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The time-domain simulation follows the heaving of
the conical float in waves and calculates the bag
shape, ballast motion, adiabatic air pressure and the
flow through the turbine. There are two independent
oscillators, the float with its resonance and the
bag/ballast with its resonance. The coupling of the
two oscillators gives rise to a wide band response
with two peaks in the capture width each reaching the
theoretical λ/2π . In this new wave energy converter,
apart from the turbine, there are no mechanical
moving parts, no joints nor pistons, no end stops
nor sliding seals, no flaps nor one-way valves. The
expected life of the airtight flexible bag remains
to be determined, but potential manufacturers are
optimistic.

1. Introduction
This paper describes a new concept in wave energy;
an airbag filled with compressed air, underwater and
ballasted, resonates with the waves. It is connected to a
heaving float with its own more or less equal resonance.
The coupling splits the resonance into two peaks, giving
a broadband response.

A sealed flexible airtight fabric bag, entirely
underwater, inflated with compressed air and ballasted
to be neutrally buoyant, is unstable in heave. If it goes
down the air is compressed, the buoyancy drops and
the bag sinks further. It can be stabilized by a float of
adequate water plane area attached to the top of the bag
(figure 1). The instability of the bag then lengthens the
natural heave period of the float.

If the top of the bag is fixed, still underwater, the
ballast can rise and fall, shortening or lengthening
the bag. The change in volume and air pressure then
changes the tension in the fabric and the vertical force

2018 The Author(s) Published by the Royal Society. All rights reserved.
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V1

35 m

20 m, not critical

V2

ballast

conical float

cover

turbine

streamlined steel ballast, 550 t,

water line

10 m

compressible bag
9 m diameter

V1 volume  600 m3

float is 45° cone, displacement 5600 m3 with local ballast

Figure 1. Conical float with underwater airbag.

on the ballast, generating a restoring force. In still water the ballast therefore oscillates in heave
about its equilibrium position. The heave oscillation period of the ballast, with the top of the bag
fixed, depends on the volume of the bag and the matching weight of the ballast. For example for
a bag of 550 m3, neutrally ballasted, the heave period of the ballast is 8.7 s and can resonate with
the waves (figure 5). According to Froude scaling, for resonant period T the bag displacement and
ballast weight are proportional to T6.

By changing shape, the bag thus functions as an elastic spring, even if it is made of inextensible
fabric. If the fabric can stretch then the effective spring constant of the bag will be reduced
and the resonant period of the combination becomes longer; in this case, a smaller bag can
resonate with the waves. In this paper, we consider only a bag which is flexible but longitudinally
inextensible.

To support the ballast the tension in the fabric along lines of longitude must be large. The fabric
is therefore reinforced vertically by a multiplicity of longitudinal tendons, for example, vectran
straps integrated into the surface. Flexible fabric between the tendons makes the bag airtight. The
material bulges outwards where the external water pressure is low, and bulges inwards lower
down where the water pressure is high. Near the bottom, the fabric is folded inwards. These folds
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and possibly some elasticity allow the fabric to follow the shape as the bag expands and contracts.
The pressure difference across the fabric is small so the stress in the fabric is low. Underwater
photos of the bag are given in figure 10.

The waves drive the float in heave. This motion is communicated to the top of the bag and
excites a much larger resonant oscillation of the ballast. The change of pressure then drives air to
and fro into another closed volume of air (referred to as V2), via a reversible flow turbine (Wells
turbine) generating useful energy. There are two oscillators each with its own resonance; the float
oscillating in heave, and the bag with its changing shape and the ballast oscillating below. The
two oscillators are coupled and as in many physical systems this gives rise to two peaks in the
response.

The system is complex with many coupled variables which need to be computed. The shape
of the bag and its volume are affected by the air pressure inside, which in turn depends on the
volume and the flow through the turbine. This changes the force on the ballast and its acceleration.
The force at the top of the bag modifies the motion of the float engendered by the waves, which
changes the drive on the bag; and so on.

Each variable is determined by a fairly simple equation, but the input parameters are changing
and must be found from other equations. One can move forward using small steps in time. At each
step a differential equation determines the new value of each variable, using the current values of
the others. When all the variables have been recalculated one moves on to the next time step. In
this way one maps the evolution of the whole system in time.

