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We investigate the hydroelectromechanical-coupled
dynamics of a piezoelectric wave energy converter.
The converter is made of a flexible bimorph plate,
clamped at its ends and forced to motion by
incident ocean surface waves. The piezoceramic
layers are connected in series and transform the
elastic motion of the plate into useful electricity
by means of the piezoelectric effect. By using
a distributed-parameter analytical approach, we
couple the linear piezoelectric constitutive equations
for the plate with the potential-flow equations for
the surface water waves. The resulting system of
governing partial differential equations yields a new
hydroelectromechanical dispersion relation, whose
complex roots are determined with a numerical
approach. The effect of the piezoelectric coupling
in the hydroelastic domain generates a system of
short- and long-crested weakly damped progressive
waves travelling along the plate. We show that
the short-crested flexural wave component gives
a dominant contribution to the generated power.
We determine the hydroelectromechanical resonant
periods of the device, at which the power output is
significant.

1. Introduction
The wave energy industry has recently suffered from
major pitfalls that highlighted the shortcomings of
several concepts to extract energy from the motion of
the ocean [1,2]. Among the reasons of such failures
are the sheer size and complexity of the proposed
devices, and the use of costly design components (e.g.
materials, underwater moving parts) to resist the wave
action. These factors concur to make the levelized cost
of energy (LCOE) of wave energy converters (WECs)
not yet competitive against that of fossil fuels [3].

2016 The Author(s) Published by the Royal Society. All rights reserved.
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To improve this scenario, new research efforts must focus on innovative ideas, which make
use of sleek design and smart materials to generate useful electricity at a much smaller LCOE
than that of existing devices. One of such ideas is to use piezoelectric materials, which are able to
establish a voltage upon application of an external stress. A piezoelectric WEC (PWEC) exploits
the natural cycles of stresses and strains induced by the wave motion to generate an output AC
voltage [4]. The estimated power potential of a typical PWEC is in the order of watts to kilowatts.
This is enough to supply appliances (e.g. LEDs, wireless routers, PCs), ocean buoys and sensors.
Despite being less powerful than other WECs (e.g. the nominal capacity of an oscillating wave
surge converter is in the order of hundreds of kilowatts; see [5–7]), PWECs enjoy the significant
advantages of being low maintenance and versatile. For example, they can also be employed
to increase wave damping around offshore oil platforms and in combination with near shore
breakwaters [4].

Although ambient power harvesting through piezoelectricity has a long and honourable
history [8], its application to ocean energy conversion has been proposed only in the past few
years. Novel PWEC concepts include cantilevered beams [9,10] and piezoelectric buoys [11].
So far, such devices have been studied with rather simplified mathematical models, in which
the effect of the piezoelectric layers on the dynamic response of the system was neglected. The
bending force resulting from the action of the waves on the structure was plugged separately
into the electric circuit equations to estimate the voltage on the piezoelectric layers [9–11]. With
that simplified approach, the hydroelectromechanical problem was in fact uncoupled into two
separate wave structure and electric problems. Such an approximate analysis is useful to obtain
a preliminary estimate of the extracted power, but cannot be trusted to provide accurate results.
Indeed, in reality, the dynamics of waves, structural elasticity and piezoelectricity are inherently
coupled in a PWEC, and so the development of a hydroelectromechanical model is fundamental
to providing an accurate analysis of the system.

In this paper, we analyse the coupled hydroelectromechanical dynamics of a piezoelectric plate
WEC. The idea of using a flexible plate to extract energy from the waves was first introduced
by Koola & Ibragimov [12], though they did not model any power take-off mechanism, and is
inspired by nature. It is long known that spreading a thin film of oil on the sea surface has
the effect of calming troubled waters. For example, this practice was used by ancient sailors,
as described by Franklin [13]. Later, Lamb showed that the tension variations at the oil–water
interface ‘produce an alternating tangential drag on the water, with a consequent increase in the
rate of dissipation of energy’ [14]. Similarly, a piezoelectric plate WEC can extract energy from the
ambient wave motion by converting tension variations at the plate–water interface into a voltage,
owing to the piezoelectric effect. This, in turn, exerts a damping action on the waves. Piezoelectric
plates have already been considered for the task of extracting energy from currents. For example,
Doaré & Michelin [15,16] developed a coupled model of energy extraction from piezoelectric flags
fluttering in an axial flow. However, to the best of our knowledge, no coupled models of wave
energy extraction from piezoelectric plates have been developed yet.

We consider the power generation by a bimorph piezoelectric plate in ocean surface waves of
varying frequency. We derive a novel hydroelectromechanical dispersion relation for the flexural
waves propagating on the plate. The piezoelectric coupling in the hydroelastic domain generates
a system of short- and long-crested weakly damped progressive waves travelling along the
plate. We show that the short-crested flexural wave component gives a dominant contribution
to the generated power. We determine new hydroelectromechanical resonant periods at which
the power output of the device is significant.

This paper is organized as follows. First, we introduce the governing equations of the coupled
system by using a distributed-parameter approach for the piezoelectric plate and a potential-flow
theory for the waves (§2). Then, we solve the coupled system of partial differential equations
by means of domain decomposition and the method of matching potentials (§3). After that, we
analyse the mechanism of wave power extraction by the device (§4) and discuss the behaviour
of a typical configuration of the piezoelectric plate WEC (§5). Conclusions and suggestions for
further work are finally presented (see §6).
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2. Governing equations
Referring to figure 1, define a global coordinate system (x′, y′, z′), with the z′-axis pointing
upwards from the undisturbed water level z′ = 0. The x′-axis is directed along the direction of
propagation of incoming surface waves of amplitude A′ and angular frequency ω′. Variables with
primes denote physical quantities. The bottom of the ocean is located at a constant depth z′ = −h′
and the piezoelectric converter is a flexible plate, clamped at both ends at (x′, z′) = (±L′, −d′).
As is usual in structural dynamics [17], we introduce a local reference system on the plate, with
(X′, Y′, Z′) = (x′, −y′, −z′ − d′), so that the local Z′ axis points downwards (see again figure 1).
In this section, we shall first derive a distributed-parameter model for the governing equations of
the piezoelectric plate in the local reference system. Then, we shall couple the model equations
of the plate with those of the surface waves, based on a potential-flow theory, in the global
reference system.

