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On energy transfer of parametric resonance
for wave energy conversion

Bingyong Guo, John V. Ringwood

AbstractÐParametric resonance has been observed, both
numerically and experimentally, in various studies of wave
energy converters (WECs). Large heave motions induce
a periodic variation in the metacentric height of a WEC
body and, consequently, cause a harmonic variation in
pitch/roll restoring coefficients, which can parametrically
excite the pitch/roll modes. Current studies attempt to
determine the occurrence conditions of parametric reso-
nance, by detecting the boundaries between stable and
unstable regions in the parameter space. In the literature,
some studies aim to make use of parametric resonance for
improving power capture. In contrast, some studies try
to suppress the effect of parametric resonance, as it can
reduce power capture efficiency in the primary degree of
freedom. However, how energy transfers from one mode to
another is not fully understood. This study aims to analyse
energy transfer between heave and pitch/roll modes when
parametric resonance occurs. A generic cylindrical point
absorber is studied as a WEC floater to consider non-linear
wave-structure interaction, including non-linear Froude-
Krylov and viscous forces. A heave-pitch-roll three-degree-
of-freedom model is derived for numerical study of the
energy transfer between different operational modes.

Index TermsÐWave energy converter, parametric reso-
nance, energy transfer, multiple degrees of freedom, hy-
drodynamic modelling

I. INTRODUCTION

Parametric resonance is widely observed in engi-
neering practice, viewed as beneficial for the design
of micro-electromechanical systems (MEMSs) [1] and
energy harvesting systems [2], but treated as a harmful
phenomenon in ocean engineering, potentially causing
large undesired roll/pitch motion for ships and off-
shore platforms. For ships, parametric resonance in roll
is mainly due to the variation of the ship metacentric
height, induced by large heave motion, resulting in
exaggerated roll motion, even to the point of capsizing.
To suppress parametric ship roll resonance, various
passive and active control approaches, e.g. utilising
fins or U-tanks, and manoeuvring cruise speed or
yaw angle, are discussed in [3]. Spar-shaped offshore
platforms are also prone to parametric resonance, both
in roll and pitch, mainly due to their relatively large
draft.

Parametric resonance has also been observed, both
numerically and experimentally, in various studies of
wave energy converters (WECs), e.g. oscillating water
columns (OWCs) [4]±[7] and point absorbers (PAs) [8],
[9]. Large heave motion induces a periodic variation
in the metacentric height of a WEC body and, con-
sequently, causes a dynamic variation in pitch/roll
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restoring coefficients, which can parametrically ex-
cites the pitch/roll modes. Under certain conditions,
e.g. where the incident wave frequency is twice the
pitch/roll natural frequency, parametric resonance oc-
curs in pitch/roll modes and causes the pitch/roll mo-
tion to increase exponentially, known as the Mathieu
instability [10].

However, the onset conditions of parametric reso-
nance for offshore structures is more complex than
that of Mathieu’s instability, since the hydrodynamics
are highly nonlinear and implicit. In addition, the oc-
currence, and demonstration, of parametric resonance
also significantly relies on the mass distribution [11],
mooring design [12], [13], structure geometry [5], [14],
[15], and hydrodynamic modelling methods [6], [9],
[15]±[17].

Mathieu’s equation [10] is generally used to explain
the occurrence of parametric resonance, mainly assum-
ing that heave motion is known or recorded [5], [11].
Thus, the variation of the metacentric height is ex-
pressed as a function of heave and then parametrically
excites the roll/pitch motions. However, experimental
results indicates that the coupling between heave and
roll/pitch is bi-directional [5], [16]±[18]. Since the cou-
pling between various degrees of freedom (DoFs) is
highly nonlinear, computational fluid dynamics (CFD)
modelling in OpenFOAM has been applied to depict
heave-roll-pitch interaction for a truncated cylinder
and a cylinder with a smooth hemispherical bottom
in [15], which reveals the importance of viscous effect
on parametric resonance. As expected, CFD modelling
is expensive in computing time and effort. In ad-
dition, hybrid modelling methods, considering non-
linear Froude-Krylov (FK) forces with respect to instan-
taneous wetted surface, are utilised in some studies [6],
[17], [19].