I have been using this method successfully since 1958 (originally to follow the three-
dimensional spiral motion of charged particles in a non-uniform magnetic field [1]). The step
in time is reduced until the final result is independent of the step length. Then simple equations
apply and there is no need for complex interpolations, such as Runga–Kutta etc.

In [2], we reported an analysis of the same system using a linear frequency-domain model
with many prior references and details of the experimental tests. The time-domain (real world)
approach reported here provides a more immediate insight into the evolution of the variables,
and reveals the nonlinearities which appear with larger waves. The objective of this paper is not to
verify the calculation, which has been well established for a wide variety of systems, but to predict
what can be realized with an underwater resonant airbag suspended below a heaving float. The
calculations reported here are exploratory to see what might be achieved; at this stage, high
accuracy is not needed. A large conical float (figure 1) is adopted for the computations because
the hydrodynamic coefficients and added mass are known (see below). A more cost-effective float
is illustrated in figure 12.

2. Hydrodynamic data
A good wave absorber must be a good wave radiator. In this case, the wave radiation comes
primarily from the float. The bag is moving and changing volume, but being far underwater its
wave radiation is assumed negligible. In [2, fig. 14], the radiation from the bag and the ballast are
shown to be small. Observations of the ballast oscillation with an underwater camera show small
damping also suggesting that the radiation is small.

A body with vertical sides does not displace water as it heaves, except at the bottom; and deep
motion does not perturb the surface sufficiently. So a vertical sided body will not generate useful
waves. To get good radiation the body should slope near the surface to push out water sideways.
Therefore, we use a conical float. A rather flat cone with cone angle greater than 45◦ will radiate
the most, but the water plane area will vary rapidly with depth. Tentatively, cone angle 45◦ is
chosen for initial trials.

The added mass and radiation damping for conical floats of various angles have been
calculated by Prof. John Chaplin at Southampton University (JR Chaplin 2013, unpublished data).
Over a wide range the added mass is close to the mass of water displaced. The data on radiation
can be fitted surprisingly accurately with a simple empirical formula which are convenient for
calculations.
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Table 1. Parameters for equation (2.2) for various cone angles.

angle of cone to vertical (degrees) C α β
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 4.00 1.00 3.95
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 4.12 0.35 2.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 4.12 0.28 2.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40 4.14 0.27 2.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 4.05 0.23 1.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60 4.00 0.23 1.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70 4.00 0.23 1.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80 4.00 0.23 1.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The radiation damping force Fr for a cone of water plane radius a heaving at angular frequency
ω, velocity v is

Fr = fρa3ωv, (2.1)

with the numerical coefficient f given by

f = C(x + αx4) exp(−βx), (2.2)

in which x = ka with k = 2π/λ. The values of the parameters C, α, β which give a good fit to the
cone data are shown in table 1. Interpolating, the values adopted for the 45◦ cone are C = 4.10,
α = 0.25, β = 1.92.

We also need the excitation force Fx, which is the vertical force on the cone for a wave of a given
frequency and amplitude A. This is less than ρgA times the water plane area, because the upward
force is generated by the pressure on the sloping surface of the cone and the wave is attenuated
with depth. Fortunately, we can use the Haskind relation which connects the excitation force on
a body with its radiation damping. To get the correct capture width (CW), which should reach
λ/2π at the peak of the resonance, the excitation force must match the damping force amplitude
due to wave radiation, and this is what Haskind achieves. A good wave absorber is automatically
a good wave radiator.

The radiation damping force Fr is proportional to the heave velocity v with the radiation
coefficient br defined by

Fr = brv. (2.3)

In deep water, the Haskind relation connecting br to the excitation force is

br =
(

Fx

A

)2
ω3

2ρg3 , (2.4)

in which Fx is the peak vertical force on the body for a wave of amplitude A. On the other hand,
(2.1) for the cone implies

br = fρa3ω. (2.5)

Combining (2.4) and (2.5) gives the excitation ratio XF

XF = Fx

A
= gρ

k2

√
2f (ka)3. (2.6)

