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A comprehensive linear mathematical model is
constructed to address the open problem of the
radiated wave for the distensible tube wave energy
converter. This device, full of sea water and located
just below the surface of the sea, undergoes a
complex interaction with the waves running along
its length. The result is a bulge wave in the tube
which, providing certain criteria are met, grows in
amplitude and captures the wave energy through the
power take-off mechanism. Successful optimization
of the device means capturing the energy from
a much larger width of the sea waves (capture
width). To achieve this, the complex interaction
between the incident gravity waves, radiated waves
and bulge waves is investigated. The new results
establish the dependence of the capture width on
absorption of the incident wave, energy loss owing
to work done on the tube, imperfect tuning and
the radiated wave. The new results reveal also that
the wave–structure interactions govern the amplitude,
phase, attenuation and wavenumber of the transient
bulge wave. These predictions compare well with
experimental observations.

1. Introduction
The world is confronting a crisis in terms of increasing
global energy requirements, the depletion of fossil fuels
and the threats of global warming and climate change.
Although the situation is daunting, it is not without hope.
The vast unharnessed power of ocean waves offers the
promise of a steady supply of renewable energy. The
recently invented distensible tube wave energy converter
(WEC) has the potential to achieve this promise (figure 1),
but progress has been impeded by the limited scientific
understanding of the radiated wave and wave–structure
interactions.

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Two schematics of the distensible tube in the sea shows cross sections (a) from the front and (b) from the side,
where the x∗-axis is vertical, the y∗-axis is horizontal and the z∗-axis is parallel to the axis of the unperturbed tube.

The analysis in the following focuses on the Anaconda, which is the first-patented distensible
tube WEC [1] and is representative of the issues occurring in other WECs. It is based on the
principle that pressure waves can propagate along a distensible tube [2,3]. These waves are
usually referred to as bulge waves [1] owing to a local expansion in the tube that moves along
its length. The device consists of a pressurized distensible tube filled with sea water and closed
at the bow which is orientated parallel to the direction of gravity (or sea) waves. The pressure
exerted by the gravity waves produces bulges and contractions in the tube that grow as they
propagate. These bulges and contractions are accompanied by an oscillating flow inside the tube
which is exploited by a power take-off (PTO) at the stern, the PTO being some mechanism capable
of converting the kinetic energy into electricity. A number of factors limit the ability of this
first-patented prototype to capture the energy in the gravity wave.

— The device may be optimized to respond well to some frequencies and wave speeds;
however, ocean gravity waves are known to exhibit a range of frequencies and wave
speeds with seasonal variations. The prototype will need to have a broad response to a
range of frequencies.

— The efficient operation of the distensible tube requires the speed of the bulge wave to
match the speed of the gravity wave in the sea, this being achieved by increasing the
pressure inside the tube. Unfortunately, beyond a critical pressure, the tube becomes
unstable and forms an undesirable aneurysm [4], an aneurysm being a large and
permanent local expansion in the tube. Long tubes are capable of producing large bulge
pressures that may attain this critical pressure. In order to postpone aneurysm formation
in the tube, part of its circumference may be covered in longitudinal inextensible
strips [5].

— The bulge wave may achieve a periodic steady state long before the PTO at the stern has
been reached. In such circumstances, a large proportion of the tube would not contribute
to energy capture.

— The dynamic response of a mechanical PTO would need to be matched to the bulge wave.
Moreover, a mechanical PTO would suffer from high maintenance costs.

The subsequent patents of the distensible tube WEC device have included distributed PTO, in
which power is extracted throughout the length of the distensible tube [4,6,7]. This limitation
in the bulge pressure and amplitude will result in a substantial improvement in the energy
conversion. Furthermore, these developments enable the tube to be protected against large bulge
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amplitudes during a storm. This simple design will also benefit from low maintenance costs as
there are no rotating parts or pumps.

A key issue for all these devices is that the basic scientific foundation has not been established
for the distensible tube WEC. Even in the absence of the PTO, the physics has not been fully
resolved in the peer-reviewed literature, the wave–structure interactions being the impediment.
The mathematical models that have been constructed for the tube neglect the radiated wave.
Following Lighthill [2], the standard approach has been to adopt a one-dimensional partially
lumped model for the bulge pressure that describes small changes around the static inflation
pressure. This simplified model has been successful in explaining how the bulge wave propagates
in the tube in response to external pressure variations [3,4,8].

In this article, a self-consistent mathematical model is derived based on the principles of
conservation of mass and momentum [9]. This comprehensive model incorporates the Laplace
equation for the inviscid irrotational flow in the sea; the one-dimensional partially lumped
model for the bulge in the tube that incorporates a Young–Laplace equation relating the bulge
pressure and hoop stress; the appropriate hoop stress model for the distensible tube; the interface
conditions on the tube relating fluid velocity, tube deformation and pressure; the boundary
conditions at the free surface of the sea; the boundary condition at the sea bed and the lateral
far-field boundary condition. In our model, the backward travelling bulge wave will be neglected
and all other information propagates from bow to stern, which means that an additional model
for the PTO at the stern is unnecessary. Furthermore, the changing frequency spectrum of ocean
waves is replaced by a single incident frequency.

In British coastal waters, 40% of observed waves have amplitudes of 2 m or less with much
longer wavelengths (up to a kilometre). It is standard practice to adopt a linear regular wave
theory in this case based on the small parameter given by the ratio of these two length scales. The
typical amplitude of the bulge wave is also less than 2 m. Therefore, the ratio of the amplitude of
the bulge wave to the wavelength of the gravity waves is also a small parameter. Based on these
ratios of length scales, a linear mathematical model is adopted in this article.

The energy capture of a WEC is measured in terms of capture width which is the ratio of the
time-averaged absorbed power and the wave energy flux per unit crest length (often expressed
in terms of diameters). Analytical predictions of capture width have been obtained when the
governing equations are linearized and are analysed in the frequency domain. If a body with a
vertical axis of symmetry oscillates in heave, then the maximum capture width is λ/2π , where λ
is the incident wavelength. This theoretical result has proved very important [10–13]. More recent
mathematical studies have provided the basis for optimizing the power absorption of submerged
cylinder wave energy converters [14,15], the objective being to design a system which is effective
over a range of wave periods. Our focus here is to obtain an analytical prediction for the capture
width of the distensible tube WEC.