(a) Distributed-parameter modelling of the piezoelectric plate
Consider a flexible plate whose width in the transverse Y′-direction is much greater than its
length 2L′ along the X′-axis. Hence, the deformations of the plate will be modelled as purely two-
dimensional, i.e. ∂/∂Y′ = 0. Consider a bimorph configuration of the plate, in which piezoelectric
layers are perfectly bonded to both faces of a flexible substrate, with opposite polarities in
the Z′-direction, as shown in figure 2. Such a symmetric bimorph configuration is also used
in the design of cantilevered piezoelectric energy harvesters from ambient vibrations; see [8].
Electrodes of negligible thickness cover the top and the bottom faces of each piezoelectric layer
and ensure that a potential difference is established across them. We assume that the deformations
are small and that the behaviour of the structure is linear elastic. The piezoelectric layers are
homogeneous and have thickness d′

p, Young’s modulus E′
p (in N m−2) and Poisson’s ratio νp.

The piezoelectric layers are made of discrete piezoelectric patches, each of length dX′ � L′. The
patches are arranged one after another to cover both sides of the substrate [8,15]. The elastic
substrate is homogeneous and has thickness d′

0, Young’s modulus E′
0 and Poisson’s ratio ν0. From

now on, primes will be dropped for simplicity in this section. Because the system is homogeneous,
the vertical displacement W(X, t), the stresses σij(X, Z, t), with i, j = X, Y, Z, the strains εij(X, Z, t)
and the voltage V(X, t) are continuous along the plate. Hence, the converter can be modelled as a
uniform composite plate based on the Kirchhoff plate theory [17].

Consider the cylindrical bending of a plate element of unit width and length dX � L, under
the action of a vertical surface load q̃(X, t) (in N m−2). The equation of motion of the plate element
in the local coordinate system of figure 2 is

∂2MXX

∂X2 − Ib
∂2W
∂t2 = −q̃, (2.1)

(see [17]) where

MXX =
∫ db/2

−db/2
σXXZ dZ (2.2)

is the internal bending moment per unit width (in N), db = d0 + 2dp � L is the total thickness of
the bimorph and

Ib =
∫ db/2

−db/2
ρ(Z) dZ = ρ0d0 + 2ρpdp (2.3)

is the surface density of the bimorph (in kg m−2). In (2.3), ρp is the density of the piezoelectric
layers and ρ0 is the density of the substrate. We consider isotropic materials, so that the
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incident wave
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Y'
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Figure 1. Geometry of the system in physical variables. The local reference system on the plate is (X ′, Y ′, Z′) and the global
coordinate system is (x′, y′, z′). The plate is 2L′ long and is clamped at both ends at a depth of d′ in an ocean of constant depth
of h′. (Online version in colour.)

piezoelectric patchd¢p

d¢p

G ¢d¢0

dX¢

piezoelectric patch

substrate

X¢

Z ¢

Figure 2. Geometry of the piezoelectric plate and detail of the bimorph configuration for an element of length dX ′ � L′,
corresponding to the length of a piezoelectric patch. The bold vertical arrows indicate the poling direction of the piezoelectric
layers (fromnegative to positive pole). Electrodes of negligible thickness cover both faces of eachpiezoelectric patch. Eachpair of
piezoelectric patches are shunted with an external resistance 1/Γ ′, thus powering a resistive circuit. (Online version in colour.)

constitutive linear elastic equation for the substrate is

σXX = E0

1 − ν2
0
εXX. (2.4)

Now, we define the 1-, 2-, 3-axes of piezoelectricity and couple them with the material X-, Y- and
Z-directions, respectively. The piezoelectric constitutive equations for the layers are

σXX = Ep

1 − ν2
p
εXX − Ep d31

1 − νp
E3 (2.5)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 M

ar
ch

 2
02

2 



5

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160715

...................................................

and

D3 = Epd31

1 − νp
εXX + εSE3. (2.6)

In the latter, E3(X, t) is the vertical component of the electric field E (in V m−1), D3(X, t) is
the vertical component of the electric displacement D (in C m−2), εS is the permittivity of the
piezoceramic at constant strain (in F m−1) and d31 is the piezoelectric coupling constant (in m
V−1); see [8]. Because the electrodes are aligned along the horizontal X-direction, the electric field
and electric displacement are both aligned along the vertical Z-direction [18]. Note that the sign
of d31 is opposite for the top (d31 < 0) and bottom (d31 > 0) piezoelectric layers, according to the
relevant poling directions (see again figure 2).

In the absence of axial displacements, εXX = −Z∂2W/∂X2. Now, substitute the latter expression
into (2.4)–(2.5). Then, substitute the resulting equations into (2.2) and integrate over the thickness
of the plate to get

MXX = −B
∂2W
∂X2 − Ep|d31|

1 − νp
(d0 + dp)E3dp, (2.7)

where

B = E0d3
0

12(1 − ν2
0 )

+ 2Epdp

1 − ν2
p

(
d2

0
4

+ d0 dp

2
+

d3
p

3

)
(2.8)

is the flexural rigidity of the bimorph. Because the piezoelectric layers are connected in series (see
again figure 2), the voltage across the electrodes of each piezoceramic layer is the same. For the
top layer, Vp = − ∫−

+ E · dX = −E3dp, so that the total voltage is V(X, t) = 2Vp = −2E3dp; see [18].
Substitution of the latter expression into (2.7) yields the coupled electromechanical equation

MXX = −B
∂2W
∂X2 + θV, (2.9)

where

θ = Ep|d31|
1 − νp

d0 + dp

2

is a piezoelectric coupling factor (in N V−1 or, equally, in C m−1).
Now, we need to pair (2.9) with the electrical circuit equations, which describe the power

take-off (PTO) mechanism of the converter. Following a common practice in modelling vibration-
based energy harvesters, we model the PTO for each elementary stripe of length dX by shunting
the piezoelectric patches with a resistance [15]. Hence, each piezoelectric pair powers a resistive
circuit (see again figure 2). As a result of the Gauss law, the electric charge Θ(X, t) developed in
each piezoelectric layer is given by the integral of the electric displacement D over a surface S of
unit width and outward normal n(X, Z) enclosing an electrode,