The radiation damping coefficient f and the excitation ratio XF both change with wave period
according to equations (2.1) and (2.6) and this is included in the simulation.
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3. Theory
The main difficulty in the calculation is finding the shape of the fabric in its vertical section. The
bag is assumed to be isosymmetric about its vertical axis. The fabric and reinforcing tendons
are inextensible, so the length of the fabric is fixed. The total force along the fabric at any level
must be the same everywhere, otherwise the fabric will move. So the longitudinal tension F per
unit horizontal width of fabric gets less where the bag is wide with large radius r, and q = Fr is
constant. The radius of curvature R of the fabric in longitudinal section at any level is determined
by the pressure difference �p across the fabric, R = F/�p. The tension along the horizontal cross
section of the fabric is small and does not influence the general shape of the bag.

Assume that the depth z0 and radius at the top of the bag is defined by the float, while the
depth zbal and radius rbal at the bottom of the bag is defined by the ballast. The air pressure
p1 inside the bag is given. The value of q and the fabric angle θ0 at the top are unknown. The
calculation starts with assumed values for q and θ0 and follows the fabric in equal steps along a
line of longitude until it reaches the end. Then zbal and rbal will normally not match the desired
end conditions, so the calculation must be repeated with modified values of q and θ0, until the
fabric ends at the correct point. To speed the process, the effects of small steps in q and θ0 are
first calculated separately and the double adjustment is then made in a single move by using a
standard 2 × 2 matrix inversion.

When the fabric shape has been determined the vertical force on the ballast will, in general,
not match its net weight, so the ballast will be accelerated and move to a new level. Because of
resonance, the amplitude of the ballast oscillation can be much larger than the wave amplitude.

The volume V1 of the bag is recalculated with the corresponding air pressure p1 according to
the adiabatic gas law pVγ = constant. Any pressure difference (p1 − p2) will then drive air through
the turbine (assumed to be a linear resistance) into the second volume V2 with air pressure p2; the
flow will change the pressure in the bag, to be used in the next time step. All these values vary as
the machine operates and have to be recalculated at each time step.

For a given bag depth at the top z0 and at the bottom zbal there is a unique solution which
defines the fabric angle θ0 at the top and the force on the ballast Fbal. Initially, this matches the net
downward force Mbal on the ballast and the system is in equilibrium. But in general Fbal does not
equal Mbal and the ballast is accelerated. As it moves the shape of the fabric is recalculated, the
volume of the bag changes and the pressure inside is revised according to the adiabatic gas laws
and the flow through the turbine into V2.

At the top of the bag, the angle of the fabric generally differs from 90◦ (horizontal). The tension
in the fabric then generates a vertical force Ftop on the pipe connecting to the float above and this
adds to the force of the waves.

If Ftop opposes the float motion, the float does work on the bag, transferring energy to the
ballast. This energy generates the flow of gas through the turbine and ultimately the useful
power output. In its turn, Ftop damps the motion of the float. The computer simulation in the
time domain takes into account all these interconnected processes. Time advances in 2 ms steps.
The shape of the bag, the gas pressure inside and the flow through the turbine are re-evaluated
at each step. The turbine damps the gas flow and therefore the ballast oscillation which changes
Ftop. This, in turn, reacts on the float oscillation and reduces the waves radiated by the float.

As the bag is well below the surface the direct action of the waves on the bag is small and
neglected. For the same reason, the wave radiated by the bag is not included. These assumptions
have been confirmed in [2].

4. Coupled oscillators
In this system, there are two independent oscillators: (a) the float with its natural heave period
and radiation damping, and (b) the bag/ballast system with its own resonance period determined
by the size of the bag and the pressure inside, damped by the gas flow through the turbine. The
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two oscillators are coupled by Ftop which on one side drives the bag and on the other side reacts
on the float. If the two systems are tuned to the same period, this coupling is enhanced.

Coupled oscillators occur in many branches of physics; superhet radios normally have
two identical interconnected tuned circuits giving a desirable double-humped response. Other
examples are the sodium D-lines, many quantum mechanical systems, as well as mechanical
vibrations. In all cases, with initially equal periods the coupling splits the resonance into two
separated peaks (normal modes). The stronger the coupling the further are the peaks driven apart.