The role of an analytical solution to a linear mathematical model should be viewed in
the appropriate context. Experimentalists are able to achieve more realistic wave conditions
and numerical practitioners are able to incorporate more detailed nonlinear physics [16,17].
However, full scale trials and the use of computational approaches are all considerably more
expensive than an analytical technique. Therefore, studies are limited to very restricted regions of
parameter space, whereas analytical solutions are able to search large regions of parameter space
for the optimal design. Analytical solutions should be used as a guide by device developers,
experimentalists and numerical practitioners to ensure that expensive trials and tests are only
conducted in the optimal region of parameter space.

High-quality experimental studies of the distensible tube WEC have taken place in the
laboratory [3], typical data being shown in the third column of table 1. These experiments
correspond to the first patent of these WECs with a PTO at the stern. We seek to use these
results to obtain validation of our theoretical model. The most significant obstacle in making
these comparisons is the bulge wave which is reflected from the PTO at the stern. In the scaled-
down laboratory tests, this reflected wave will not rapidly decay, but will affect measurements
throughout the length of the tube. The effect of the backward-travelling bulge wave is most
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Table 1. Data for the series 2 experiments carried out at a scale of around 1 : 25, in [3] in the third column and for a prototype
WEC in the fourth column. In the prototype, some values are taken from [4] and an incident wave period of 4 s is assumed.

series 2 prototype

symbol definition experiments in [3] WEC

h∗ water depth 1.87 m 100 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r∗ pressurized tube radius 0.133 m 3.5 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d∗ depth of tube 0.148 m 3.85 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρD density multiplied by distensibility 9.8 × 10−2 m−2 s2 2.5 × 10−2 m−2 s2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ωI angular frequency of the incident wave 2.78 s−1 1.57 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kI wavenumber of the incident wave 0.84 m−1 0.25 m−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β∗ energy loss parameter 3.7 × 10−2 s 0.2 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tube length 6.8 m 300 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pronounced near the bow; however, it is much less significant near the stern which allows us
to obtain valuable comparisons. A secondary obstacle is the neglect of the nonlinear terms in our
model, large amplitude bulge waves are beyond the scope of this study and, in any case, one
would expect that a linear model to be appropriate for distributed PTO.

Section 2 formulates the mathematical model for the wave–structure interactions and scales the
resulting system of equations. The periodic steady state is analysed in §3, approximate analytical
expressions being obtained for the incident, radiated and bulge waves. Section 4 determines the
transient bulge wave which attenuates as it propagates away from the bow. The energy capture of
the WEC is deduced in §5, the mean power of the bulge wave and capture width being evaluated.
Section 6 makes predictions of the capture width which go beyond previous experimental and
theoretical studies. Finally, §7 gives a brief discussion of the results.

2. Formulation

(a) Governing equations
A Cartesian coordinate system (x∗, y∗, z∗) is adopted. We define the z∗-axis to be aligned with
the axis of the unperturbed distensible tube and the y∗-axis to be horizontal. Gravity acts in the
negative x∗-direction such that the free surface of the sea is located at x∗ = η∗(y∗, z∗, t∗), the axis of
the tube at x∗ = −d∗ and the sea bed at x∗ = −h∗, where t∗ is time. A schematic of the distensible
tube in the sea is shown in figure 1.

We assume that the flow in the sea is inviscid and irrotational, viscous and rotational effects
only being important in the wake of the WEC. The velocity potential, φ∗, is a function of three-
dimensional space and time. The field equation for the velocity potential in the sea is

∂2φ∗

∂x∗2 + ∂2φ∗

∂y∗2 + ∂2φ∗

∂z∗2 = 0. (2.1)

The pressure in the sea p∗(x∗, y∗, z∗, t∗) is determined from the linearized Cauchy–Lagrange
integral of the equations of motion

p∗

ρ
= −∂φ

∗

∂t∗
− gx∗, (2.2)

where ρ is the density of sea water and g is the acceleration owing to gravity. The linearized
dynamic and kinematic boundary conditions at the free surface of the sea are

∂φ∗

∂t∗
+ gη∗ = 0 and

∂φ∗

∂x∗ = ∂η∗

∂t∗
(2.3)
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at x∗ = 0 (unperturbed free surface). The zero normal velocity at the sea bed requires that

∂φ∗

∂x∗ = 0 (2.4)

at x∗ = −h∗. The far-field boundary condition assumes that the radiated wave decays rapidly and
takes the form

∂φ∗

∂y∗ → 0 (2.5)

as y∗ → ±∞. The perturbed tube is of radius R∗(z∗, t∗) with centre at x∗ = −d∗ and y∗ = 0, whereas
the pressurized tube which is unperturbed by gravity waves is of radius r∗ with the same centre.
In fact, the axis of the tube translates in the vertical direction as the gravity wave passes. This
translation is not of primary concern and is neglected in order to simplify this problem. At the
surface of the tube, the continuity of the normal velocity requires that

n̂ ·
(
∂φ∗

∂x∗ ,
∂φ∗

∂y∗ ,
∂φ∗

∂z∗

)
= ∂R∗

∂t∗
(2.6)

at (x∗ + d∗)2 + y∗2 = r∗2 (unperturbed tube), where n̂ is the unit outward normal vector. The hoop
strain, ε∗h, is then given by

ε∗h = R∗ − r∗

r∗ . (2.7)

The distensible tube has a wall thickness H∗ and Young’s modulus E. The bulge pressure in the
tube, p∗

b, is related to the hoop stress, σ ∗
h , via the Young–Laplace equation p∗

b = σ ∗
h H∗/r∗ owing to

the thinness of the wall in comparison with its radius. Using the Kelvin–Voigt model, the hoop
stress may be expressed as

σ ∗
h = E

(
ε∗h + β∗ ∂ε

∗
h

∂t∗

)
,

where β∗ corresponds to energy loss owing to work done on the tube [4]. We obtain

p∗
b = EH∗

r∗

(
ε∗h + β∗ ∂ε

∗
h

∂t∗

)
= 2

D

(
ε∗h + β∗ ∂ε

∗
h

∂t∗

)
, (2.8)

where D is the distensibility of the tube [2]. The total pressure inside the tube is given by p∗
b + p∗

w,
where p∗

w is the pressure exerted by the sea on the tube. Following [2], the bulge pressure must
also satisfy the following differential equation for the bulge wave

