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 Wave energy is one of the renewable resources with high availability area of 

the wave across the world. However, the wave power density in Malaysia is 

smaller compared to other countries with progressive development in Wave 

Energy Converter (WEC), which leads to wave energy utilization to produce 

pico-scale power generation for the benefit of outdoor activities. Thus,  

this paper is presenting the modeling of a tubular longitudinal permanent 

magnet linear generator for wave energy conversion for outdoor activities. 

This research aims to design a pico-scale linear generator with 100 W output 

power utilizing wave energy. The design is also intended to be a portable 

design with a weight that less than 20 kg, which compatible with outdoor 

activities. The generator is proposed by designing the different shapes of 

permanent magnets with slotless configuration. The designs are simulated 

using the Finite Element Analysis (FEA) to obtain the performance of flux 

distribution, flux linkage, and back EMF performance. 
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1. INTRODUCTION 

As the world nowadays emerging into more advance with technological advances, more things 

consumption is needed, especially energy [1]. The use of energy in Malaysia is explicitly increasing by 1.8 % 

annually [2]. Hence, more generated energy power is required to satisfy the demand by increasing the scale 

of energy generation using renewable energy resources [3]. The studies on improving the performance and 

system on capturing the renewable resource and converting to electrical energy had conducted [1, 4].  

The renewable resource comes from various type of forms, as one of them is from the ocean waves. Ocean 

wave has a high availability area across the world [5], and Malaysia is one of the countries that are 

surrounded by the sea with the available potential area for wave energy utilization. The sea Strait of Malacca 

surrounds West Peninsular Malaysia, while East Peninsular Malaysia surrounded by the South China Sea [5]. 

Based on the recorded wave availability, the wave power density in Malaysia is smaller [3, 6] compared to 

other regions such as southern Africa, Australia, and the northwestern coast of the United States with the 

available wave power to be around 10-40 kW/m. Nonetheless, the low density of wave energy at the 

coastline of Malaysia can be used to produce a pico-scale power generation system with output power below 

5kW [7] for the benefit of outdoor activities. Furthermore, the Malaysia government introduced the Small 

Renewable Energy Power (SREP) scheme in 2001 that supports the development of small scale power 

generation from renewable energy [2, 8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Wave energy can be harnessed through several stages before convert into electrical energy. The 

primary stage devices called Wave Energy Converter (WEC) [9]. Wave Energy Conversion (WEC) is a 

system that can be categorized based on its operating theory as Oscillating Water Column (OWC), 

Overtopping Devices (OTD), and Wave Activated Bodies (WAB) [3, 9, 10]. Oscillating water column 

(OWC) is the device that utilizes a partially submerged hollow air chamber. This device is working as a 

pneumatic converter to obtain high-speed airflow through the air turbine, which gives a robust and 

straightforward design. However, this device generates noise pollution and give to the high cost of 

production and maintenance together lifetime problem. Overtopping (OTD) device called the terminator is 

the system that uses a concept of the water reservoir and releasing through a turbine. OTD has few moving 

parts that can reduce the need for maintenance due to tearing problems and leads to a stable system due to the 

large size of the device. Next, wave activated bodies (WAB) which is oscillating bodies. Consists of the 

floaters that move parallel to the wave’s motion and capture the energy. The point absorber device is also one 

of the devices that utilize the WAB principle. It has the advantage which gives minimal ecological impact 

and versatility as a floating device due to small size. Even though the size is small, but this device very 

complex to be installed and complicated mooring due to underwater power cable required [9–12]. Thus, 

based on the classification of the working principle, WAB is the most suitable device principle due to the 

small size and simple design of WAB. The device, according to this principle, precisely, point absorber, has 

the potential to be developed as portable pico-scale electricity [13, 14]. Point absorber is a floating structure 

device that has fixed buoy inside a cylinder that rises and falls with the differences in wave height [15] and 

has horizontal dimensions that are smaller than the wavelength of the wave. The secondary stage involves the 

electrical machine, called Power Take-Off (PTO), which converts mechanical force from wave energy into 

electrical energy [16, 17]. PTO for WEC consists of three main methods, which are a turbine system with the 

rotary generator, hydraulics transfer with the rotary generator, and direct drive linear generator [18]. 

Rotary generator in the study of [18] is suitable for the environment, efficiency, and cost-effective 

application of WEC. The major disadvantage of the rotary generator is its high maintenance requirements and 

complex structure. Even though the rotary generator is mostly used for power generation mainly due to its 

mature technology, however, advancement in direct drive linear machine design is a linear generator.  

Until now, the research regarding portable linear generator is still under the study [13, 19, 20]. The basic 

concept of the linear generator requires a translator with the magnet, which reacts like a rotor [21].  

The translator is attached to the heaving buoy with the winding stator, mounted in a structure that is fairly 

presented in [14]. When the heaving buoy oscillates, the stator induces an electric current. Linear generator 

expected to be more efficient and robust for specific wave energy conversion applications due to the absence 

of the transmission system for linear movement, simple structure and requires less maintenance since it has 

minimal moving components despite being a portable generator. Thus, the linear generator is more promising 

due to its high efficiency and simple design that will be advantageous for the development of a pico-scale 

generator [21–24]. 

