can be oriented, as well as the essential activities of the
maintenance, continuous testing, and evaluation of wave measurement systems. Most im-
portantly, for a globally integrated ocean observation system, the necessary consensus has
now been reached in the community of ocean observers to establish, grow and coordinate
internationally [218]. For regional (or national) observation systems in the coastal sector,
the network requirements are considerably more demanding, because, while the range of
measurement technologies is the same, the density of the stations and their emphasis will
be greater [219,220].

The development of such integrated systems, which is crucial for the proper manage-
ment and safety of both coastal areas and the open sea, must take into account a series
of technological and scientific advances that have broadened the spectrum of platforms
available to the scientific community and institutional stakeholders. The different method-
ologies available must not be considered as in competition, but instead be thought of as
connected in a complementary way so as to be able to take full advantage of the strengths
of each. The goal is therefore the integration of all observations in order to monitor the
essential parameters needed for a deeper understanding of the marine environment in the
short and long term.

8. Conclusions

Since sea waves have a great impact on human activities, accurate measurement and
monitoring at different geographical scales is a major goal at the international, national
and local levels. There are several measurement techniques available, with different
degrees of development and with, typically, complementary features. An ample selection
of such techniques, whose application is essential to meteorology, coastal safety, navigation,
and renewable energy derived from the sea, has been here reviewed and includes buoys,
satellite observation, coastal radars, shipboard observation, and microseism analysis. After
a brief presentation of the measurement principle, the degree of development has been
outlined, and future needs and trends have been prospected. Furthermore, it has been
stressed that the present and the future of ocean measurement lie in observation networks
that complement, and interact with, each other. In order to effectively describe the state of
the sea, a system is needed that integrates in situ and remote observations with numerical
modeling in order to achieve the spatial and temporal resolution that the description of
such a complex phenomenon requires.
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