∂2A
∂t∗2 = A0

ρ

(
∂2p∗

b
∂z∗2 + ∂2p∗

w
∂z∗2

)
,

where A is the cross-sectional area of the tube and A0 is its unperturbed area. The cross-sectional
area may be approximated in terms of the hoop strain by A = A0(1 + 2ε∗h). Hence,

∂2ε∗h
∂t∗2 = 1

2ρ

(
∂2p∗

b
∂z∗2 + ∂2p∗

w
∂z∗2

)
. (2.9)

The fluid in the tube is assumed to be stationary at the bow or z∗ = 0, the axial pressure gradient
being set to zero [3]. We have

∂

∂z∗ (p∗
b + p∗

w) = 0 (2.10)

at z∗ = 0. A second boundary condition is required at the stern to determine the reflected wave.
However, as the bulge wave is damped, the backward propagating wave will decay exponentially.
We will neglect this wave and the associated boundary condition at the stern.
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(b) Scaling
The model (2.1)–(2.10) corresponds to linear forced oscillatory waves in which the incident gravity
wave acts as the forcing term. The solution of the mathematical problem consists of two parts (i) a
periodic steady state that corresponds to the solution attained over large distances and (ii) the
transient problem that describes the variation of the solution along the length of the tube. The
periodic steady state has the same phase velocity as the incident wave, whereas the transient has
a phase velocity associated with the wave–structure interactions. We assume that the incident
gravity wave corresponds to the angular frequency ωI and the corresponding wavenumber is
kI (discussed below). The governing equations and boundary conditions are transformed to
dimensionless variables via

(x∗, y∗, z∗) = 1
kI

(x, y, z), t∗ = t
ωI

, φ∗ = εωI

k2
I
φ, η∗ = ε

kI
η, R∗ = r∗ + ε

kI
R,

(p∗, p∗
b, p∗

w) = ρεω2
I

k2
I

(p, pb, pw), d∗ = d
kI

, r∗ = r
kI

, h∗ = h
kI

,

where the small parameter ε� 1 corresponds to small amplitude in comparison to wavelength.
The dimensionless field equation for the velocity potential in the sea is given by

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0 (2.11)

and the dimensionless pressure in the sea is determined by the equation

p = −∂φ
∂t

− α

ε
x, (2.12)

where α= gkI/ω
2
I . The boundary conditions at the free surface of the sea become

∂φ

∂t
+ αη= 0 and

∂φ

∂x
= ∂η

∂t
(2.13)

at x = 0. The boundary condition at the sea bed and the far-field boundary conditions are given by

∂φ

∂x
= 0 at x = −h and

∂φ

∂y
→ 0 as y → ±∞, (2.14)

respectively. The interface condition at the surface of the tube is

n̂ ·
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= ∂R
∂t

(2.15)

at (x + d)2 + y2 = r2. The dimensionless bulge pressure is related to the perturbations of the
tube via

pb = c2
0Λ

(
R + β

∂R
∂t

)
, (2.16)

where β = β∗ωI, Λ= 2/r and c2
0 = k2

I /ρDω2
I . The differential equation for the bulge wave becomes

Λ
∂2R
∂t2 = ∂2

∂z2 (pb + pw). (2.17)

Finally, the boundary condition at the bow is given by

∂

∂z
(pb + pw) = 0 (2.18)

at z = 0.
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3. Periodic steady state

(a) Incident wave
We now outline the leading-order solution for the incident wave (2.11)–(2.14) that corresponds to
the standard progressive linear gravity wave. We have

φI = η0
cosh(x + h) cos(z − t)

sinh(h)
, ηI = −η0 sin(z − t),

provided the dispersion relation

α tanh(h) = 1 (3.1)

is satisfied. The incident angular frequency ωI and wavenumber kI have been chosen to
satisfy (3.1). The corresponding pressure, pI, may be deduced from the linearized Cauchy–
Lagrange integral (2.12). The pressure difference across the tube drives its translational motion
that we have already neglected. Any corresponding periodic variation of the incident or radiated
wave on the surface of the tube is also neglected below.

(b) Radiated wave
This section considers the effects of the surrounding fluid (excluding the incident wave) which
we expect to be dominated by the radiated wave. The wave diffracted from the bow will not be
studied here. We formulate the problem for the radiated wave in terms of bipolar cylindrical
coordinates in which we assume the sea bed to be in the far field. This transformation of
the independent variables is adopted to simplify the domain: the equations for the radiated
wave may be rewritten in a rectangular geometry. The drawback is that the equations become
more complicated; nevertheless, these equations are simpler to solve in this geometry than the
corresponding problem in Cartesian coordinates. We define

x = a sinh(v)
cosh(v) − cos(u)

, y = a sin(u)
cosh(v) − cos(u)

,

where a =
√

d2 − r2, u ∈ [0, 2π ) and v ∈ [vt, 0]. The unperturbed tube is located at v = vt < 0 in
which cosh(vt) = d/r. The scale factors are

hu = hv = a
cosh(v) − cos(u)

.

The field equation takes the form

1
h2
v

(
∂2φ

∂u2 + ∂2φ

∂v2

)
+ ∂2φ

∂z2 = 0, (3.2)

with the boundary conditions

1
hv

∂φ

∂v
= ∂R
∂t

at v = vt,
1
hv

∂φ

∂v
= ∂η

∂t
at v = 0,

∂φ

∂t
+ αη= 0 at v = 0 (3.3)

and
∂φ

∂u
(0, v, z, t) = ∂φ

∂u
(2π , v, z, t) = 0. (3.4)

As our problem is autonomous in z and t, solutions are sought in the form of bulge
waves propagating along the tube RS = s1 cos(z − t + Ψ1), where s1 > 0 is a dimensionless
amplitude and Ψ1 is the phase shift which are both to be determined. The superscript S
indicates the periodic steady state. We seek a corresponding solution for the velocity potential
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φS = s1φ1(u, v) sin(z − t + Ψ1). The function φ1 satisfies the boundary value problem

1
h2
v

(
∂2φ1

∂u2 + ∂2φ1

∂v2

)
− φ1 = 0,

with

1
hv

∂φ1

∂v
= 1 at v = vt,

α

hv

∂φ1

∂v
= φ1 at v= 0,

∂φ1

∂u
(0, v) = ∂φ1

∂u
(2π , v) = 0.