Θ =
∮

S
D · n dS =

∫
A

D3 dA, (2.10)

where A is the electrode area; see [8,18]. Note that the only contribution to the integrand in (2.10)
comes from D3, because D is oriented along the 3-axis. According to our distributed-parameter
approach, we now derive the electrical circuit equations for a generic piezoelectric element of
length dX � L and unit width, in which the instantaneous electric field, displacement and voltage
are uniform. Differentiating (2.10) over the elementary area dA, using the second piezoelectric
relation (2.6) for D3 and substituting E3 = −V/(2dp) gives

Q = Epd31

1 − νp
εXX − CV. (2.11)

In the latter, Q(X, t) = dΘ/dA is the charge per unit area of the piezoelectric layer and C = εS/(2dp)
is the electrical surface capacitance (in F m−2); see [18]. Finally, substitution of εXX = −Z∂2W/∂X2
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into (2.11) and further integration along Z over any of the piezoelectric patches yields the sought
electromechanical equation

Q = −θ ∂
2W
∂X2 − CV. (2.12)

The latter shows that each piezoelectric layer is acting as a parallel-plate capacitor connected
in series with the resistance [18]. Now, note that our system is still undetermined, as we have
four unknowns (Q, V, W, MXX), but only three equations, namely (2.1), (2.9) and (2.12). One last
equation is needed to close the system, and that is indeed Ohm’s resistive law: ∂Θ/∂t = ΓV, where
Γ = 1/R is the conductance and R is the resistive load of the circuit (in S−1). Differentiating Ohm’s
law over the elementary area dA, in which V is constant, we get

∂Q
∂t

= GV, (2.13)

where G = dΓ/dA is the surface conductance (in S m−2). Expressions (2.1), (2.9), (2.12) and (2.13)
are the sought electromechanical equations which govern the dynamics of the bimorph. They
are similar to the continuous form of the discrete equations derived by [15] and to the system
obtained in the Laplace space by [19].

The governing differential equations must be accompanied by appropriate boundary
conditions. Because the plate is clamped at both ends, we have

W(±L, t) = ∂W(X, t)
∂X

∣∣∣∣
X=±L

= 0. (2.14)

If now the plate is immersed in water waves, the dynamic surface load q̃(X, t) of (2.1) is
precisely the pressure forcing applied by the wave field on the plate. Hence, the electromechanical
equations need to be coupled with a hydrodynamic system, which is derived in the next section.

(b) Potential-flowmodelling of the ocean surface waves
In this section, we derive the governing equations of the hydrodynamic problem in the global
reference system (x′, y′, z′). Use of primes to denote physical quantities is reintroduced from now
on. Accordingly, unprimed variables will denote non-dimensional values. We assume that the
clamps at the end of the plate do not have any significant effect on the wave field. Within
the framework of a linearized potential flow theory, the fluid is inviscid and incompressible
and the flow is irrotational. Hence, there exists a velocity potential Φ ′(x′, z′, t′) that satisfies the
Laplace equation

∇′2Φ ′ = 0 (2.15)

in the fluid domain, the kinematic–dynamic boundary condition on the free surface

∂2Φ ′

∂t′2
+ g

∂Φ ′

∂z′ = 0, z′ = 0, (2.16)

where g is the acceleration owing to gravity, the Bernoulli equation

gz′ + P′

ρ
+ ∂Φ ′

∂t′
= 0 (2.17)

in the fluid domain, where P′ is the total pressure and ρ is the density of the ocean, and the no-flux
condition at the bottom,

∂Φ ′

∂z′ = 0, z′ = −h′. (2.18)

Finally, Φ ′ also needs to satisfy a kinematic condition on the surface of the plate. Let λ′ be the
characteristic wavelength of the incident waves. Assume that such a wavelength is comparable to
the total length of the device, λ′/(2L′) = O(1). Because the total thickness of the plate d′

b � 2L′ ∼ λ′,
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we can apply the thin-plate hypothesis and consider the thickness of the plate to be immaterial in
solving the potential-flow problem; see [5]. This yields the kinematic condition

∂W′

∂t′
= ∂Φ ′

∂z′ , |x′| ≤ L′, z′ = d′ ± δ′, δ′ → 0. (2.19)

3. Solution of the coupled system
We are now in a position to couple the electromechanical and the hydrodynamic problems. With
this aim, first replace the surface load in (2.1) with the pressure forcing of the waves

q̃′(X′, t′) = P′(X′, −d′ + δ′, t′) − P′(X′, −d′ − δ′, t′) = P′
+ − P′

−, δ′ → 0. (3.1)

Then, substitute the electromechanical equations (2.9) and (2.12) into the equation of motion (2.1)
and rewrite the result in the global reference system (x′, z′) to obtain(

B′ + θ ′2

C′

)
∂4W′

∂x′4 + I′b
∂2W′

∂t′2
− θ ′

C′
∂2Q′

∂x′2 =�P′. (3.2)

In the latter, W′ is now defined positive upwards and �P′(x′, t′) = P′− − P′+ is the pressure jump
across the plate in the z′-direction. Hence, (3.2) is a coupled hydroelectromechanical equation. The
electromechanical equation (2.12) and the circuit equation (2.13) in the global reference system are

Q′ = C′V′ + θ ′ ∂2W′

∂x′2 (3.3)

and

V′ + 1
G
∂Q′

∂t′
= 0, (3.4)

respectively (note that E′ and V′ change sign when expressed in the global coordinates).
Let us now introduce the following non-dimensional variables:

(x′, y′, z′, h′, d′) = L′(x, y, z, h, d), t′ =
√

L′
g

t, Φ ′ =√
gL′A′Φ, P′ = ρgA′P

and Q′ = A′
√

gI′bC′

L′ Q, V′ = A′
√

gI′b
L′C′ V, W′ = A′W.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

Upon substitution of (3.5), the coupled hydroelectromechanical equation of motion (3.2) becomes

β(1 + α2)Wxxxx + Wtt − α

γ
Qxx = r�P. (3.6)

In the latter, subscripts denote differentiation with respect to the relevant variable and

α = θ ′
√

B′C′ (3.7)

is a non-dimensional piezoelectric coupling parameter,

β = B′

L′3I′bg
(3.8)

is a non-dimensional stiffness,

r = ρL′

I′b
(3.9)

is a surface density ratio and finally γ = 1/
√
β. Analogously, the non-dimensional forms of the

electromechanical equation (3.3) and the circuit equation (3.4) are, respectively,