Current studies attempt to determine the occurrence
conditions for parametric resonance, by detecting the
boundaries between stable and unstable regions in the
parameter space. However, there are only a few studies
investigating the energy transfer from one mode to
another. Some studies try to suppress the effect of
parametric resonance [5], [7], since it can reduce power
capture efficiency, while other studies aim to make use
of parametric resonance for improving power capture
[4], [9]. For spar-buoy OWC devices, parametric reso-
nance can be suppressed by passive fins [5] or actively
controlled pressure relief valves [20]. However, how
energy transfers from one mode to another is still not
fully understood.

This study aims to analyse the energy transfer be-
tween heave and roll/pitch modes when parametric

12004-

Proceedings of the 14th European Wave and Tidal Energy Conference 5-9th Sept 2021, Plymouth, UK

ISSN 2309-1983          Copyright © European Wave and Tidal Energy Conference 2021



ii

resonance occurs, using the hybrid modelling method
and corresponding open-access toolbox developed in
[6], [19]. Without loss of generality, a generic cylindrical
point absorber is studied as a WEC floater to consider
non-linear wave-structure interaction, including non-
linear FK and viscous forces. A heave-roll-pitch 3-DoF
model is derived for the numerical study of parametric
resonance, with specific foci on mutual (bi-directional)
interaction, viscous effects, multi-stability and energy
transfer between different DoFs.

The reminder of the paper is organised as follows:
Section II discusses Mathieu’s equation for modelling
parametric resonance. Linear modelling of the heave-
roll-pitch 3-DoF PA is discussed in Section III, with the
hybrid modelling method, considering nonlinear FK
and viscous forces, described in Section IV. Numerical
results are presented and discussed in Section V. Fi-
nally, Section VI draws some conclusions and indicates
potential future work.

II. MATHIEU INSTABILITY

Mathieu’s equation is widely used to explain the
onset and instability of parametric resonance. A good
example is the spar-buoy OWC device, where paramet-
ric resonance in roll is observed numerically and exper-
imental [5]. As Mathieu’s equation to model parametric
resonance is well described in [5], just an overview is
given here, as follows. For heave-induced parametric
resonance in roll, Mathieu’s equation is given as

d2ξ4
dτ2

+ c
dξ4
dτ

+ [δ + ϵ cos(τ)]ξ4 = 0, (1)

where ξ4 is the roll angle, and τ = ωt is the time
index for Mathieu’s equation. c, δ and ϵ are the non-
dimensional damping, stiffness and parametric excita-
tion amplitude, respectively, given as

c =
B44

ω(M44 +A44)
, (2)

δ = (
ωn4

ω
)2, (3)

ϵ =
|ξ̂3|

GM0

(
ωn4

ω
)2, (4)

ωn4 =

√

ρgVdGM0

M44 +A44
, (5)

where M44, A44, B44, K44 are the inertia, added mass,
radiation damping and hydrostatic stiffness in roll,
respectively, dependent on the hull geometry and wave
frequency ω. ωn4 is the natural frequency in roll, as a
function of the displaced volume Vd, average metacen-
tric height GM0, and the total inertia M44+A44. ρ and
g are the water density and gravitational acceleration
constants, respectively. It is worth noting that the am-
plitude of the heave motion, |ξ̂3|, is assumed known.

As a classical differential equation, a systematic
overview of Mathieu’s equation is given in [10], with
specific foci on its stability, non-linear extension, bifur-
cation and co-existence. The Mathieu-type instability
in the δ − ϵ parameter space is shown in Fig. 1,
where δ and ϵ represent the frequency and amplitude

Fig. 1. Instability chart of Mathieu’s equation in Eq. (1), adopted
from [10].

conditions, respectively. For parameters in the unsta-
ble (or shadowed) region, the roll motion increases
exponentially to infinity, characteristic of the Mathieu
instability.

Though Mathieu’s equation is useful to explain the
onset of parametric resonance, there are some draw-
backs for WEC modelling: (i) Mathieu’s equation in
Eq. (1) only considers a linear damping term, and roll
motion increases exponentially to infinity. In practice,
a large roll motion induces some non-linear terms, e.g.
quadratic or cubic damping term or stiffness, which
can limit the maximum roll angle [10], [21], [22]. (ii) The
motion in heave is assumed known or prescribed, and
such information is needed in computing ϵ in Eq. (4).
This is not always the case for WEC modelling. (iii)
Mathieu’s equation can only reflect the influence of
heave motion on roll motion. However, this is part
of the parametric coupling story. In fact, heave and
roll motions are mutually coupled [16], and Mathieu’s
equation cannot express the influence of parametric
resonance in roll on the heave mode.