We now seek a Fourier cosine expansion of the form

φ1(u, v) =
∞∑

n=0

b1n(v) cos(nu).

The terms in cos(nu) are then equated to form an ordinary differential equation for b1n. Apart from
the first term of this expansion, the terms represent a periodic variation around the circumference
of the tube. We now make the assumption that the dominant contribution to the uniform pressure
exerted by the sea on the tube arises from the first term of this expansion. The expansion is
truncated after the first term to yield φ1 = b10(v). We obtain the ordinary differential equation

(
1
2

cosh(2v) + 1
)

d2b10

dv2 − a2b10 = 0, (3.5)

with the boundary conditions

α
db10

dv
(0) = ab10(0) and cosh(vt)

db10

dv
(vt) = a. (3.6)

We obtain a Taylor-series solution to the boundary value problem (3.5)–(3.6) about the ordinary

point v = 0 and within its radius of convergence of
√
π2 + ln2(2 + √

3)/2

b10 = A1

(
1 + a2

3
v2 + a2(a2 − 2)

54
v4 + · · ·

)
+ B1

(
v + a2

9
v3 + a2(a2 − 6)

270
v5 + · · ·

)
, (3.7)

in which B1 = aA1/α and

A1

[(
2a
3
vt + 2a(a2 − 2)

27
v3

t + · · ·
)

+ 1
α

(
1 + a2

3
v2

t + a2(a2 − 6)
54

v4
t + · · ·

)]
= 1

cosh(vt)
.

We now choose to truncate this expansion at O(v5). The accuracy of this truncated series
solution (3.7) may be ascertained by comparing it with a numerical solution of the boundary
value problem. The problem (3.5)–(3.6) is discretized using second-order finite differences and the
tridiagonal matrix is inverted via the Thomas algorithm. Excellent agreement has been obtained
between these two approximations for a number of parameter values.

(c) Bulge pressure
This section combines the results of the previous two subsections to determine the bulge wave.
The pressure forcing term will be evaluated using equation (2.12). We neglect terms that vary with
the azimuthal angle around the distensible tube to obtain the simplified expression

pS
w = −η0

cosh(h − d) sin(z − t)
sinh(h)

+ s1b10(vt) cos(z − t + Ψ1) + αd
ε

.
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Table 2. Solutions of equations (3.9) and the eight equations (4.4)–(4.6) using the data values from table 1.

series 2 experiments prototype

symbol in [3] WEC

s1 1.3 0.34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψ1 0.12 −0.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a0 1.0 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1 5.0 × 10−2 0.42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a2 9.7 × 10−4 5.1 × 10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a3 1.6 × 10−5 7.3 × 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m 4.8 × 10−2 9.6 × 10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kb 1.0 0.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s2 −1.3 −0.22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s3 0.21 −0.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using (2.16), the bulge pressure may be written in the form

pS
b = c2

0Λs1[cos(z − t + Ψ1) + β sin(z − t + Ψ1)].

If we substitute these expressions for pS
w and pS

b into (2.17), then we find

s1P sin(z − t + Ψ1) − s1Q cos(z − t + Ψ1) = Γ sin(z − t), (3.8)

where

P = c2
0Λβ, Q =Λ(1 − c2

0) − b10(vt), Γ = η0
cosh(h − d)

sinh(h)
.

Equation (3.8) determines the amplitude and phase shift as follows

s1 = Γ

(P2 + Q2)1/2 , tanΨ1 = Q
P

. (3.9)

The term Γ , in the numerator of s1, shows that the amplitude of the bulge wave has the expected
linear dependence on the forcing from the incident wave. In the denominator of s1, P corresponds
to the energy loss owing to work done on the tube; the expression Λ(1 − c2

0) in Q is a measure
of the damping owing to imperfect tuning of the bulge wave and the incident wave and b10(vt)
in Q is damping from the radiated wave. Solutions of equations (3.9) using the data values from
table 1 are shown in table 2.

After some algebraic manipulation, we may rewrite the total pressure in the tube at periodic
steady state as

pS
b + pS

w = PS cos(z − t + Ψ1) + αd
ε

,

where PS =Λs1. Figure 2a compares this prediction of amplitude PS with the experimental results
from figure 14 of Chaplin et al. [3] for a range of wave periods. The wave period of the incident
wave is denoted by TI = 2π/ωI and T0 = 2.2 s. The comparison is very good in the linear regime,
but it fails near the resonance, nonlinear effects having been neglected in our mathematical model.
Unfortunately, the backward-travelling wave also influences this comparison, as it reflects at
the bow.
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Figure 2. Amplitude of pressure in the tube plotted as a function of the relative wave period corresponding to the constituent
with the (a) wavenumber of the incidentwave and (b) wavenumber of the bulgewave: (A) amplitude of the pressure at periodic
steady state, (B) amplitude of the transient pressure at the centre of the tube and (C) experimental results of Chaplin et al. [3].
The other data values are given in the third column of table 1.

4. Transient bulge wave

(a) Radiated wave
This section determines the transient radiated wave which varies along the length of the tube
and complements our results at periodic steady state. As our problem is autonomous in z and t,
solutions are now sought in the form of bulge waves which attenuate as they propagate along the
tube

RT = e−mz[s2 cos(kbz − ωbt) + s3 sin(kbz − ωbt)],

where m is the dimensionless decay rate, kb = k∗
b/kI is the dimensionless wavenumber, ωb =

ω∗
B/ωI is the dimensionless angular frequency, s2 and s3 are the dimensionless amplitudes.

The superscript T indicates the transient. We now seek a corresponding solution of (3.2)–(3.4)
of the form

φT =ωb e−mz[s2φ2(u, v) sin(kbz − ωbt) − s3φ3(u, v) cos(kbz − ωbt)].

