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Abstract

This study systematically investigates the degradation and failure prediction of pipeline
materials in sulfur-containing environments, with a particular focus on X52 pipeline steel
exposed to high-sulfur environments. Through uniaxial tensile tests to assess mechanical
properties, it was found that despite surface corrosion and a reduction in overall structural
load-bearing capacity, the intrinsic mechanical properties of X52 steel did not exhibit signif-
icant degradation and remained within standard ranges. The Johnson—-Cook constitutive
model was developed to accurately capture the material’s plastic behavior. Subsequently,
a genetic algorithm-optimized backpropagation (GABP) neural network was employed
to predict the failure pressure of defective pipelines and the corrosion rate in acidic envi-
ronments, with prediction errors controlled within 5%. By integrating the GABP model
with NACE standard methods, a framework for predicting the remaining service life for
in-service pipelines operating in sour environments was established. This method provides
anovel and reliable approach for pipeline integrity assessment, demonstrating significantly
higher accuracy than traditional empirical models and finite element analysis.

Keywords: sulfur-containing corrosion; defective pipelines; neural networks; failure prediction

1. Introduction

With the ongoing advancement of global oil and gas exploration into deeper and more
acidic reservoirs, sour natural gas has emerged as a significant unconventional resource [1].
However, corrosion issues arising during its extraction and transportation have become
increasingly severe. In particular, under the combined effects of HyS and CO,, metallic
pipelines are highly susceptible to electrochemical corrosion, leading to wall thinning,
defect propagation, and a consequent reduction in internal pressure-bearing capacity. In
extreme cases, this may result in perforation, leakage, or even catastrophic explosions [2].
Due to the specific environmental conditions and transported media, sour gathering and
transportation pipelines are highly susceptible to various forms of degradation, including
material corrosion, hydrogen-induced cracking (HIC), and sulfide stress cracking (SSC).
The primary form of corrosion arises from electrochemical reactions involving sulfides
and carbon dioxide dissolved in water. This leads to widespread metal thinning as well
as the formation of corrosion pits and groove-like defects. These corrosion defects result
in local stress concentrations under internal pressure, significantly reducing the pipeline’s
load-bearing capacity.
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HIC and SSC represent more insidious degradation mechanisms, as they do not pro-
duce apparent macroscopic defects. Their underlying mechanism involves the dissolution
of molecular H,S in water, which generates a large amount of atomic hydrogen. This
atomic hydrogen diffuses into the metallic microstructure and accumulates at stress concen-
trators such as crack tips or voids, where it recombines to form molecular hydrogen. The
accumulation of hydrogen molecules generates high internal pressures, initiating cracks or
hydrogen blisters [3-6]. Moreover, the presence of hydrogen reduces the cohesive forces
between metal atoms, thereby embrittling the material. When the applied tensile stress
exceeds a critical threshold, the structure may undergo sudden brittle fracture.

While macroscopic corrosion defects inevitably compromise structural integrity, the
intrinsic material strength of the pipeline plays a critical role in integrity assessments under
sour service conditions. Therefore, it is essential to investigate the evolution of the material
properties of pipelines after long-term exposure to sour environments in order to ensure
accurate and reliable evaluations of their remaining structural performance [7-9].

At present, failure pressure prediction methods for corroded pipelines primarily fall
into two categories: empirical engineering formulas and numerical simulations. Among
them, standard assessment models such as DNV RP-F101 and ASME B31G provide practical
guidance but are often limited by conservative estimations and narrow applicability [10-12].
Finite element analysis (FEA), as a high-precision method, requires extensive parameter
input and computational resources, posing challenges in terms of real-time application
and cost-effectiveness in engineering practice [11,13]. With the advancement of artificial
intelligence, neural networks have demonstrated significant potential in pipeline failure
prediction, leakage identification, and design optimization due to their excellent nonlinear
mapping capabilities [14-17]. Compared to traditional assessment standards and empirical
formulas, BP neural networks offer notable advantages in pipeline failure prediction due
to their strong nonlinear mapping ability and adaptability. While conventional methods
often rely on simplified assumptions and limited parameters, BP networks can integrate
multiple complex factors and learn directly from data, enabling more accurate and flexible
predictions. Additionally, when optimized with algorithms such as genetic algorithms,
BP networks can overcome local minima issues and significantly improve predictive per-
formance, making them more suitable for evaluating pipeline integrity under varied and
complex conditions [18,19].

To improve the accuracy and reliability of pipeline integrity assessments, a compre-
hensive investigation was conducted in this study. First, tensile tests were carried out to
examine the material degradation of pipeline steel after seven years of service in a high-
sulfur environment. Based on the experimental results, a Johnson—Cook constitutive model
was developed to characterize the mechanical behavior of the degraded material, providing
a foundation for subsequent numerical simulations. Second, the backpropagation (BP) neu-
ral network was optimized using a genetic algorithm (GA), resulting in the development of
a hybrid GABP (GABP) model with enhanced prediction capability. Finally, by integrating
the optimized neural network with the remaining life evaluation methodology proposed
in the NACE standard, an intelligent evaluation framework was established to assess the
safety of in-service pipelines operating in sour environments.