5. Simulation
In the simulation, monochromatic incident waves drive the conical float, which in turn sets up an
oscillation of the ballast. This drives air to and fro, into and out of V2, through the turbine which
is represented by a linear resistance with the volume flow in m3 s−1 proportional to the pressure
drop in metres head. The ratio of flow in m3 s−1 per metre of pressure head is referred to as ftv.
The pneumatic energy input to the turbine is accumulated and compared with the incident wave
energy per metre wavefront. This gives the CW. The added mass is included for the float and the
ballast.

At each step in time the calculation follows a number of interconnected variables:

— the elevation of the float, including the wave force and the force from the top of the bag
— the shape of the bag, volume and pressure inside p1
— the force on the ballast, ballast acceleration, velocity and position
— the mass flow through the turbine to V2, with its internal pressure p2
— pneumatic energy transferred to the turbine
— increase the time t to t + δt and recycle.

We make each calculation in turn, using the latest values of the other variables which may,
however, be out of date by one time step δt (typically 2 ms). If the step in time is short enough
the error will be negligible. The pressures p1 and p2 are calculated using the adiabatic relation
pVγ = constant, adjusted for the mass of the gas in volumes V1 and V2 if this has changed due to
flow through the turbine. Heat exchange with the walls of the vessels is assumed to be negligible;
surely true on the full scale, may not be true for small models. The net downforce on the ballast
(allowing for buoyancy) at equilibrium is equal to the upthrust on the bag volume. The ballast
is ellipsoidal so its added mass is equal to the mass of water displaced. The added mass of the
cone, calculated by Chaplin (JR Chaplin 2013, unpublished data), is close to the mass of water
displaced.

For the complete system, the CW versus wave period T is given in figure 2. The bag/ballast
system is rather nonlinear, so its resonant period changes with ballast amplitude and with large
motions we do not get a good resonance (figure 3). Therefore, I am computing the performance
in small waves. For this example, the cone diameter at the water line is 35 m and its displacement
5600 t, bag displacement is 550 t and the volume ratio V2/V1 = 3. Both oscillators are tuned close
to 9 s waves. We see that the resonance is split into two peaks. With the optimum value of turbine
flow (ftv = 14 m3 s−1 per m head) both reach the theoretical value of λ/2π . This is only achieved
with small waves and using Haskind to match the excitation force with the radiation damping.
We cannot change the coupling force Ftop, so the separation of the peaks is out of our control.
Luckily it broadens the resonance more or less optimally.

The response for larger wave amplitudes is shown in figure 3. Wave amplitude 0.5 m gives a
good response; but for amplitude 1 m the CW drops by a factor of about 2.5 because the bag has
limited volume and cannot pump enough air. This drop may be larger than we would wish, but
in general, the limitation of output power in large waves is to be welcomed. Prof. R.C.T. Rainey
[3] for example has consistently emphasized the value of nonlinearity in protecting wave energy
converters from damage. One could double the volume of the bag so that it can pump more,
and this would increase the resonance period by only 12%. Alternatively to double the pumping
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ftv = 14

Figure 2. CW in metres versus wave period in seconds, for various turbine flows ftv in m3 s−1 per metre water head, wave
amplitude= 0.02 m. The dotted line gives the theoretical maximum CW= λ/2π . (Online version in colour.)

40
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6 7 8 9 10 11 12

T

CW

13 14 15 16

theory
wamp 0.02
wamp 0.5
wamp 1

Figure 3. CW versus wave period, for wave amplitudes 0.02, 0.5 and 1.0 m, ftv= 20. (Online version in colour.)

volume furnish the float with two identical bags. The volume of V2 would have to be increased
pro rata. These options could be considered.

Figures 4 and 5 show the damped oscillations of each system excited separately and
uncoupled. In each case, the oscillation was started by applying an arbitrary upward velocity
to the plotted variable. The decay of the oscillations corresponds to Q-values of 2.58 for the float
due to the radiation damping and 2.64 for the ballast due to the flow through the turbine at the
optimum value of ftv. It is remarkable that with the optimum power take off damping, chosen
from figure 2, the Q-values of the two oscillators are almost equal.
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time (s)

20 25 30

Figure 4. Damped oscillation of the float by itself, period 9.9 s, Q-value 2.6. Vertical displacement in metres.