This study utilises a hybrid modelling method to
study the mutual interaction between heave, roll and
pitch modes, by considering non-linear FK forces, to
investigate quadratic viscous effects on parametric res-
onance by adding the Morison drag term to the linear
model, and to discuss the influence of parametric reso-
nance on WEC power absorption by applying passive
control.

III. LINEAR MODELLING

As linear hydrodynamic modelling is the foundation
of the hybrid modelling method, this section gives
an overview of WEC linear hydrodynamics. A simple
cylindrical PA is used in this study, with a radius of
R = 2 m, a height of H = 8 m, a draft of d = 6 m, and
a centre of gravity of CoG = (0, 0,−3.1) m, as shown
in Fig. 2. The water depth is assumed as h = 100 m.

The dynamics of the cylindrical PA in Fig. 2 are
governed by Newton’s 2nd Law, given as

Mξ̈(t) = fh(t) + fg(t) + fpto(t), (6)

where M is the PA inertial matrix and ξ is the PA
displacement matrix. fh, fg and fpto are the hydrody-
namic, gravity and PTO (or control) forces, respectively.
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Fig. 2. Geometric of a cylindrical point absorber in heave-roll-pitch
motion.

These parameters or variables contain heave, roll and
pitch components, as illustrated in Fig. 2. The time
variable t is omitted in what follows, for brevity.

Based on linear potential flow theory, the hydrody-
namic force fh can be expressed as

fh = f fk,dy + f fk,hs + fd + f r, (7)

where f fk,dy and f fk,st represent the dynamic and static
FK forces, respectively. fd and f r are the diffraction
and radiation forces, respectively.

The sum of the dynamic FK force and the diffraction
force is defined as the excitation force, given as

f e = f fk,dy + fd. (8)

In addition, the sum of the static FK and gravity
forces is called hydrostatic (or restoring) force, which
is proportional to the PA displacement, given as

fhs = f fk,hs + fg = −Kξ, (9)

where K is the hydrostatic stiffness. It is worth men-
tioning that f fk,hs + fg = 0 holds when the body is at
its equilibrium point in still water. The radiation force
can be expressed as

f r = −A∞ξ̈ − kr ∗ ξ̇, (10)

where A∞ is the added mass at infinite frequency, and
kr is the impulse response function (IRF) associated
with the radiation force. ∗ is the convolution operator.

Substituting Eqs. (7)-(10) into Eq. (6), the WEC dy-
namics can be rewritten as the well-known Cummins’
equation, given as

Mξ̈ = f e + f r + fhs + fpto. (11)

In the frequency-domain, Cummins’ equation in
Eq. (11) can be rewritten as

{−ω2[M +A] + jωB +K}Ξ(ω) = F e(ω) + F pto(ω),
(12)

where Ξ(ω) and F e(ω) are the frequency-domain rep-
resentations of ξ(t) and f e(t), respectively. F pto(ω)
represents the control force. A and B are the added
mass and radiation damping, respectively.

To derive the passive control solution, Cummins’
equation in Eq. (12) can be rewritten as

V (ω)

F e(ω) + F pto(ω)
=

1

Z i(ω)
, (13)

where V (ω) represents the body velocity, ξ̇(t), in the
frequency domain. Z i(ω) is the intrinsic impedance of
the system, given as

Z i(ω) = B(ω) + jω

[

M +A(ω)−
K

ω2

]

. (14)

Thus, the passive control (PC) [23] solution can be
expressed as

Bpto(ω) = |Z i(ω)|, (15)

where Bpto is the PTO damping coefficient for PC
implementation. For a given wave frequency ω, the
PTO force is given as

fpto = −Bptoξ̇. (16)

To quantify the power and energy captured from
wave by the PA, the excitation power and energy are
defined, respectively,as

P e = f eξ̇, (17)

Ee =

∫ T

0

P e dt, (18)

where T is the integral time span. Similar, the absorbed
power and energy by the PTO damper are defined,
respectively, as

P pto = −fptoξ̇, (19)