2. The Effect of Sulfur-Containing Corrosion on the Performance of
Pipeline Materials

2.1. Materials and Methods
To investigate the effect of sulfur-containing corrosion on material properties, me-

chanical tests were conducted on pipeline materials that had been in service in a sour
environment. The subject of this study was a steel pipeline made of X52 material, which
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had been operational for seven years in a major sour gas field. The extracted natural gas
from this field contained hydrogen sulfide (H;S), with a volume fraction ranging from
14.6% to 15.66%, and carbon dioxide (CO,), with a volume fraction between 8.57% and
14.1%. The operating temperature of the gas was 50 °C, with a flow velocity of 4 m/s, and
an internal pressure ranging from 5.2 to 8.2 MPa.

Samples were extracted from the pipeline and subjected to tensile testing to deter-
mine the material’s mechanical strength. The dimensions of the tensile specimens are
shown in Figure 1a,b. During specimen preparation, electrical discharge machining was
first employed to cut raw material billets from the pipeline. Subsequent machining was
then performed to remove the 2 millimeter-thick corroded layer from the outer surface, pre-
serving the central portion along the pipe thickness to eliminate the influence of corrosion
products and surface morphology on the test results. Throughout the machining process,
circulating water was used to cool the specimens, thereby minimizing the thermal effects
on the mechanical properties. Ultimately, cylindrical tensile specimens were obtained.
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Figure 1. Uniaxial tensile test: (a) schematic diagram of specimen sampling; (b) geometry of the
specimen; (c) final machined specimen; (d) tensile test setup.

To ensure reliability and comparability, three pipelines of the same material and service
conditions but with different diameters and wall thicknesses were tested. The dimensions
of these pipelines are listed in Table 1. For each pipeline, three standard tensile specimens
were fabricated and tested. The final geometry of the finished specimens is shown in
Figure 1c. The tensile tests were conducted as illustrated in Figure 1d using a CMT5150
universal testing machine with a maximum load capacity of 100 kN, and the equipment
was sourced from Shenzhen Wance Testing Machine Co., Ltd., Shenzhen, China. The
extensometer had a gauge length of 50 mm and a precision class of grade 1. All tests were
performed under ambient conditions, with a loading rate of 0.5 mm/min. Strain gauges
were attached to the specimens to record strain data, facilitating the accurate determination
of the elastic modulus.

Table 1. Pipe dimensions and specimen numbers.

Pipe Number #1 #2 #3
Diameter (mm) 323 323 273
Wall thickness (mm) 13 13 11

Test piece number 1-1,1-2,1-3 2-1,2-2,2-3 3-1,3-2,3-3
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2.2. Test Results and Analysis

During tensile testing, the cross-sectional area of the specimen continuously changes
under load. If conventional engineering stress—strain calculations are used—where engi-
neering stress is defined as the applied load divided by the initial cross-sectional area, and
engineering strain is defined as the elongation divided by the initial gauge length—the
resulting stress values may be underestimated, which can compromise the accuracy of
subsequent modeling. Therefore, to more accurately characterize the material’s mechan-
ical behavior, true stress and true strain should be employed [20]. The corresponding
calculation formulas are provided in Equations (1) and (2) below:

FL

OTure = m (1)
L
ETure = 1H<LO> )

where F is the applied load at the current time; L is the specimen length at the current time;
Ly is the initial gauge length of the specimen; and Ay is the initial cross-sectional area of
the specimen.

The true stress—strain curves of X52 pipeline steel were obtained by processing the
displacement and load data, as shown in Figure 2. The yield strength, tensile strength, and
elastic modulus of each specimen are listed in Table 2. A noncorroded control group was
not included in this study, as the mechanical properties of X52 steel are already specified
in the API pipeline steel standard, which defines a wide range of values: a yield strength
between 360 and 530 MPa and a tensile strength between 460 and 755 MPa. Due to the
broadness of this range, it was impractical to establish a control group based on other
batches of the same grade. However, it can be confirmed that the strength values obtained
from the three corroded pipelines tested in this study fall within the standard limits.

Table 2. Results of material property tests on each test piece.

Test Specimen Number oy/MPa ou/MPa E/MPa
1-1 432 479 205,216
1-2 420 509 206,195
1-3 457 550 205,958
Average value of pipe #1 436.3 512 206,123
2-1 490 583 205,598
2-2 469 566 205,412
2-3 489 582 206,427
Average value of pipe #2 482 577 205,812
3-1 431 551 206,572
3-2 410 511 205,127
3-3 427 529 205,457
Average value of pipe #3 423 530 205,718

According to the existing literature [21], the yield strength and tensile strength of unused
X52 pipeline steel from the same gas field are 476.6 MPa and 555.4 MPa, respectively. Com-
pared to the results obtained in this study, the maximum deviation is approximately 10%.

Comprehensive analysis showed that there was no significant degradation in intrinsic
mechanical properties. Although corrosion causes a decrease in geometric stability, the test
results still meet standard requirements. This indicates that the impact of sulfur corrosion
on the load-bearing capacity of X52 pipeline steel is mainly manifested as a decrease in
geometric stability rather than a degradation of the material’s inherent properties.
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Figure 2. Stress—strain curve of tensile test specimen.