1.0

0.5

0

–0.5

–1.0
0 5 10 15

time (s)

20 25 30

zbal

p1

p2

Figure 5. Damped oscillation of the ballast by itself (red) at the optimum ftv= 14. Period is 8.7 s, Q-value 2.6. Vertical
displacement in metres. Also shown is the pressure p1 in V1 (green) and the pressure p2 in V2 (blue). The phase lag is due to
the flow. Pressures in metres head. (Online version in colour.)

Figures 6 and 7 show the time sequence of movements and pressures for two wave periods, T =
8 s and T = 11.5 s, that is at the lower and upper peaks in the CW response (figure 2). For 8 s waves
(figure 6), the ballast amplitude (red solid) is about 2.5 times the wave excitation force amplitude
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0

Figure 6. Time sequence for wave period 8 s. Displacements and pressures in metres head are plotted versus elapsed time in
seconds. Line labelled ‘wave’ is the excitation force on the float due to the wave. (Online version in colour.)

0.10
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–0.05

–0.10
100 105 110 115 120 125 130 135 140

wave
zbal
p1
p2

heave X
0

Figure 7. Time sequence for wave period 11.5 s. Displacements and pressures in metres head are plotted versus elapsed time in
seconds. ‘wave’ is the excitation force, ‘heave X’ is the displacement of the float. (Online version in colour.)

(black, dashed). Pressure p1 in the bag (green, long dash) tracks the ballast with opposite phase,
while the pressure p2 in V2 (blue dotted) is smaller and lags about 45◦ on p1.

For 11.5 s waves (figure 7), the curves are similar but with larger amplitudes. When the ballast
(orange solid) is up, the fabric is pressing upwards on the float so Ftop (not plotted) is in antiphase
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Figure 8. Time sequence for wave period 11.5 s with larger wave amplitude 0.5 m. Displacements and pressures inmetres head
are plotted versus elapsed time in seconds. (Online version in colour.)

with the wave excitation force on the cone (black dashed). Therefore, the heave amplitude of the
cone (pink long dash) is only slightly larger than the wave force. The cone motion lags relative to
the wave, as required to transfer energy and radiate a wave in antiphase with the incoming wave.

In figure 8, the amplitude of the 11.5 s waves was increased to 0.5 m and nonlinearity is starting
to distort the waveforms. The reaction force applied to the cone by the bag, Ftop (not plotted), is
about one-tenth of the wave force on the cone (black, dashed).

The displacement of the cone is the pink dashed line. When the cone has its maximum
downward velocity, Ftop is large and positive. Conversely, when the cone is moving upwards
Ftop is maximally negative. So Ftop reduces the cone velocity and damps its motion; Ftop also
transfers energy from the cone to the bag. The force on the cone due to radiation damping (not
plotted) is of the same magnitude as Ftop, (as it should be to get optimum CW) and together they
delay the cone motion (pink dashed) so that it lags 90◦ on the wave.

It is the motion applied to the top of the bag by the cone (red dashed) that drives the bag
oscillation. The motion of the ballast (orange) follows with almost one-quarter of a cycle delay.

The heave amplitude of the cone (red dashed) is 1.3 times the wave amplitude (black dashed)
but the ballast amplitude is 4.5 times the wave. The ballast motion (red) is no longer sinusoidal but
has a narrow downward peak; correspondingly the pressure p1 (green) in the bag has a narrow
positive peak. The pressure excursion in the bag (green dashed) is ±5 times the wave amplitude.
The pressure across the turbine (p1 − p2) is about five times the wave amplitude. Note that when
the pressure p2 in V2 (blue dotted) is equal to p1 the flow through the turbine drops to zero so p2
is at its maximum or minimum.

6. Bag shape
The changing shape of the bag is shown in figure 9 for waves of 11 s period and amplitude 1 m.
The range of ballast motion is 7 m, while the top of the bag (attached to the cone) moves only
about 2 m. (For the relative phase of the top and bottom motions, figure 8). It is the top motion that
drives the ballast, but there is a complex and varying phase delay between them. The response is
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Figure 9. Bag shapes for wave period 11 s, and wave amplitude 1 m. The bag is axisymmetric about the vertical axis: the
calculated vertical section of one half of the bag is plotted. Horizontal and vertical scales in metres. When the ballast is low
(black line) the bag is narrow and thin,minimumvolume;when the ballast is high (red line) the bag is heart-shaped,maximum
volume. (Online version in colour.)

already becoming substantially nonlinear for this wave amplitude. Underwater photos of the bag
are given in figure 10.