Epto =

∫ T

0

P pto dt. (20)

In this study, the boundary element method (BEM)
toolbox NEMOH is used, to obtain M , A∞, A, B,
K and kr directly. In NEMOH, the frequency ranges
from 0.1 rad/s to 6 rad/s with an interval of 0.1 rad/s.
In Eq. (10), the convolution term, kr ∗ ξ̇, is nei-
ther straightforward nor computationally efficient in
WEC modelling and control. Thus, it is approximated
by a finite-order state-space model using the time-
domain methods in [24], [25], with the results show in
Figs. 3(a)-(b). Alternatively, it can also be approximated
by frequency-domain methods, as discussed in [26]±
[28].

NEMOH can only give the frequency response func-
tion of the excitation force, Ke(ω) (representing the
systematic property of physical process from wave
elevation to wave excitation force), and, thus, its IRF,
ke(t) can be computed according to

ke(t) =
1

2π

∫

∞

−∞

Ke(ω)e
jωtdω. (21)

Thus, the excitation force, in the time domain, can be
expressed as

f e(t) = ke(t) ∗ η(t), (22)

where η(t) is the incident wave. However, the ex-
citation IRF is known to be non-causal, shown in
Figs. 4(a)-(b). The approximation of the convolution
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Fig. 3. Radiation approximation in (a) heave and (b) roll/pitch motions, respectively.
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Fig. 4. Excitation approximation in (a) heave and (b) pitch motions, respectively.

0 5 10 15 20

wave period (s)

0

0.2

0.4

0.6

0.8

1

1.2

p
it
c
h
 R

A
O

 (
ra

d
/m

)

FD

TD

(b)

0 5 10 15 20

wave period (s)

0

0.5

1

1.5

2

2.5

h
e
a
v
e
 R

A
O

 (
m

/m
)

FD

TD

(a)

Fig. 5. Comparison between the time- and frequency-domains liner models in terms of response amplitude operatior (RAO) in (a) heave,
and (b) pitch modes, respectively.

term, ke(t) ∗ η(t) is not as straightforward as the ra-
diation approximation. In the literature, a variety of
methods are applied to approximate or estimate the
excitation force [29]±[32]. In this study, the excitation
force approximation proposed in [30], [31] is adopted
to derive a time domain model.

By approximating the radiation and excitation forces,
a time-domain model for Cummins’ equation is ob-
tained, and its response amplitude operator (RAO)
with various wave periods is compared with the
frequency-domain counterpart in Fig. 5.

IV. NON-LINEAR MODELLING

To investigate the mutual interaction between mul-
tiple DoFs, a hybrid modelling method is used to
augment the linear Cummins’ equation in Eq. (11)
with some critical non-linear forces. In this study, the
non-linear FK force with respect to the instantaneous
wetted surface, and the viscous force represented by
the quadratic drag term in the Morison equation, are
added to Eq. (11) as non-linear treatments, given as

Mξ̈ = fnlfk,dy+fnlfk,st+fd+f r+fg+fpto+fv, (23)
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where fnlfk,dy, fnlfk,st and fv represent the dynamic
and static FK forces, and the viscous force, respectively.
Note that the forces fd, f r, fg and fpto remain linear,
as detailed in Section III.

The modelling of the non-linear FK force is well
studied in [19], [33], [34] and, thus, this paper only
given an overview of the methodology described in
[19], [33], [34]. For heave motion, the static and dy-
namic non-linear FK forces can be expressed as

fnlfk,st,33 = −

∫∫

S(t)

pst n dS, (24)

fnlfk,dy,33 = −

∫∫

S(t)

pdy n dS, (25)

where n is the vector normal to the instantaneous
wetted surface S(t). The static and dynamics pressure
components in the fluid are given as

pst =− ρgz, (26)

pdy =ρga
cosh(k(z + h))

cosh(kh)
cos(ωt− kx), (27)

where a and k are the wave amplitude and wave
number, respectively.