Q = V + α

γ
Wxx (3.10)
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and
V + ξQt = 0, (3.11)

where

ξ = C′

G′

√
g
L′ (3.12)

is a non-dimensional resistive term. Finally, the non-dimensional kinematic conditions at the ends
of the plate (2.14) become

W(±1, t) = Wx(x, t)|x=±1 = 0. (3.13)

Non-dimensionalization of the hydrodynamic equations (2.15)–(2.19) according to (3.5) yields,
respectively,

∇2Φ = 0 (3.14)

for the Laplace equation in the fluid domain,

Φtt +Φz = 0, z = 0, (3.15)

for the kinematic–dynamic boundary condition on the free surface,

L′

A′ z + P +Φt = 0, (3.16)

for the Bernoulli equation,
Φz = 0, z = −h, (3.17)

for the bottom boundary condition and finally

Wt =Φz, |x| ≤ 1, z = −d ± δ, δ→ 0, (3.18)

for the kinematic boundary condition on the plate.
Because the wave forcing is harmonic with frequency ω, time can be factored out by

introducing the spatial variables

[Φ(x, z, t), P(x, z, t), W(x, t), Q(x, t), V(x, t)] = 	{[φ(x, z), p(x, z), w(x), q(x), v(x)] e−iωt}, (3.19)

where i is the imaginary unit. In the following, the real part operator 	 will be omitted for the
sake of brevity. We shall now write the coupled boundary-value problem in terms of the spatial
potential φ only. First, substitute (3.19) into the hydrodynamic equations (3.14), (3.15) and (3.17)
to get the following system:

∇2φ = 0, in fluid domain, (3.20)

φz − ω2φ = 0, z = 0 (3.21)

and φz = 0, z = −h. (3.22)

Second, substitute the factorization (3.19) into the electromechanical equations (3.6), (3.10) and the
Bernoulli equation (3.16). Then, couple them all together to get the following dynamic boundary
condition on the plate,

β

(
1 + α2ωξ

i + ωξ

)
φxxxxz − ω2φz =ω2r�φ, |x|< 1, z = −d ± δ, δ→ 0, (3.23)

where, accordingly,�φ(x) is the jump of the spatial potential across the plate along the z-direction.
Finally, substitute (3.19) into the end conditions (3.13) and the kinematic equation (3.18). Again,
couple the equations together to obtain

φz = φxz = 0, x = ±1, z = −d ± δ, δ→ 0. (3.24)

The system (3.20)–(3.24) is now expressed in terms of the spatial potential φ only and will be
solved with the method of matching potentials [20]. Note that, in the short-circuit limit ξ → 0,
the second term inside the brackets at the left-hand side of (3.23) vanishes. Within this limit,
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1

2

3

4 h

d

z

x

x = –1 x = 1

Figure 3. Domain decomposition used to solve the boundary-value problem (3.20)–(3.24). (Online version in colour.)

the fifth derivative of the velocity potential in (3.23) is multiplied only by the non-dimensional
stiffness β and the resulting boundary-value problem is equivalent to that of a submerged
elastic plate without power extraction [21–24], as expected. Indeed, the complex coefficient α2ωξ/

(i + ωξ ) in (3.23) is a dissipative term which models the extraction of energy from the system by
means of the resistive circuits of figure 2.

The boundary-value problem (3.20)–(3.24) is now well-posed, as it consists of the governing
partial differential equation (3.20) and appropriate conditions at each of the physical boundaries
of the system. To find the solution, we follow [23,25] and split the fluid domain into four different
areas, as shown in figure 3. The matching conditions at the common boundaries of the four
domains are

φ2z = φ3z, |x|< 1, z = −d, (3.25)

φ1 = φ2, φ1x = φ2x, x = −1, z ∈ (−d, 0), (3.26)

φ1 = φ3, φ1x = φ3x, x = −1, z ∈ (−h, −d), (3.27)

φ2 = φ4, φ2x = φ4x, x = 1, z ∈ (−d, 0) (3.28)

and φ3 = φ4, φ3x = φ4x, x = 1, z ∈ (−h, −d), (3.29)

where the φi denote the potential φ in each area i = 1, 2, 3, 4. We also require that the scattered
potentials in the open ocean areas 1 and 4 are outgoing in the far field [20]. We shall now solve the
boundary-value problem separately in each region and then match the potentials via (3.25)–(3.29).

(a) Regions 1 and 4
The boundary-value problem for φ1(x, z) is simply (3.20)–(3.22). The solution is the well-known
superimposition of incident, reflected (left-going) and evanescent waves [20],

φ1(x, z) = − i
ω

cosh[k(z + h)]
cosh(kh)

eikx +
∞∑

n=0

Rn e−iκnxZn(z). (3.30)

In the latter, the Rn are unknown complex coefficients, whereas κ0 = k and κn = ikn are the
solutions of the dispersion relation

ω2 = k tanh(kh); ω2 = −kn tan(knh). (3.31)
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Still in (3.30), the Zn are the orthonormal functions

Zn(z) =
√

2 cosh[κn(z + h)]

(h + ω−2 sinh2(κnh))1/2
. (3.32)

The latter satisfy
∫0

−h ZnZm dz = δnm, where δnm is the Kronecker delta; see [5,20].
In region 4, the solution of the system (3.20)–(3.22) is the superimposition of a transmitted

(right-going) wave and evanescent waves

φ4(x, z) =
∞∑

n=0

Tn eiκnxZn(z), (3.33)

where the Tn are unknown complex coefficients.