7. Tests
In model tests, it is necessary to correct for the compressibility of air which is much smaller at the
reduced scale. This is normally done by adding large volumes of air, for example to V1 and V2. It
is easier to make the model volumes appropriately distensible, thus allowing more space for the
incompressible model air (Farley FMJ 2015, unpublished data). The distensibility of the model
volumes then tracks the compressibility of the full-scale gas.
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(a) (c)(b)

Figure 10. Underwater photos of the bag, (a) ballast low, bag compressed, (b) ballast high, bag expanded, (c) no air pressure,
bag collapses, no air is pumped. (Online version in colour.)
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1.8 2.0 2.2

theory

data * 1.8

Figure 11. Model capture widths CW versus wave period T (black solid) for wave amplitude 3 cm. Red dotted line CW λ/2π
divided by 1.8. (Online version in colour.)

Model tests with a bag mounted below a 1 m diameter 45◦ cone were carried out at Plymouth
University [2] with wavelengths around 3 m and amplitude 0.03 m. A selection of the data from
these tests (not included in [2]) are shown in figure 11 (black solid). According to figure 3,
nonlinear effects in the bag are to be expected with this ratio of amplitude to wavelength (1 in 100),
so the CW was considerably less than theory. Therefore, for easy comparison the theoretical CW
λ/2π (red dotted) has been divided by 1.8. Fluctuations due to measurement errors are apparent
but the wide response predicted in figure 2 is generally confirmed and there is some indication of
the expected double peak. Future tests with smaller waves would be of interest, but with small
waves errors can arise from random residual motions in the tank. Ideally, we need to move up to
a larger scale.

Using figure 11 and scaling up from 1.4 s to 10 s waves in the sea, the wave amplitude would
be 1.5 m and the wave power 88 kW m−1. With CW equal to theory divided by 1.8, that is 14 m,
the captured pneumatic power would be 1.2 MW. With turbine efficiency 50% this would give an
average power output of 600 kW. Although the CW is below theory for large waves, the output
would nevertheless be useful.
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turbine

V2

V1

Figure 12. Wave bell. The bag is suspended inside a bell-shaped float which has high inertia from the enclosed water. Any
trapped air vents to atmosphere through a small pipe not shown.

8. Discussion
The CW versus wave period (T) was calculated in [2] using the linear frequency-domain model
and plotted in figs. 10, 12 and 13 of that paper. The separated peaks due to the coupling of the
two oscillators are clearly seen. With optimum parameters (fig. 13), both peaks reach λ/2π and
the ratio of the peak periods is about 1.6, agreeing with figure 2 of this paper.

However [2] already revealed the importance of the nonlinearities in the bag. The ‘S-shaped
curve’ of bag shape versus internal pressure (figure 11) is itself due to this nonlinearity. The graphs
of CW versus wave period in figure 12 depend critically on the start point. As the bag shape
changes in the real world, the performance will be some average which is hard to determine.
By contrast, the time-domain method automatically follows any changes in parameters due to
nonlinearities as they arise. See, for example, figure 8 in which the wave excitation force is far
from sinusoidal. The time-domain method used here will make better predictions.

The device dimensions used here are an example to illustrate the principle. They have not been
optimized for a particular wave climate. Commercial optimization to obtain the best yield to cost
ratio would depend on many factors which have not been considered. In figure 1, the float is 35 m
diameter at the waterline, has displacement 5600 t, which is rather large. Ballast is cheap but this
float could be too expensive.