The functions φ2 and φ3 satisfy the coupled system of equations

s2L̄φ2 = s32mkbφ3, s3L̄φ3 = −s22mkbφ2, (4.1)

where the differential operator is given by

L̄ = 1
h2
v

(
∂2

∂u2 + ∂2

∂v2

)
+ (m2 − k2

b).

Equations in (4.1) may be combined to show that φ2 satisfies the field equation

L̄2φ2 + 4m2k2
bφ2 = 0.

The boundary conditions on φ2 are

1
hv

∂φ2

∂v
= 1,

1
hv

∂(L̄φ2)
∂v

= s3

s2
2mkb at v = vt, (4.2)

α

hv

∂φ2

∂v
=ω2

bφ2,
α

hv

∂(L̄φ2)
∂v

=ω2
b(L̄φ2) at v = 0 (4.3)

and
∂φ2

∂u
(0, v) = ∂φ2

∂u
(2π , v) = ∂(L̄φ2)

∂u
(0, v) = ∂(L̄φ2)

∂u
(2π , v) = 0.
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We seek a Fourier cosine expansion of the form

φ2(u, v) =
∞∑

n=0

b2n(v) cos(nu).

As in the case of the periodic steady state, we make the assumption that the dominant
contribution to the uniform pressure exerted by the sea on the tube arises from the first term of
this expansion, all subsequent terms representing a periodic variation around the circumference
of the tube. The expansion is truncated after the first term to yield φ2 = b20(v). The linear operator
L̄ is approximated by L, where

L = 1
a2

(
1
2

cosh(2v) + 1
)

d2

dv2 + (m2 − k2
b).

We seek a Taylor-series expansion, about the ordinary point v = 0 and within its radius of

convergence of
√
π2 + ln2(2 + √

3)/2, of the form

b20 =
7∑

n=0

anv
n,

where the coefficients an are to be determined. We also introduce the notation

Lb20 =
5∑

n=0

ānv
n

in order to simplify the subsequent algebra. The coefficients ān are readily calculated to be

ā0 = 3
a2 a2 + (m2 − k2

b)a0, ā1 = 9
a2 a3 + (m2 − k2

b)a1,

ā2 = 2
a2 (a2 + 9a4) + (m2 − k2

b)a2, ā3 = 6
a2 (a3 + 5a5) + (m2 − k2

b)a3,

ā4 = 1
a2

(
2
3

a2 + 12a4 + 45a6

)
+ (m2 − k2

b)a4, ā5 = 1
a2 (2a3 + 20a5 + 63a7) + (m2 − k2

b)a5.

We substitute these expansions into

L(Lb20) + 4m2k2
bb20 = 0

and equate coefficients of powers of v to yield

54
a4 a4 = − 6

a4 a2 − (m2 − k2
b)
(

3
a2 a2 + ā0

)
− 4m2k2

ba0,

270
a4 a5 = −54

a4 a3 − (m2 − k2
b)
(

9
a2 a3 + ā1

)
− 4m2k2

ba1,

810
a4 a6 = −12

a4 (a2 + 18a4) − 2
a2 ā2 − (m2 − k2

b)
(

18
a2 a4 + ā2

)
− 4m2k2

ba2,

1890
a4 a7 = −60

a4 (a3 + 10a5) − 6
a2 ā3 − (m2 − k2

b)
(

30
a2 a5 + ā3

)
− 4m2k2

ba3.

It remains to apply the boundary conditions. In order to evaluate a0, a1, a2 and a3, the following
four equations may be deduced from (4.2) to (4.3)

cosh(vt)
7∑

n=1

nanv
n−1
t = a, s2 cosh(vt)

5∑
n=1

nānv
n−1
t = 2mkbas3

and αa1 = aω2
ba0, αā1 = aω2

bā0.

⎫⎪⎪⎬
⎪⎪⎭ (4.4)

It is not necessary to solve a similar problem for φ3 = b30(v), as we may determine φ3 using our
solution for φ2 and the first equation in (4.1).
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(b) Bulge pressure
This section uses the results of the previous subsection to evaluate the transient bulge wave.
The pressure forcing term will again be evaluated using equation (2.12). The pressure exerted on
the tube by the wave radiated from the attenuated bulge wave is given by

pT
w =ω2

b e−mz[s2b20(vt) cos(kbz − ωbt) + s3b30(vt) sin(kbz − ωbt)].

Using (2.16), the bulge pressure may be written in the form

pT
b = c2

0Λ e−mz[(s2 − ωbβs3) cos(kbz − ωbt) + (s3 + ωbβs2) sin(kbz − ωbt)].

If we substitute these expressions for pT
w and pT

b into (2.17) and equate coefficients of
e−mz cos(kbz − ωbt) and e−mz sin(kbz − ωbt), then we obtain

[F − Jb20(vt)]s2 + [G + Kb30(vt)]s3 = 0

and [−G − Kb20(vt)]s2 + [F − Jb30(vt)]s3 = 0,

}
(4.5)

where F =Λ[2mkbc2
0βωb − c2

0(m2 − k2
b) − ω2

b], G =Λ[c2
0βωb(m2 − k2

b) + 2mkbc2
0], J = (m2 − k2

b)ω2
b

and K = 2mkbω
2
b.

(c) Bow boundary condition
The boundary condition at the bow (2.18) must be applied to the sum of the periodic steady state
and the transient bulge wave. We have

pw = pS
w + pT

w = −Γ sin(z − t) + s1b10(vt) cos(z − t + Ψ1) + αd
ε

+ ω2
b e−mz[s2b20(vt) cos(kbz − ωbt) + s3b30(vt) sin(kbz − ωbt)],

pb = pS
b + pT

b = c2
0Λs1[cos(z − t + Ψ1) + β sin(z − t + Ψ1)]

+ c2
0Λ e−mz[(s2 − ωbβs3) cos(kbz − ωbt) + (s3 + ωbβs2) sin(kbz − ωbt)].