For the roll and pitch modes, the non-linear static
and dynamic FK forces can be written as

fnlfk,st,ii =−

∫∫

S(t)

pst (r × n) dS, (28)

fnlfk,dy,ii =−

∫∫

S(t)

pdy (r × n) dS, (29)

where r is the position vector of the instantaneous
wetted surface relative to the CoG. The symbol ×
represents the cross product. ii = 44 and ii = 55
represent the roll and pitch modes, respectively. Hence,
the non-linear FK forces in heave, roll and pitch modes
can be reformed as

fnlfk,st =[fnlfk,st,33, fnlfk,st,44, fnlfk,st,55]
T, (30)

fnlfk,dy =[fnlfk,dy,33, fnlfk,dy,44, fnlfk,dy,55]
T. (31)

In this non-linear hybrid modelling method, the
concepts of ‘hydrostatic restoring force’ and ‘excitation
force’ have no physical meaning. However, their coun-
terparts, namely the ‘non-linear hydrostatic restoring
force’ and the ‘non-linear excitation force’ are defined
for comparison, given as

fhs,nl = fnlfk,st + fg, (32)

f e,nl = fnlfk,dy + fd. (33)

The effect of fluid viscosity on the WEC dynamics
is normally represented by a quadratic drag term ac-
cording to the Morrison equation [35], given as

fv,3 = −0.5ρπR2Cd,3ξ̇3|ξ̇3|, (34)

fv,4 = −ρR4dCd,4ξ̇4|ξ̇4|, (35)

fv,5 = −ρR4dCd,5ξ̇5|ξ̇5|, (36)

fv = [fv,3, fv,4, fv,5]
T , (37)

where fv,3, fv,4 and fv,5 are the viscous forces in heave,
roll, pitch, with viscous coefficients Cd,3, Cd,4, and Cd,5,
respectively.

The values of Cd,3, Cd,4 and Cd,5 are chosen em-
pirically, as discussed in [36], which dependence on
the Keulegan-Carpenter number, the Reynolds number
and the roughness number. In practice, the viscous
coefficients can be determined analytically, numerically
or experimentally [25], [37], [38]. However, it is difficult
to obtain consistent values if wave conditions vary
significantly [39]. In this study, the values from [16]
are used, with Cd,3 = 1, Cd,4 = Cd,5 = 0.7.

To investigate the power and energy transferred
from the waves to the WEC, the non-linear excitation
power and energy are defined, respectively, as

P e,nl = f e,nlξ̇, (38)

Ee,nl =

∫ T

0

P e,nl dt. (39)

V. RESULTS AND DISCUSSION

Based on the hybrid modelling method detailed
in Section IV, numerical simulations are conducted
to validate its capability to reveal the mutual para-
metric interaction between multiple DoFs. A typical
monochromatic example is shown in Fig. 6, where the
wave period is 6 s and the wave amplitude is 0.2 m. To
focus on the mutual interaction problem, viscous and
PTO forces are not considered in Fig. 6.

For the initial conditions of ξ3(0) = 0 m and ξ4(0) = 0
rad, parametric resonance is not triggered. In Fig. 6,
the heave and roll displacements predicted by the
non-linear model, considering a non-linear FK force
(NLFK), and shown by the magenta curves, show no
obvious differences from their linear counterparts (blue
curves). However, for the initial conditions of ξ3(0) = 0
m and ξ4(0) = 0.1 rad, parametric resonance in roll
occurs, and thus the roll angle extends to 1.2 rad,
even though the wave amplitude is relatively small,
at 0.2 m. In turn, this large roll motion results in a
correspondingly large heave motion, with a maximum
value of approx. 2.5 m. Thus, the heave and roll modes
are inherently and mutually coupled, when parametric
resonance occurs. Similar results are observed in [16]
and thus the hybrid modelling method, with non-linear
FK force representation, is capable of depicting the full
extent of the parametric resonance. In addition, the
onset of parametric resonance is clearly sensitive to
initial condition, indicating the co-existence of multiple
attractors. Such a multi-stability co-existence gives the
potential for supervisory control to switch between
different attractors, according to the sea state.