(b) Regions 2 and 3
In region 2, the potential φ2 must satisfy the Laplace equation (3.20) and the surface
condition (3.21). In region 3, the potential φ3 must still satisfy the Laplace equation (3.20), but with
the bottom boundary condition (3.22). Furthermore, both φ2 and φ3 must satisfy the continuity
condition (3.25). The solutions to this problem are

φ(2,3)(x, z) =
∞∑

n=−2

(An eiσnx + Bn e−iσnx)ψ (2,3)
n (z), (3.34)

where the An and Bn are unknown complex coefficients and

ψ
(2)
n (z) = [σn cosh(σnz) + ω2 sinh(σnz)] sinh[σn(h − d)], (3.35)

and
ψ

(3)
n (z) = [ω2 cosh(σnd) − σn sinh(σnd)] cosh[σn(z + h)], (3.36)

are the vertical eigenfunctions of the regions 2 and 3, respectively. Expression (3.34) corresponds
to a system of forward- and backward-travelling waves (i.e. in regions 2 and 3 the radiation
condition does not apply). Note that the starting index of the series in (3.34) has been chosen
to be −2, for reasons that will become clear shortly. This choice is only practical and obviously
does not affect the solution in any way. The σn in (3.34)–(3.36) are horizontal wavenumbers, still
unknown. They are to be determined by substituting (3.34) into the boundary condition on the
plate, expression (3.23). This operation yields a novel hydroelectromechanical dispersion relation:

F(σn) =
[
β

(
1 + α2ωξ

i + ωξ

)
σ 4

n − ω2

]
[ω2σn cosh(σnd) − σ 2

n sinh(σnd)] tanh[σn(h − d)]

− ω2r{ω2 cosh(σnd) − σn sinh(σnd) + [ω2 sinh(σnd) − σn cosh(σnd)]

× tanh[σn(h − d)]} = 0. (3.37)

The latter expression is an even complex function of σn and admits an infinite number of complex
solutions ±σn. Because each of these pairs correspond to the same eigenfunction ψ (2,3)

n (see (3.35)–
(3.36)) from now on we will consider only the solutions σn lying in the first and fourth quadrants
of the complex plane, discarding their repetitions in the second and third quadrants. Before
proceeding to the calculation of the unknown parameters Rn, Tn, An and Bn, we analyse the
properties of the dispersion relation (3.37) in more detail.

(c) Properties of the hydroelectromechanical dispersion relation
First, note that in the short-circuit limit ξ → 0, the hydroelectromechanical equation (3.37)
coincides with the dispersion relation of a submerged elastic plate studied by Hassan &
Meylan [23]. Within this limit, (3.37) is known to admit two complex roots, say σ−2 and σ−1,
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Figure 4. Location of the first 11 eigenvalues of the hydroelectromechanical dispersion relation F(σn)= 0 in the complex σn
plane, see (3.37). The solid blue lines identify the contours	{F} = 0, whereas the dashed red lines correspond to the contours
�{F} = 0. The parameters areα= 0.21,β = 3.8 × 10−4 and ξ = 1. (Online version in colour.)

two positive real roots, say σ0 and σ1, and an infinite number of positive imaginary roots σn,
n = 2, 3, . . ., for typical plate parameters [23]. Now, the presence of the complex piezoelectric
term proportional to ξ in (3.37) changes the location of the roots of the dispersion relation in
the complex plane, with respect to the short-circuit scenario. Figure 4 shows the location of
the complex roots of the hydroelectromechanical dispersion relation (3.37) for a typical system
configuration. In this example, the wave period is T′ = 5 s, the length of the plate is 2L′ = 20 m,
the water depth is h′ = 10 m and the submergence of the plate is d′ = 2 m. The substrate is made
of silicone rubber and the piezoelectric layers are made of polyvinylidene fluoride (PVDF). The
rubber layer has thickness d′

0 = 0.01 m and each of the piezoelectric layers have thickness d′
p =

1.1 × 10−4 m; see [26]. Typical values of the system coefficients for commercial silicone rubber
and PVDF are α 
 0.21, β 
 3.8 × 10−4 and ξ 
 1 [8,15,27]. In this paper, we have determined the
roots of the hydroelectromechanical dispersion relation (3.37) with a two-dimensional Newton–
Raphson method of tolerance ε = 10−9; see [28]. The numerical values of the complex roots shown
in figure 4 are reported in table 1. As for the submerged elastic plate, there are still two roots in the
complex plane, which we name σ−2 and σ−1, following [23,25]. These roots correspond to non-
propagating modes, as discussed by Behera & Sahoo [25]. Furthermore, table 1 reveals that (3.37)
admits no real roots. The effect of the piezoelectric term in (3.37) is to slightly shift σ0 and σ1
into the first quadrant of the complex plane. Because the imaginary part (damping rate) of such
wavenumbers is very small, physically they correspond to weakly damped progressive waves.
Finally, table 1 also reveals that (3.37) has no imaginary roots. Again, the effect of the piezoelectric
term with respect to the short-circuit scenario is to shift the σn into the first quadrant. As a result,
there is an infinite number of complex solutions σn, n = 2, 3, . . . whose real part is much smaller
than the imaginary part (see again table 1). These modes physically describe evanescent waves.

Such a physical picture is reminiscent of that of submerged breakwater porous structures;
see [25,29]. Indeed, mathematically the piezoelectric term in (3.37) has a similar role as the porous-
effect parameter of Behera & Sahoo [25]. However, the similarity is only formal, because of the
substantially different nature and magnitude of such terms. For example, the roots σ0 and σ1 of
Behera & Sahoo [25] are characterized by a significant imaginary part. This of course ensures
that the structural porosity of the breakwater dissipates a substantial amount of energy. On the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 M

ar
ch

 2
02

2 



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160715

...................................................

Table 1. Numerical values of the complex eigenvalues σn, solutions of the dispersion relation (3.37), represented in figure 4.
The numerical tolerance of the Newton–Raphson scheme is ε = 10−9.

Eigenvalue numerical value behaviour in the plate region

σ−2 7.2318 − 21.6916i non-propagating
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ−1 7.05261 + 21.7312i non-propagating
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ0 1.7188 + 6 × 10−8i long-crested weakly damped
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ1 23.1267 + 0.0957i short-crested weakly damped
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ2 7 × 10−7 + 2.5814i evanescent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ3 5 × 10−5 + 6.0166i evanescent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ4 0.0003 + 9.2601i evanescent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ5 0.0005 + 12.4574i evanescent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ6 4 × 10−5 + 15.6069i evanescent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ7 0.0043 + 19.0077i evanescent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ8 0.0109 + 22.9781i evanescent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

other hand, in the present case, the wavenumbers σ0 and σ1 have a small imaginary part (table 1),
which means that their horizontal decay is weaker than that of the porous plate case. This scenario
corresponds to waves that traverse the device and trigger the piezoelectric effect on the plate,
which in turn dampens the wave height. Furthermore, note from table 1 that 	{σ1} � 	{σ0}.
Because the real part of the wavenumber is related to the propagating part of the perturbation, the
latter inequality means that σ1 and σ0 correspond, respectively, to short- and long-crested waves
(see again figure 4). This does not happen in the flexible plate case of Hassan & Meylan [23]
and in the porous plate case of [25], where the two wavenumbers are comparable. Therefore, the
occurrence of a coupled system of short- and long-crested weakly damped progressive waves that
propagate in the plate region is a distinctive feature of the submerged piezoelectric plate. We will
show later that the short-crested wave component is responsible for the resonant enhancement of
the power generated by the device; see §5.