The boundary condition may be satisfied only if ωb is very close to one. Henceforth, we assume
ωb = 1, the angular frequencies of the bulge and incident gravity waves being identical. In the
experimental results of Chaplin et al. [3], the pressure was also found to be the sum of waves
with differing wavenumbers, but all sharing the angular frequency of the incident wave. The
coefficients of sin(t) and cos(t) are equated in (2.18) to yield

[M + kbb20(vt)]s2 + [N + mb30(vt)]s3 = −Λs1 cos(Ψ1),

[−N − mb20(vt)]s2 + [M + kbb30(vt)]s3 =Λs1 sin(Ψ1),

where M = c2
0Λ(mβ + kb) and N = c2

0Λ(m − kbβ). These equations may be rewritten in the form(
s2
s3

)
= −Λs1

�

(
[M + kbb30(vt)] cos(Ψ1) + [N + mb30(vt)] sin(Ψ1)
[N + mb20(vt)] cos(Ψ1) − [M + kbb20(vt)] sin(Ψ1)

)
, (4.6)

where
�= [M + kbb20(vt)][M + kbb30(vt)] + [N + mb20(vt)][N + mb30(vt)].

Equations (4.4)–(4.6) determine the eight unknowns a0, a1, a2, a3, m, kb, s2 and s3. This system
of eight equations embodies the wave–structure interactions taking place along the distensible
tube. The phase velocity of the bulge wave is not determined by the standard formula [2] for the
distensibility in this coupled problem, but by the wave–structure interactions. The quantitative
dependence of s1 (on the energy loss owing to work done on the tube; the damping owing to
imperfect tuning of the bulge wave and the incident wave; and damping from the radiated wave)
carries forward to s2 and s3. The solutions of this system of eight equations are shown in table 2
for the data values given in table 1.
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Figure 3. (a) The total pressure ptot inside the tube normalized by the maximum pressure Γ outside the tube where lines
denote analytical predictions, 16 snapshots over one period plotted over the length of the tube and points indicate the upper
and lower envelopes of the corresponding experimental results in figure 11(c) of Chaplin et al. [3]. (b) The amplitude of the fluid
velocity inside the tube ûamp. The experimental results for the forward-travelling bulge wave in figure 11(e) of Chaplin et al. [3]
havebeen shiftedbya constant topass through theorigin. (c) Thewavephases indegrees. (d) The capturewidthCw indiameters.
The experimental result at the stern represents the power which was converted at the PTO. The legends denote (A) analytical
predictions for the bulge wave plotted over the length of the tube, (B) the experimental results for the bulge wave in figure 11
of Chaplin et al. [3] and (C) water wave phase shifted by 90◦. The data values are given in the third column of table 1.

In order to gain experimental validation of our solution for the transient bulge wave, we
seek a comparison with the experimental results in figure 14 of Chaplin et al. [3]. We compare
the amplitude of the total transient pressure at the centre of the tube, PT, for a range of wave
periods with the corresponding experimental values in figure 2b. The agreement is very good in
the linear regime, but fails in the nonlinear regime. Our mathematical model does not include
nonlinear effects.

(d) Final solution
Our final solution is obtained by linear superposition of the solution for the periodic steady state
and transient. Hence, the velocity potential φ = φI + φS + φT, where φI + φS corresponds to the
periodic steady state and φT to the transient. The form of the bulge wave propagating along the
tube is the sum R = RS + RT. Similarly, the bulge pressure in the tube is given by pb = pS

b + pT
b and

the pressure outside the tube by pw = pS
w + pT

w.
Experimental validation of our final solution may be obtained by comparison with the results

in figure 11(c) of Chaplin et al. [3]. The predicted total pressure ptot = pb + pw − αd/ε inside the
tube is compared with these measurements in figure 3a. As expected (see the discussion in §1), the
agreement is better towards the stern where our neglect of the backward-travelling wave is less
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significant. The spatial oscillation in the upper and lower envelopes of the experimental results
may be due to beating, whereas the predicted results have similar wavenumbers (kb = k∗

b/kI = 1.0)
and identical frequencies in the incident and bulge waves so beating is not possible. It suggests
that the incident and bulge waves contain different wavenumbers in the experiments of Chaplin
et al. [3].

In figure 11(e) of Chaplin et al. [3], the amplitude of the fluid velocity inside the tube is plotted
for the forward- and backward-travelling components of the bulge wave. The amplitude of the
fluid velocity of the forward-travelling wave does not tend to zero at the bow, this non-zero value
corresponding to the reflection of the backward-travelling wave. We wish to compare the growth
rate of the forward-travelling bulge wave with our analysis, so this constant non-zero amplitude
must be subtracted from the experimental results. Figure 3b compares these two growth rates,
the agreement being excellent.

Further experimental validation may be obtained by comparison with the results in figure 11(f)
of Chaplin et al. [3]. The wave phase for the overall solution for the bulge R = RS + RT is compared
with the measurements in figure 3c. The excellent quantitative agreement serves to validate both
the structure of the bulge wave and the values obtained in the second column of table 2. The water
wave minus 90 degrees is also plotted. As observed previously [3], the bulge wave after 3 m leads
the water waves by approximately 90 degrees. However, during the first 3 m, the bulge wave may
be seen to lead the water wave by significantly more than 90 degrees.

5. Energy capture

(a) Mean energy flux of the incident wave
In this section, we calculate the mean energy flux per unit crest length of the incident wave.
The dimensional mean energy flux per unit crest length of the incident wave is

J∗I = ωI

2π

∫ 2π/ωI

t∗=0

∫ η∗

x∗=−h∗
p∗

I
∂φ∗

I
∂z∗ dx∗ dt∗,

where φ∗
I = εωIφI/k2

I and p∗
I = ρεω2

I pI/k2
I . We non-dimensionalize and take the leading-order term

on the right-hand side to obtain

J∗I ∼ 1
2π
ρ
ε2ω3

I

k4
I

∫ 2π

t=0

∫ 0

x=−h
pI
∂φI

∂z
dx dt

as ε→ 0. Using the linearized Cauchy–Lagrange integral (2.12) and periodicity of φI, our
expression may be rewritten

J∗I ∼ 1
4
ρ
ε2ω3

I

k4
I
η2

0
(sinh(h) cosh(h) + h)

sinh2(h)
.