In Fig. 6, the heave and roll motions are unstable,
with amplitude increasing as the simulation time in-
creases. In practice, large motion in heave, roll, or/and
pitch induces significant non-linear hydrodynamics,
and a viscous drag term should therefore be consid-
ered. As shown in Fig. 7, parametric resonance in both
roll and pitch occurs for non-linear models, as the
nonlinearly modelled roll and pitch displacements are
significantly larger than their linear counterparts. As
the buoy heaves significantly, the metacentric height
may became negative during part of a wave period,
which excites the roll or/and pitch modes, causing
energy transfer from heave to roll and heave to pitch.
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Fig. 6. The effect of initial conditions on the occurrence of parametric resonance, illustrated by the heave and roll displacements in (a) and
(b), respectively. In this figure, the PTO and viscous forces are not considered.
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Fig. 7. Viscous effect on the parametric resonance in roll and heave, illustrated by the heave, roll and pitch displacements in (a), (b) and (c),
respectively. In this figure, the PTO force is not included.

Comparing the black dashed curves with the magenta
ones in Fig. 7(b), it can be concluded that the viscous
force attenuates roll motion significantly, while it only
slightly dampens the heave and pitch motions, as
shown in Figs. 7(a) and (c), respectively. In Fig. 7, the
wave period is 6.28 s, the wave amplitude is 0.1 m, and
the PTO force is not included. Comparing Fig. 7 with
Fig. 6 demonstrates the importance of the inclusion of
viscous drag, in preventing the motion increasing to
infinity.

To discus the influence of parametric resonance in
WEC power/energy absorption, passive control, with
a pure damping term, is implemented in the heave,
roll and pitch modes, with results shown in Fig. 8. The
simulation conditions correspond to a wave period of 6
s and a wave amplitude of 2 m. For the initial condition
of ξ(0) = [0, 0, 0]T , parametric resonance is not evident,
but occurs for an initial condition of ξ(0) = [0, 0.1, 0]T .

The excitation energy in heave, roll and pitch modes
are shown in Figs. 8(a)-(c), respectively, with their
total in Fig. 8(d). Compared to the linear model, non-
linear models always show less excitation energy in
heave and pitch modes. It is very interesting that the
excitation energy in roll is negative when parametric
resonance occurs, as shown in Fig. 8(c), that is, energy
is dissipated. In this case, the non-linear excitation force
in roll damps, rather than facilities, roll motion, causing

energy loss. However, heave, pitch and total excitation
energy are insensitive to the occurrence of parametric
resonance.

The energy absorbed by passive PTO dampers in
heave, roll and pitch modes are shown in Figs. 8(e)-
(g), respectively, with their summation in Fig. 8(d).
Compared to the linear model, non-linear models re-
sult in much less PTO energy absorbed from heave
and pitch, with a consequently lower total PTO energy.
This is expected, since viscous forces can dissipate a
significant amount of energy. When parametric res-
onance occurs, it is possible to absorb some energy
from roll, as shown in Fig. 8(f). Comparing Fig. 8(f)
with Fig. 8(b), it is obvious that both the excitation
energy and the PTO energy are zero when parametric
resonance is not triggered. However, following the
onset of parametric resonance, roll motion dissipates
energy into waves, rather than harvesting energy from
waves. Thus, this energy component can only come
from the mutual interaction of roll with heave and
pitch modes. In addition, the useful energy absorbed
by the PTO damper in roll is about 2.37 kJ, to see
the black dashed curve in Fig. 8(f), while the energy
dissipated by the roll ‘excitation force’ is about 0.88 kJ.
As the roll motion is small, the energy dissipated by
radiation and viscous forces is relatively small. Thus,
parametric resonance can transfer energy from heave

62004-



GUO et al.: ENERGY TRANSFER OF PARAMETRIC RESONANCE vii

0 100 200 300

time (s)

0

10

20

30

40
e
x
c
it

a
ti

o
n
 e

n
e
rg

y
 i
n
 h

e
a
v
e
 (

k
J)

linear

NLFK+vis

NLFK+vis, PR

0 100 200 300

time (s)

-1

0

1

2

3

4

e
x
c
it

a
ti

o
n
 e

n
e
rg

y
 i
n
 p

it
c
h
 (

k
J)

linear

NLFK+vis

NLFK+vis, PR

0 100 200 300

time (s)

-1

0

1

2

3

P
T
O

 e
n
e
rg

y
 i
n
 r

o
ll
 (

k
J) linear

NLFK+vis

NLFK+vis, PR

0 100 200 300

time (s)

0

10

20

30

40

to
ta

l 
P
T
O

 e
n
e
rg

y
 (

k
J)

linear

NLFK+vis

NLFK+vis, PR

0 100 200 300

time (s)