(d) Numerical solution
Having solved the dispersion relation (3.37), we are now in a position to find the numerical values
of the amplitude coefficients An, Bn, Rn and Tn. First, substitute the solutions φ1 (3.30), φ2 and
φ3 (3.34) into the first conditions of both (3.26) and (3.27). Then, multiply both equations by Zm(z),
m = 0, 1, . . ., integrate them along z over the respective domains and finally sum the results to
obtain

Rm = i
ω

e−i(k+κm)amδ0m +
N∑

n=−2

[An e−i(σn+κm) + Bn ei(σn−κm)]bmn, m = 0, 1, . . . , N. (3.38)

In the latter, the orthogonality of the vertical modes Zm has been exploited and the sum has been
truncated to a finite value n = N for numerical evaluation. Still in (3.38),

am =
∫ 0

−h

cosh[k(z + h)]
cosh(kh)

Zm(z) dz (3.39)

and

bmn =
∫ 0

−d
ψ

(2)
n (z)Zm(z) dz +

∫−d

−h
ψ

(3)
n (z)Zm(z) dz (3.40)
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are complex coefficients. Using the same procedure to match the fluxes (second conditions of
both (3.26) and (3.27)) gives

N∑
n=−2

[An e−iσn (σn + κm) − Bn eiσn (σn − κm)]bnm = − i
ω

(k + κm) e−ikamδ0m, m = 0, 1, . . .N. (3.41)

Finally, matching potentials and fluxes at the common boundary between regions 3 and 4 (see
equations (3.28) and (3.29)) yields

Tm =
N∑

n=−2

[An ei(σn−κm) + B−i(σn+κm)
n ]bmn, m = 0, 1, . . . , N, (3.42)

and

N∑
n=−2

[An eiσn (σn − κm) − Bn e−iσn (σn + κm)]bmn = 0, m = 0, 1, . . . , N. (3.43)

Expressions (3.41) and (3.43) are 2(N + 1) equations in 2(N + 3) unknowns, namely the An and Bn,
n = −2, −1, . . . , N. Hence, we need four additional equations to close the system. These are readily
provided by the clamping conditions on the plate (3.24), which we have not used yet. Substitution
of either φ2 or φ3 into (3.24) gives the following four equations:

N∑
n=−2

(An e−iσn + Bn eiσn )Fn = 0, (3.44)

N∑
n=−2

(An eiσn + Bn e−iσn )Fn = 0, (3.45)

N∑
n=−2

(Anσn e−iσn − Bnσn eiσn )Fn = 0 (3.46)

and
N∑

n=−2

(Anσn eiσn − Bnσn e−iσn )Fn = 0, (3.47)

where

Fn = [ω2 cosh(σnd) − σn sinh(σnd)]σn sinh[σn(h − d)]. (3.48)

The system (3.41), (3.43)–(3.48) can now be solved numerically for the An and Bn with a suitable
choice of N. Details on the numerical convergence of the system are given in appendix A. Once
the An and Bn are known, the Rn and Tn can be found directly with (3.38) and (3.42), respectively.

4. Plate motion and wave power extraction
Having solved numerically the boundary-value problem for the potential, we can easily
determine all the remaining quantities of engineering interest. First, define the free-surface
elevation z′ = ζ ′(x′, t′) = A′ζ (x, t), so that ζt =Φz|z=0; see [20]. Then, factor time out by defining
ζ (x, t) = 	{η(x) e−iωt}. Hence

ηi(x) = i
ω
φiz (x, z)|z=0, i = 1, 2, 4 (4.1)
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is the spatial component of the free-surface elevation in the region i = 1, 2, 4. Substituting the
relevant forms for the potentials (3.30)–(3.33) into (4.1), we obtain the reflection coefficient in
region 1,

R = i
ω

R0

√
2k sinh(kh)

[h + ω−2 sinh2(kh)]
, (4.2)

and the transmission coefficient in region 4,

T = i
ω

T0

√
2k sinh(kh)

[h + ω−2 sinh2(kh)]
, (4.3)

see [20]. Combining (3.18), (3.19) and (3.34), we obtain the spatial displacement of the plate

w(x) = i
ω

N∑
n=−2

(An eiσnx + Bn e−iσnx)Fn. (4.4)

Concerning the energy budget of the device, the rate of mechanical energy flux is W′
m = W′

p −
W′

el − P ′, where W′
p is the rate of work of the fluid force on the plate, W′

el is the rate of electrical
energy flux and P ′ is the electric power available in the output system per unit width (see [16]).
The latter is given by

P ′ = −
∫L′

−L′
V′ ∂Q′

∂t′
dx′. (4.5)

Using Ohm’s law (2.13) and integrating over the length of the device and over a period T′ = 2π/ω′,
we obtain the average power

P̄ ′ = (A′g)2

L′
I′bC′

G′ P̄ , (4.6)

in W m−1, where

P̄ =
∫ 1

−1

[
1
T

∫T

0
Q2

t (x, t) dt

]
dx (4.7)

is the non-dimensional average power extracted by the device per unit width over a cycle. Note
that this results yields only if the patches are designed, so that voltage cancellations do not occur
along the plate; see [8]. Finally, substitute (3.10)–(3.11) into (4.7) and factor time out with (3.19).
Calculation of the inner integral, using the property 1/T

∫T
0 	{A e−iωt}	{B e−iωt} dt = 1/2	{AB∗}

gives

P̄ = ω2

2

∫ 1

−1

∣∣∣∣ αwxx

γ (1 − iωξ )

∣∣∣∣2 dx, (4.8)

for the non-dimensional average power per unit width of the device. For a resistive circuit in
permanent periodic regime, Michelin & Doaré [16] have shown that W̄p = P̄ .