(b) Mean power of the bulge wave
We now evaluate the mean power of the bulge wave for the unsteady case. The dimensional mean
power of the bulge wave is given by

P∗
b = ωI

2π

∫ 2π/ωI

t∗=0

∫R∗

r̄=0
(p∗

b + p∗
w)u∗2π r̄ dr̄ dt∗,

where u∗ = (εωI/kI)û is the dimensional axial velocity of the water in the tube and r̄ is the
dimensional radial coordinate from the centre of the tube. As p∗

b + p∗
w and u∗ are independent
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of r̄, we may integrate to yield

P∗
b = ωI

2

∫ 2π/ωI

t∗=0
(p∗

b + p∗
w)u∗R∗2 dt∗.

We non-dimensionalize on the right-hand side to find that

P∗
b ∼ ρ

2
ε2ω3

I r∗2

k3
I

I, where I =
∫ 2π

t=0
(pb + pw)û dt.

In §4, we determined that

pb + pw =Λs1 cos(z − t + Ψ1) + αd
ε

+ Y e−mz cos(kbz − t) + Z e−mz sin(kbz − t),

where
Y = s2b20(vt) + c2

0Λ(s2 − βs3), Z = s3b30(vt) + c2
0Λ(s3 + βs2).

The differential equation (see [2])
∂û
∂t

= − ∂

∂z
(pb + pw)

allows us to evaluate

û =Λs1 cos(z − t + Ψ1) + e−mz sin(kbz − t)[kbZ − mY] + e−mz cos(kbz − t)[mZ + kbY].

Hence,

I =Λ2s2
1π +Λs1π [(kb + 1)Z − mY] e−mz sin((kb − 1)z − ψ1)

+Λs1π [mZ + (kb + 1)Y] e−mz cos((kb − 1)z − ψ1) + kb[Y2 + Z2]π e−2mz.

The first term in I is the value approached at the periodic steady state. An oscillatory behaviour
is evident in the second and third terms in I when the transient and periodic steady state have
different wavenumbers, this corresponding to beating.

(c) Capture width
The capture width of a wave energy converter is defined as the width of the wavefront from
which all of the energy has been extracted. Optimization of the capture width is a key factor in
the reduction of the cost of energy. We wish to derive an analytical approximation for the capture
width of the distensible tube wave energy converter from the bow to the stern. The capture width,
Cw, is approximated by

Cw = P∗
b

J∗I
∼ 2r∗2kII sinh2(h)

η2
0(sinh(h) cosh(h) + h)

.

Figure 3d compares our prediction of the capture width over the length of the tube with the
experimental measurements in figure 11(g) of Chaplin et al. [3], the agreement being reasonable.
The capture width in the experiments will be increased by the reflection of the backward
travelling bulge wave at the bow. Spatial oscillation is also evident in the experimental results,
owing to the presence of a maximum, but does not appear in the analytical prediction, because
the wavenumbers of the incident and bulge waves are similar (kb = k∗

b/kI = 1.0). This spatial
oscillation, which is associated with beating, is additional evidence that the incident and bulge
waves contain different wavenumbers in the experiments of Chaplin et al. [3].

6. Results

(a) Small-scale predictions
We now use the data in the third column of table 1 to make predictions of the capture width
which go beyond the experimental results published in Chaplin et al. [3]. Figure 4a shows the
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Figure 4. The capture width Cw plotted as functions of the (a) relative wave period, (b) pressurized tube radius and (c) water
depth using an incident wavenumber of 0.84 m−1, at three points along the length of the tube: (A) z∗ = 6.8 m, (B) z∗ = 30 m
and (C) z∗ = 60 m. The other data values are given in the third column of table 1.

variation of capture width with relative wave period for three locations along the tube 6.8, 30 and
60 m. At 6.8 m, the capture width exhibits a relatively flat and broad response to a range of wave
periods. In contrast for the longer tubes of 30 and 60 m, there is a peak in the spectrum with an
accompanying narrower response, the peak being most pronounced for the longest tube.

In figure 4b, the capture width is plotted as a function of pressurized tube radius at three
locations along the tube. When varying the radius, we assume d∗ = γ r∗ and γ = 1.1 to ensure
that the tube remains just below the surface of the water. It is also important to recall that
the distensibility is a linear function of radius (see (2.8)). At 6.8 m, the capture width increases
monotonically as a function of radius; in other words, fatter and more expensive tubes will
generate more energy. The capture width predictions at 30 and 60 m are much more complex: a
global maximum for small radius is followed by oscillatory behaviour at larger radius. The wave–
structure interactions are responsible for this series of local maxima. For longer tubes, fatter and
more expensive devices will generate less electricity than suitably chosen thinner counterparts.

The variation of capture width with water depth at three locations along the tube is shown in
figure 4c. At 6.8 m, the capture width increases by only a small amount with increasing depth. For
the longer tubes of 30 and 60 m, there is a rapid increase in capture width as h∗ increases from
1 to 1.5 m and, as expected, capture approaches a deep-water limit for depths greater than 4 m.
For h∗ below 1 m and between 1.5 m and 4 m, some maxima and minima are evident. In this case,
changes in the dispersion relationship play an important role in addition to tuning, absorption
and radiation effects. Indeed, for the longest tube, the global maximum in the capture width
highlights the significance of water depth when mooring a distensible tube WEC in shallow water.

In order to further understand the optimal choice of pressurized tube radius and water depth,
we consider a contour plot of capture width. Figure 5 shows a ridge of capture width in parameter
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Figure 5. Contours of capturewidth at z∗ = 60 mplotted as a function ofwater depth and pressurized tube radius. The capture
width is in metres, and the incident wavenumber is 0.84 m−1. The other data values are given in the third column of table 1.
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Figure 6. The analytical prediction of capturewidth Cw in diameters plotted over the length of a long tubewith (A)β∗ = 0.1 s,
(B)β∗ = 0.2 s and (C)β∗ = 0.4 s. The other data values are given in the fourth column of table 1.

space. A WEC should appear along this ridge to achieve the most efficient energy generation. We
note that the series 2 experiments in reference [3] have a remarkable agreement with the optimal
choice of parameter values identified in figure 5.