Therefore, in this paper, the linear generator is proposed via designing the different shapes of the 

permanent magnet, with the slotless configuration in return to generate a pico-scale linear generator with 

100W output power utilizing wave energy. The back electromotive force (back-EMF) influences the 

characteristics of the permanent magnet linear generator (PMLG) that can be observed by simulation. Back-

EMF is a typical electromagnetic calculation process that is known as the flux density waveform in the 

permanent magnet and can be determined by the shape parameters of the magnet. Therefore, the different 

shape of the magnet is one of the key problems of the permanent magnet design to determine the optimum 

design of varying shape in return to produce higher performance. The output from the generator is targeted to 

be used for outdoor activities application. Thus, the design is also aimed to be a portable design with a 

weightless than 20 kg. 

 

 

2. RESEARCH METHOD 

This research comes out with five designs based on the suitable linear generator configuration for 

outdoor activities application. Thus, the design of permanent magnet, material use, and topology selection 

need to consider as dictate the overall efficiency of the generator in terms of power loss, output voltage, and 

weight of the generator. The designs are simulated using the Finite Element Analysis (FEA) to obtain the 

performance of flux distribution, flux linkage, and back EMF performance. 

 

2.1.  Proposed design topologies 

Proposed design will be tubular structure concept with slotless stator due to better excogitation as it 

offers a constant air gap and higher flux density. The slotless stator is required for the proposed design 

because of a light system and can minimize cogging force. Cogging force can be prevented from occurring as 
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it can damage the magnet and ensure the piston motion in stable and smooth [25]. Compared to the slotted 

stator where many research states that slotted stators produce higher power density, which is good, but slotted 

stator can cause cogging. Cogging generally occurs at the magnet border and affects the motion of the piston 

to become unsmooth and unstable motion. In that case, the air gap effected. This instability will cause 

fluctuation in the output [26]. Furthermore, the design will come up with a combination of axial and radial to 

form the Halbach magnetization. The process of the Halbach magnetization will be implemented by moving 

magnet with a longitudinal flux path because moving magnet has a small working magnetic air gap [14] that 

yields to the higher forces via a higher magnetic field. It also has higher efficiency as requiring less amount 

of permanent magnet compare to moving coil, which needs more coil for the same output [27]. Thus, the 

proposed design will come out with the features of the tubular longitudinal slotless stator, and Halbach 

magnetization. 

 

2.2 The proposed design with dimensions 

Five designs were proposed. The manipulating aspect of these designs can be analyzed in the shape 

of a permanent magnet, which is different in the shape of the permanent magnet. The dimensions have been 

tabulated in Table 1. The designs are compared with conventional rectangular designs, as in Figure 1 and 

trapezoid designs, Figure 2. 

 

 

 
 

Figure 1. Rectangle design 

 

 

 
 

Figure 2. Trapezoid design 

 

 

 
 

Figure 3. LT shape design. 
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Figure 4. T-shape design. 

 

 

 
Figure 5. LT separated design. 

 

 

Table 1. Design parameter details  
Description Value (mm) 

Ls Length of stator 90 

hys Height of mild steel 5 

hsys Height of winding coil 10 

g Air gap 1 

Rm Outer radius of magnet 25 

Re Outer radius of the stator core 41 

hm Radial thickness of magnets 10 

hym Radial thickness of supporting tube 5 

Tmr Axial length of the radical magnetized magnet at the center 50 

Tmz Axial length of axially magnetized magnets 10 

Tp Pole pitch 70 

Lr Length of translator  150  
Number of turns  1000 turns 

 Resistivity of copper 1.7𝑥10−5 

 Steel material Iron 

 Magnet material NdFeb 

 

 

The rectangle design shape of the PMLG is the conventional design that easy to construct and 

simple design, as illustrated in Figure 1. According to the [28], the magnetic flux density will be higher due 

to the constant surface area and volume facing the armature. The trapezoid design, as in Figure 2, is part of 

the conventional design by [29] that has compared with three proposed designs. The radial magnet array has 

a large surface area and volume, which produce more flux density while the axial array of magnet has a 

smaller surface. Thus, the lower magnetic flux density will occur. The first proposed design is LT shape 

design as in Figure 3. The axial and radial array magnet of Tmz is combined in return to be active in 

magnetization. The surface area of the magnet at the center, Tmr, is the more significant dimension that 

directly facing the armature stator and expected to produce high flux density and induce a voltage. Next, the 

T-shape design in Figure 3 illustrated that the thickness of the back iron thicker than the other design but still 

has the same dimension of all design. The axial and radial array of magnetization is exposed to the armature, 

which is expected to produce high induced voltage. The third design, the LT separated magnet design, is 

proposed, as shown in Figure 5. Analyze that; the axial magnet array does not expose to the air gap and 

armature, which led to a lower magnetic flux. However, the surface area of the radial array is high, which 

expected to produce more flux to the armature, and more voltage is induced. Furthermore, all designs of the 
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permanent magnet are employed with different shapes of the permanent magnet that would produce the better 

of electromagnetic characteristics in such flux density. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Open circuit flux distribution 

The simulation of the open circuit flux distribution was conducted to analyze the design 

excogitation performance in such as flux linkage, induced back EMF, and cogging force. The distribution of 

flux lines at no-load operation is shown for all designs in Figure 6 until Figure 10.  