An alternative design, the wave bell, with less structure and less depth, is illustrated in
figure 12. The float is shallow and incorporates the fixed air volume V2. At the waterline, the edge
of the float is conical to radiate waves and increase the radiation damping. The float is provided
with a deep underwater skirt [4]: this traps a volume of water which must heave with the float
and therefore adds inertia, lengthening the heave period (verified experimentally). The flexible
airbag located inside the skirt is protected from the waves and can hardly radiate beyond the bell.
The hydrodynamic coefficients of this structure have not been calculated at this stage. They can
easily be adjusted. Increasing the float diameter decreases the resonance period and increases the
damping. Increasing the depth of the skirt lengthens the resonance period.

One or two underwater bags may be attached to an elongated float which pitches in the waves.
A pitching wave energy converter can have a CW of 2 × λ/2π and with the correct combination
of pitch and heave [5,6] the CW can rise to 3 × λ/2π , about 70 m in 10 s waves, giving an attractive
power output in a single device. Many such options remain to be explored.
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9. No moving parts
Most wave energy converters have mechanical moving parts, hinges, joints, pistons, end stops,
sliding seals, flaps or one-way valves. When deployed in realistic conditions all these have failed.
Apart from the turbine, this machine has no mechanical moving parts whatsoever. The only
question is the life of the bag. This needs to be studied, but manufacturers are optimistic. In any
case, if the bag fails there is sufficient reserve buoyancy in the float to support the ballast, and the
turbine can be mounted above the waterline. Replacing a bag should not be a major expense.

10. Survival
In heavy weather, the bag can be deflated as in Figure 10c. It then collapses and no longer pumps
air. This will protect the turbine. For more protection, the whole machine can easily be sunk in
storms by flooding the float and stabilized at some suitable depth. The system is completely sealed
and under pressure, so no water can enter. Reflating with air pumped through a snorkel or from
cylinders restores the operation.

11. Conclusion
The underwater resonant airbag is a new concept for wave energy conversion [7]. According to
the simulations and tests it works well. Apart from the reversible flow turbine, the device has no
mechanical moving parts requiring lubrication. It has a good CW with wide-band response. It
appears to be inexpensive. The life of the flexible underwater bag needs to be tested but possible
manufacturers are optimistic. The underwater resonant airbag can be used as wave power take
off for any floating device with vertical motion.
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conical floats are not in the public domain. Equation (2.2) and the parameters of table 1 are included in the
hope that they may useful for users of conical floats.
Competing interests. I have no competing interests.
Funding. This work is entirely self-funded.
Acknowledgements. Many thanks to Prof. John Chaplin for calculating the radiation coefficients and added
masses of cones. Thanks to him also, with Deborah Greaves, Martyn Hann and A. Kurniawan, for testing
a model in the COAST wave tank at Plymouth University as described in [2]. I am also very grateful for the
efforts of the referees, whose comments have led to significant improvements in the paper.

References
1. Farley FJM. 1959 Computation of particle trajectories in the CERN cyclotron. CERN yellow

report 59–12.
2. Kurniawan A, Chaplin JR, Hann MR, Greaves DM, Farley FJM. 2017 Wave energy

absorption by a submerged air bag connected to a rigid float. Proc. R. Soc. A 473, 20160861.
(doi:10.1098/rspa.2016.0861)

3. Rainey RCT. 2012 Key features of wave energy. Phil. Trans. R. Soc. A 370, 425–438.
(doi:10.1098/rsta.2011.0251)

4. Farley FJM. 2017 Wavebell - a new wave energy converter. See http://www.wavebell.org.
5. Falnes J. 2002 Ocean waves and oscillating systems, pp. 216–217. Cambridge, UK: Cambridge

University Press.
6. Farley FJM. 2012 Far field theory of wave power capture by oscillating systems. Phil. Trans. R.

Soc. A 370, 278–287. (doi:10.1098/rsta.2011.0275)
7. Farley FJM. 2014 Wave power converter, patent GB 2532074, 9 Nov 2014.

PCT/GB2015/053377.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 M

ar
ch

 2
02

2 

http://dx.doi.org/doi:10.1098/rspa.2016.0861
http://dx.doi.org/doi:10.1098/rsta.2011.0251
http://www.wavebell.org
http://dx.doi.org/doi:10.1098/rsta.2011.0275

	Introduction
	Hydrodynamic data
	Theory
	Coupled oscillators
	Simulation
	Bag shape
	Tests
	Discussion
	No moving parts
	Survival
	Conclusion
	References