(b) Industrial-scale predictions
This section predicts the performance of a prototype WEC described by the fourth column
of table 1. Figure 6 shows that the capture width along the length of the tube for three values
of the energy loss parameter. The oscillatory behaviour in figure 6 is due to beating, the ratio of
the wavenumbers of the bulge and incident waves (kb) being 0.85. An increase in the energy loss
parameter damps the beating and reduces the mean values of capture width. Distributed PTO
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Figure 7. The capture width Cw plotted as functions of the (a) relative wave period, (b) pressurized tube radius and (c) water
depth using an incident wavenumber of 0.25 m−1, at three points along the length of the tube: (A) z∗ = 60 m, (B) z∗ = 80 m
and (C) z∗ = 100 m. The other data values are given in the fourth column of table 1.

would need to be carefully optimized in a distensible tube WEC in order to prevent the dramatic
reduction in capture width seen in figure 6.

Figure 7 shows a similar behaviour to that already shown in figure 4 for the small-scale case.
However, there are some notable differences: the capture widths are far greater; there is a broad
response for a range of frequencies in figure 7a; beating may be seen in the oscillatory behaviour
of figure 7a; and the capture width is almost independent of water depth in figure 7c. We also note
that further along the length of the tube, the peak in capture width shifts to larger tube radius in
figure 7b; the opposite trend was observed in figure 4b. In order to put these results into context,
the maximum capture width for a distensible tube WEC of length 60 m in figure 7a is compared
with the maximum capture width, of approximately 4 m, for a single heaving point absorber at
this wavenumber. Therefore, this distensible tube WEC of length 60 m at resonance is equivalent
to 20 heaving point absorbers at resonance.

7. Conclusion
A comprehensive mathematical model for the interactions of regular waves with a distensible
tube has been introduced. The theory incorporates, for the first time, the effects of the radiated
wave. Our approach differs from the approaches which have been previously reported. These
existing approaches may be derived from our mathematical model by introducing engineering
approximations to uncouple the system of equations. Our mathematical model requires the
assumptions that the following phenomena may be neglected: (i) the vertical translations of the
tube, (ii) nonlinear effects, (iii) the backward travelling bulge wave, and (iv) ocean wave spectra.
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Assumption (iv) will need to be addressed in future work. Assumption (iii) is easily justified as
the backward travelling wave will decay exponentially within a short distance of the stern for
a full-scale prototype and will only be important in scaled-down laboratory tests. Assumptions
(i) and (ii) may only be fully justified by comparison with experiment. Nonlinear effects have
been shown to become important near resonance [8], but their significance would be limited by
increased damping. Distributed PTO may well increase damping sufficiently to limit amplitudes
to the linear regime studied here.

Our mathematical model and analytical solution techniques have been validated by numerous
comparisons with the experiments in reference [3]. The superiority of our mathematical model
may be seen in the comparison of figure 3(c) and figure 11(f) of Chaplin et al. [3]. Our model
and the model in reference [3] agree that the bulge wave eventually leads the water waves by
90 degrees. However, the model in reference [3] predicts that the bulge wave leads the water
wave by significantly less than 90 degrees during the initial stage, whereas our model predicts
that the bulge wave leads the water waves by significantly more than 90 degrees. Our model
predicts the experimental results quantitatively and captures the physical structure of the bulge
wave for the first time.

Analytical techniques have been exploited to solve our coupled system of differential
equations. One major advantage of these techniques is that parameter dependencies emerge in
the course of the analysis which describes the underlying physics. The capture width has been
found to vary linearly with

cosh2(kI(h∗ − d∗))
P2 + Q2 ,

where

P = kIEβ∗H∗

ρωIr∗2 , Q = 2kI

r∗ω2
I

(
ω2

I

k2
I

− 1
ρD

)
− b10(vt).

The numerator cosh2(kI(h∗ − d∗)) represents absorption from the incident wave; P is the energy
loss owing to work done on the tube; the first term in Q is damping owing to imperfect tuning
of the incident and bulge waves, and the second term in Q is the damping owing to the radiated
wave. In fact, the capture width at periodic steady state is given by

Cw = 8π cosh2(kI(h∗ − d∗))
kI(sinh(kIh∗) cosh(kIh∗) + kIh∗)(P2 + Q2)

.

The role played by the pressurized tube radius is the most striking aspect of these formulae. As the
tube radius increases, the damping owing to energy loss and owing to imperfect tuning decrease;
however, provided that the tube remains just below the surface of the water (d∗ ≈ r∗), the increase
in d∗ will cause an exponential decrease in the absorption. Unfortunately, the radiation damping
may not be expressed in such simple terms; nevertheless, tube radius has been identified as the
most important design parameter in optimizing the energy capture.

The response of the capture width to a range of wave periods is evident by considering Q,
the maximum in capture width being shifted from the tuned value of the distensibility by the
radiated wave (as |Q| � 1). The maximum value of the capture width itself is then governed by
P; that is, the energy loss owing to work done on the tube.

The wave–structure interactions taking place along the distensible tube are most evident
in the solution of the transient problem. These interactions take the form of eight coupled
nonlinear algebraic equations that determine the amplitude, phase, attenuation and wavenumber
of the transient bulge wave. If the wavenumber of the incident wave differs from that of the
transient bulge wave, then the spatial variation of the capture width is in the form of (potentially
large) beating oscillations rather than monotonic growth. Large beating oscillations may have
implications for the survivability of the device.

These analytical formulae will aid device developers as well as advance science in terms
of improved understanding of the physics of WEC devices of this type. The main design
parameters for a distensible tube have been identified as the radius and the length of the
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device. Unfortunately, without optimization studies enabled by the mathematical model laid
out in this article, fatter and longer tubes may be manufactured which have reduced energy
capture. This conclusion is all the more pertinent with the capital costs for the production of the
largest prototypes being prohibitively high. The introduction of distributed PTO will only further
complicate the parameter dependence and optimization of these complex devices.

Distributed PTO may be incorporated into the mathematical model by replacing the Kelvin–
Voigt constitutive equation for hoop stress (and possibly the equation for hoop strain) with an
appropriate equation or system of equations. The remaining differential equations, interface and
boundary conditions in the model will be unaffected by this modification. This has the significant
advantage that the analytical solution obtained in §§3a,b and 4a will carry over to these devices
and this analysis may be viewed as universal in this context. Therefore, our mathematical model
may be modified to explore the feasibility for potential reductions in the cost of energy for
different distributed PTO options.
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