0

1

2

3

4

P
T
O

 e
n
e
rg

y
 i
n
 p

it
c
h
 (

k
J) linear

NLFK+vis

NLFK+vis, PR

0 100 200 300

time (s)

-1

-0.5

0

0.5

1

e
x
c
it

a
ti

o
n
 e

n
e
rg

y
 i
n
 r

o
ll
 (

k
J)

linear

NLFK+vis

NLFK+vis, PR

0 100 200 300

time (s)

0

10

20

30

P
T
O

 e
n
e
rg

y
 i
n
 h

e
a
v
e
 (

k
J)

linear

NLFK+vis

NLFK+vis, PR

0 100 200 300

time (s)

0

10

20

30

40

50

to
ta

l 
e
x
c
it

a
ti

o
n
 e

n
e
rg

y
 (

k
J)

linear

NLFK+vis

NLFK+vis, PR

(c)

(a)

(b)

(d)

(g)

(e)

(f)

(h)

Fig. 8. Energy transfer between different DoFs illustrated by excitation energy in (a)-(d), and PTO energy in (e)-(h).
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or/and pitch modes into roll mode, and then the roll
PTO can absorb a large part of the transferred energy.

Although this study only reveals some preliminary
insights into parametric resonance for wave energy
conversion, some of findings are worth further dis-
cussion. (i) As shown in Figs. 6-8, the occurrence of
parametric coupling is sensitive to initial conditions,
when there coexist multiple attractors in the opera-
tional space. Further study on these basins of attraction
is required to check the stability of these coexisting at-
tractors. This may also require a high-level supervisory
control system, to switch the system dynamics from
one attractor to another, for triggering or suppressing
parametric resonance. (ii) When parametric resonance
occurs, the operation modes are mutually coupled.
Overly simplistic modelling of such mutual interaction
may erroneously indicate unrealistically large para-
metrically excited roll or pitch motion, as shown in
Fig. 6, consequently resulting in overoptimistic power
absorption. In such a case, accurate nonlinear hydrody-
namic modelling is critical, especially when parametric
resonance is triggered, as demonstrated by Figs. 6-7.
(iii) For WECs which can ideally and optimally harvest
energy from all DoFs, without any physical constraints,
WEC power absorption approaches its theoretical limit,
regardless of the occurrence of parametric resonance.
However, most WEC devices are designed to harvest
wave energy in one, or at most two, DoFs with stroke
constraints. Pitching devices may make use of para-
metric resonance to absorber more power, as power in
heave can be transferred to pitch, and then be absorbed
by the pitch PTO system. Alternatively, it is also pos-
sible for heaving devices to spill power to roll/pitch
motion via parametric resonance, especially when the
heave motion exceeds the stroke constraints. However,
parametric resonance is characterised by high nonlin-
earity, and its onset is sensitive to several factors, e.g.
wave conditions, WEC hull geometry, mooring design,
and the nature of the control/PTO systems, more in-
depth investigation is needed.

VI. CONCLUSION

This study uses a simple cylindrical point absorber
in heave/roll/pitch modes to investigate the energy
transfer between different DoFs when parametric reso-
nance occurs. A hybrid modelling method, considering
non-linear FK and viscous forces, can effectively and
efficiently model the nonlinear parametric resonance
phenomenon.

Numerical simulation reveals that the heave, roll,
and pitch modes are mutually coupled, when paramet-
ric resonance occurs, and overly simplistic modelling
methods may lead to overoptimistic WEC motion and
power absorption. Quadratic viscous terms can con-
strain WEC motion in some regions of the operational
space, but also potentially spill a significant amount of
energy, resulting in much less power abortion than in-
dicated by linear models. When parametric resonance
occurs, the roll mode cannot harvest energy from wave,
but rather dissipates energy to the surrounding water,
and thus this energy component is transferred from the

heave or/and pitch modes, and then partly absorbed
by the roll PTO system. However, the total excitation
energy and PTO energy are insensitive to the onset of
parametric resonance.

Ongoing work focuses on more accurately quantify-
ing the energy transfer from one DoF to another via
parametric resonance, with a view to identifying the
virtue of exploiting parametric resonance in real WECs
which have physical displacement limits. The study
of appropriate supervisory control, used to position
the device operation within desirable regions of the
operational space, also deserves further study.
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