 

 

  
 

Figure 6. Flux line of LT shape design 

 

Figure 7. Flux line of rectangle design 

 

 

  
 

Figure 8. Flux line of T -shape design 

 

Figure 9. Flux line of LT separated magnet design 

 

 

 
 

Figure 10. Flux Line of Trapezoid Desig 

 

 

The flux line of PMLG is simulated under 2D models. Observe that in Figure 6 until Figure 10, the 

magnetization of Halbach equally distributed in the space of PMLG. The flux line for LT shape design 

spread evenly, but at the shape of magnet T, the flux line has a sharp curve, which increases the reluctance 

of the core, so less flux flow, similar to other designs which T-shape design. However, the smooth curve that 

occurs will decrease the reluctance of magnetic flux, and more flux distribution can lead to more flux 

linkage to in such of Rectangle, LT separated magnet and trapezoid. Thus, the flux linkage contributes to the 

higher induced voltage of the proposed design. 
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3.2.  Air gap flux density.” 

Figure 11 shows how the air gap distribution compares the flux density. The density of flux 

increases at a distance of 50 mm, and around 100 mm, which is at the center of the stator due to flux flow to 

the adjacent magnet. In contrast, the higher peak value of flux density is by LT separated magnet, with an 

average of 420.40mT followed by Rectangle, Trapezoid, T-shape, and LT shape. Thus, the simulation’s 

mean air gap flux density is recorded in Table 2.  

 

 

 
 

Figure. 11. Air gap flux density 

 

 

3.3.  Flux linkage and back-EMF 

Figure 12 shows the design’s flux linkage, while Figure 13 shows the back-induced EMF obtained 

from the dynamic state. The translation moves with a velocity of 1m/s along the Z-axis. Results from the 

two-stroke translation obtained in simulation. The simulation data from induced voltage and flux linkage 

reported in Table 2. 

 

 

 
 

Figure 12. Flux linkage 

 

 

 
 

Figure 13. Induced back EMF. 
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Table 2. Average of induced back EMF and flux linkage. 
Design Air Gap Flux Density(mTesla) Flux Linkage (Wb) Induced Back EMF (V) 

LT Shape 273.12 2.23 126.95 

Rectangle 405.55 2.63 138.6 

T-shape 344.95 2.73 121.28 

LT Separated Magnet 420.40 2.74 145.62 

Trapezoid 398.86 2.61 137.59 

 

 

Table 2 shows the average air gap flux density, flux linkage, and induced back EMF for all 

proposed designs. Comparing with all designs, LT separated magnet design obtained the higher flux linkage 

and induced voltage. Nonetheless, the value of flux linkage of the designs is slightly different, which is 

around 0.1 to 0.5 Wb only. The flux linkage in Figure 12, the value is proportional to obtained for induced 

voltage value, as in Fig. 13, the induced voltage of all designs has exceeded the rated design voltage, which is 

100 V when open circuit as well as to get the pico-scale generator output power. 

 

3.4.  Weight of the proposed design 

Moreover, the total weight has measured based on the volume of the specific material by design 

proposed. The volume of proposed designs gained from the simulation of designs by FEA. The parameter of 

the designs influences the measured weight and the density of the material used. All designs provide almost 

the same weight based on the initial dimension of the design. All designs have the same volume of copper 

which is 319 𝑐𝑚3, same volume of iron, 336 𝑐𝑚3 and same volume of magnet that is 377 𝑐𝑚3.Therefore, the 

total weight of all design of the proposed PMLG is 8.33kg as well as meet the requirement to be a portable 

design with weight less than 20kg. 

 

 

4. CONCLUSION 

The wave energy available in Malaysia was identified. The potential of low wave density in 

Malaysia can be utilized in the portable pico-scale generator to power-up small power appliances for outdoor 

activities. This research has proposed five designs, namely Rectangle, LT Separated magnet, LT Shape, T 

Shape, and Trapezoid, which differ in shape of permanent linear magnet and have been compared with the 

conventional design. The LT separated design has produced a better performance in terms of the 

electromagnetic characteristics based on the FEA compared to the other design. It can conclude that the 

different shapes of permanent magnet contribute to the performance of the linear generator for WEC. The 

parameters and dimensions of the proposed designs have shows that the designs can be a portable design for 

outdoor activities. However, the design needs to be optimized for further and details analysis in return to 

have the best performance for WEC application for outdoor activities. 
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