5. Discussion
In this section, we analyse the dynamics of wave power extraction for a typical plate
configuration. As in §3, the length of the plate is 2L′ = 20 m, the water depth is h′ = 10 m and the
submergence of the plate is d′ = 2 m. The rubber layer has thickness d′

0 = 0.01 m and each of the
piezoelectric layers have thickness d′

p = 1.1 × 10−4 m. The system parameters for silicone rubber
(substrate) and PVDF (piezoelectric layers) are α = 0.21, β = 3.8 × 10−4 and ξ = 1.

(a) Piezoelectric plate dynamics and wave power extraction
Figure 5 shows a snapshot of the system with the displacements w′(x′, t′) of the flexible
piezoelectric plate and the free-surface elevation ζ ′(x′, t′). The ocean surface waves have
amplitude A′ = 1 m and period T′ = 5 s, corresponding to a wavelength λ′ = 36.58 m. Note that the
free surface matches seamlessly across the regions defined in §3 and that the clamping conditions
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Figure 5. Snapshot of the free-surface elevation ζ ′(x′, t′) and plate displacementsw′(x′, t′) at time t′ = T ′. Parameters are:
A′ = 1 m, T ′ = 5 s, α = 0.21, β = 3.8 × 10−4 and ξ = 1. The first 12 flexural plate modes have been considered. (Online
version in colour.)

on the plate, i.e. absence of displacements and rotations, are correctly satisfied by the numerical
solution. On the plate, weakly damped progressive waves superimpose to create short-crested
oscillations of wavelength λ′

1 = 2πL′/	{σ1}, slowly modulated by a long-crested oscillation of
wavelength λ′

0 = 2πL′/	{σ0}. In this example, λ′
1 = 2.79 m and λ′

0 = 36.55 m, which is very close to
the wavelength λ′ of the incident wave. The physical picture is hence clear. Owing to the coupled
hydroelectromechanical effect, the incident wave is able to excite a coupled system of long- and
short-crested weakly damped flexural waves. On the one hand, the long-crested component
propagates essentially with the same wavelength and phase speed c′

0 = λ′
0/T

′ = 7.31 m s−1 of the
incoming wave. On the other hand, the short-crested waves travel at a much smaller wavelength
and speed c′

1 = 0.56 m s−1 than that of the forcing waves.
While the zeroth-mode long-crested component is the direct effect of the incident wave forcing,

the nature of the first-mode short-crested wave is more puzzling. To gain a better physical
insight into it, let us consider again the hydroelectromechanical dispersion relation and derive
its asymptotic form for short waves. The short-wave limit of (3.37) when 	{σn} � 1 yields the
following approximation for the first-mode wavenumber:

σ1 ∼
[

2ω2r
β(1 + α2ωξ/(i + ωξ ))

]1/5

. (5.1)

For our sample system, the asymptotic approximation (5.1) gives σ1 ∼ 23.0598 + 0.0952i, which
indeed is very close to the value of σ1 shown in table 1. Expression (5.1) reveals that the first-
mode short-crested flexural wave is the effect of the hydroelectromechanical coupling, sustained
by the density difference at the water–plate interface. Note also that the smaller the stiffness of
the plate β, the greater is σ1 and the shorter is the wavelength λ′

1 of the first-mode flexural wave.
Let us now investigate the effect of the incident period on the generated power. Figure 6 shows

the behaviour of the average extracted power (4.7) with respect to the period of the incident
waves, for the sample piezoelectric plate studied in this section. The plot of figure 6 reveals
the existence of resonant periods at which the extracted power is significant, with a maximum
peak of about 4.4 kW at T′ 
 5.4 s. Note that this value is about two orders of magnitude greater
than the power output of piezoelectric beams predicted by simplified uncoupled models [9–11].
Clearly, the presence of sharp resonant peaks in the generated power is due to the coupled
hydroelectromechanical behaviour of the device. This is studied in detail in the following section.

(i) Resonance

Let us now analyse the resonant periods of figure 6, at which the power capture curve shows
local peaks. Note that the average extracted power depends on the square of the plate curvature,
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Figure 6. Wave power generated by a bimorph piezoelectric plate WEC of length 2L′ = 20 m and submergence d′ = 2 m in
water depth h′ = 10 m, versus the period of the incident wave. The parameters are: A′ = 1 m, α = 0.21, β = 3.8 × 10−4

and the resistive term is ξ = 1. The first 13 modes have been considered.

see (4.8). Hence, the short-crested component (n = 1) of the flexural waves (3.34) makes a leading
contribution to the overall power capture of the system. As a consequence, we expect that the
plate resonates when the wavelength of the first-mode flexural waves is close to one of the
wavelengths of natural vibration of the plate. Physically, the natural vibrations are the solutions
of the problem in which the plate performs free oscillations without damping. In our system,
damping is associated with the PTO system and with the reflected and transmitted waves in
regions 1 and 4, respectively. Therefore, to study undamped oscillations we must analyse the
system in short-circuit condition (ξ = 0) and without surrounding water (r = 0). The governing
equation for the flexural waves on the plate (3.23) becomes then

βwxxxx − ω2w = 0, |x|< 1, z = −d ± δ, δ→ 0, (5.2)

where w(x) = (i/ω)φ2z|z=−d is the spatial displacement of the plate (see (2.19) and (3.19)). In
addition, the clamping conditions (3.24) give w = wx = 0 at x = ±1. This yields a Stürm–Liouville
problem whose general solution

w = A cos(μx) + B sin(μx) + C cosh(μx) + D sinh(μx)

admits the eigenvalues

μ=μp 

(

p + 1
2

)
π

2
, p = 1, 2, . . . , (5.3)

see [17]. Equating the latter expression to the approximated analytical form of the first-
mode flexural wavenumber (5.1) in short-circuit conditions (ξ = 0), we obtain an approximated
expression for the resonant periods of the system,

T′
p 
 16

√
rL′

(p + 1/2)5π3gβ
, p = 1, 2, . . . (5.4)

where (3.5) has been used to express the result in physical variables. In reality, we expect the
resonant periods to be slightly greater than (5.4) because of the presence of dissipations owing to
both radiation damping and wave energy extraction in the full problem; see [20]. The resonant
periods predicted by the approximated formula (5.4) are reported in table 2 together with
the actual values. The good agreement between the two sets of data confirms that the short-
crested component of the flexural waves travelling on the plate is responsible for the resonant
behaviour of the converter. Note that the resonant periods (5.4) are directly proportional to the
density ratio r and the length of the device L′, and inversely proportional to the stiffness of
the system β. Therefore, such parameters could be optimized to make the device resonate with
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Figure 7. Damping coefficient (5.5) versus period of the incident wave. The parameters are the same as those of figure 6.

Table 2. Resonant periods of the system in the interval (4, 9) s and approximated values obtained with (5.4).

resonant period (s) approximated value (s)

4.6 4.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 5.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.5 6.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.9 7.6


the most energetic sea states in a given ocean sector. We are currently investigating random sea
optimization techniques.

(b) Wave damping
We have anticipated in §1 that the piezoelectric plate WEC can also be an effective damper. In this
section, we investigate the wave damping capacity of the device in more detail. Following Behera
& Sahoo [25], define the dissipation coefficient as

Kd = 1 − |R|2 − |T|2, (5.5)

where R and T are given, respectively, by (4.2) and (4.3). Figure 7 shows the behaviour of the
dissipation coefficient Kd versus the period of the incident wave, in physical variables. Normally,
the plate is able to reduce the amplitude of the surrounding waves only by a small proportion.
However, if the plate is designed to resonate, energy dissipation increases and the damping effect
of the plate can become significant. For the sample plate studied in this paper, the maximum
damping coefficient is 20% at the resonant period T′ = 5.4 s, see again figure 7. This makes the
piezoelectric plate WEC a versatile device, which can provide a useful damping action around
offshore oil platforms or in combination with near shore breakwaters.

6. Conclusion
We have derived a fully coupled model of a piezoelectric plate wave energy converter. The semi-
analytical solution of the problem was obtained by coupling a distributed-parameter model of
the piezoelectric system with a potential-flow model of the water waves.

A novel hydroelectromechanical dispersion relation was obtained and solved in the complex
wavenumber plane. The solution showed the existence of a coupled system of short- and long-
crested weakly damped flexural waves in the plate region. As a consequence of this dynamics, the
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plate is forced to vibrate in short-crested oscillations slowly modulated by the long-crested wave.
We showed that the short-crested component is responsible for the occurrence of resonant peaks
in the power production of the device. At resonance, the system can extract a significant amount of
energy, which can be used for low-power applications such as supplying LEDs, wireless routers,
computers, sensors, etc. Finally, we showed that the piezoelectric device can act as a good wave
energy damper when it resonates with the incident waves.

We made several simplifying assumptions to develop the mathematical model. First, we
neglected the influence of the supporting structure of the plate on the wave field. In reality, a
number of vertical struts would need to be used to support the clamps. These might have an
effect on the wave field, which could be analysed with computational fluid dynamics (CFD)
software. Second, we neglected the presence of voltage cancellations in the short-wave vibration
mode of the plate. We remark that the present model is valid only if the length scale of the plate
deformation is greater than the length of each patch, i.e. λ1 > dX. If this assumption is violated,
voltage cancellations may occur; see Jbaily & Yeung [4]. In that case, one must use segmented
electrodes to avoid cancellation, which would then require the definition of separate voltage
terms, as described by Ertuk & Inman [8]. Third, in the case of obliquely incident waves, three-
dimensional effects could become relevant and would need to be modelled appropriately. We
are currently developing a full numerical model based on a finite-element approximation of the
boundary-value problem. This can be easily extended to handle arbitrary geometrical shapes of
the plate in three dimensions. However, we emphasize that the semi-analytical model developed
in this paper offers a valuable physical insights into the problem, which the numerical model
cannot provide.

Mathematically, we solved the coupled hydroelectromechanical boundary-value problem
using separation of variables and the method of matching potentials, as in [23,25]. Hassan &
Meylan [23] already pointed out that the eigenfunction-matching method does not have optimal
convergence rates because of the singularity at the plate tip. However, more analytic approaches
such as the Wiener–Hopf technique or the residue calculus method require structures of semi-
infinite length along the x-axis [23], and so could not be applied to this study. Note also that the
analysis was performed in the framework of a linearized theory for both the plate deformation
and the wave motion. Close to resonance, the displacements of the plate might become significant
and a nonlinear analysis should be carried out to refine the power output predictions.

Our current research efforts are oriented towards determining the parametric behaviour of the
system in order to find optimal device configurations. Owing to the large number of parameters
(e.g. α, β, ξ , ω, d, h, r, etc.) and the large extent of the parametric space, we are using genetic
algorithms to map the parametric behaviour of the system and identify areas of high-quality
solutions in the space of parameters. This will allow us to obtain a database of possible PWEC
configurations of interest to the wave energy industry.

Data accessibility. The key data to fully reproduce the results of this work are presented in tables 1 and 2.
Competing interests. I declare I have no competing interests.
Funding. This research received no specific external funding. Internal funding from the School of Science,
Loughborough University is kindly acknowledged.
Acknowledgements. Fruitful discussions with Dr Maureen McIver are kindly acknowledged. The analytical
calculations have been validated by the skilful PhD student F. Buriani.

Appendix A
In this section, we provide some details on the numerical solution of the coupled
hydroelectromechanical model of §3. The model is based on the solution of the linear system
of equations (3.41), (3.43)–(3.48). This is achieved numerically by truncating the series expansions
up to a suitable number of terms, N. To determine an appropriate value for N in our numerical
calculations, we performed a convergence test by analysing the influence of N on the reflection
and transmission coefficients of the system, respectively, (4.2) and (4.3). To assess convergence,
we used the combined tolerance test [30], in which the error at the nth numerical iteration is
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Figure8. Behaviour of the transmission (top line) and reflection (bottom line) coefficientswith respect to the non-dimensional
parameter k0h, for three different values of N. The maximum combined error for N= 9 is O(10−3). (Online version in colour.)

calculated as
εn = |xn+1 − xn|

max{1, |xn+1|, |xn|} . (A 1)

In the latter, xn is the value of the assessed quantity (either R or T) at the nth numerical iteration.
Already with N = 8 the error εN is of the order O(10−2) and decreases to O(10−3) with N = 9.
The latter is accurate enough for graphical purposes in all cases considered here. Figure 8 shows
the behaviour of the absolute values of the transmission and reflection coefficients versus the
non-dimensional parameter k0h, for three different values of N. Note that there is practically
no visible difference between the cases N = 9 and N = 10, so that N = 9 provides an adequate
level of convergence. That corresponds to considering up to 12 flexural modes on the plate,
n = −2, −1, . . . , 9.
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