2.3. Constitutive Model

The plastic behavior of X52 pipeline steel is described using the conventional ]2 flow
theory, and the corresponding flow rule is expressed as follows [22]:

flogp) =7 —0(g) =0 3)

The Johnson—Cook constitutive model was employed to characterize the plastic hard-
ening behavior of X52 steel under quasi-static conditions. This model is widely used due
to its computational efficiency and the ease of parameter determination. The constitutive
equation is given as follows [23]:

T=A+B()" 4)

The stress—strain data prior to necking were selected for analysis. The elastic strain
was calculated by dividing the yield strength by the elastic modulus, and the plastic strain
was then obtained by subtracting the elastic strain from the total strain. Based on this, the
strain hardening curve during the strengthening stage was established. An initial fitting
of the Johnson—Cook model parameters A, B, and n was performed using the pre-necking
hardening curve. However, these preliminarily fitted parameters could only provide
a rough description of the plastic hardening behavior of X52 steel and were associated with
significant errors.

Therefore, the initially fitted parameters were imported into a finite element (FE)
software to simulate the tensile test. The simulated stress—strain data were extracted and
compared with the experimental results. If a significant discrepancy existed between the
two curves, so the constitutive parameters were iteratively adjusted. This process was
repeated until the maximum agreement between the experimental and simulated curves
was achieved. The finite element model is shown in Figure 3.
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Figure 3. Finite element model of tensile specimen.
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After multiple iterations of computation and parameter adjustment, the final Johnson-
Cook constitutive model for X52 pipeline steel was obtained, as expressed in Equation (5).
The corresponding strain hardening curve is illustrated in Figure 4.
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Figure 4. X52 hardening curve.

The comparison between the finite element (FE) simulated stress—strain curve based
on the Johnson-Cook constitutive model and the experimental stress—strain curve is shown
in Figure 5. Before the material reached its ultimate tensile strength and necking occurred,
the FE simulation exhibited a high degree of agreement with the experimental data. The
maximum deviation between the finite element results and the experimental data curves in
the elastic stage, yield plateau, and strain hardening phase came out to less than 2%.

T = 450 + 660.92(g, ) **52 (5)
700
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Figure 5. Comparison of finite element simulation results based on the Johnson-Cook constitutive

model and tensile test data.

3. Prediction of Failure Pressure
3.1. Finite Element Model

In this study, a finite element model of a defective pipeline was developed using
ANSYS software R2 (v. 22.2.0). The model employed SOLID186 hexahedral elements as
the basic computational units. Internal corrosion of the pipeline is primarily caused by
electrochemical reactions, with pitting and localized corrosion being the most common
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forms. Based on this, the geometry of the corroded surface was simplified to a regular
rectangular shape, and the corrosion depth was assumed to be a uniform reduction in
wall thickness. This simplification served as the foundation for building the 3D finite
element model of the corroded pipeline. According to existing studies [24], the geometric
shape of the defect edges has a negligible effect on the pipeline’s burst pressure; therefore,
sharp-edge treatment was adopted in this study.

During normal operation, the pipeline is mainly subjected to internal pressure, which
generates hoop stress, causing radial expansion. Given that the pipeline length is much
greater than its diameter and both ends are open, the effect of axial displacement is negli-
gible. Therefore, axial displacement constraints were applied at both ends of the pipeline
model to restrict axial movement. To minimize the influence of Poisson’s effect on the
simulation results, the model length was set to five times the outer diameter [25], and mesh
refinement was applied in the defect region. The finite element model of the corroded
pipeline is shown in Figure 6.

Figure 6. Finite element model of defective pipes.

A plastic failure criterion was adopted to evaluate pipeline failure. That is, when the
Von Mises equivalent stress in the corroded region reaches the ultimate tensile strength of
the pipe material, the pipeline is considered to have failed [25]. The corresponding internal
pressure at this point is defined as the failure pressure.

Ensuring the accuracy of the finite element model is a prerequisite for reliable numer-
ical analysis. To validate the model, three representative pipelines with external surface
defects from the literature [26] were selected. These pipelines were all made of X80-grade
steel, with an outer diameter of 458.8 mm and a wall thickness of 8.1 mm. The geometric
parameters of the corrosion defects for each pipeline are listed in Table 3.

Table 3. Finite element verification model parameters.

Model Defect Depth  Defect Length  Defect Width Defect Axial Defect Circumferential
Number d/mm L/mm w/mm Spacing S;/mm Spacing S¢/mm

IDTS-2 5.38 39.5 318 \ \

IDTS-5 5.42 39.5 321 —9.5 10

IDTS-6 5.38 39.5 32.1 20.4 9.5

The finite element validation results are presented in Table 4. The relative error
between the calculated results of the present model and the experimental data ranged from
3.6% to 8.6%, with an average error of 5.6%. As shown in Figure 7, a comparison of the
equivalent stress distribution at failure and the actual rupture locations observed in the
burst tests indicates a high degree of agreement, verifying the rationality of the model’s
boundary conditions and loading setup. In addition, the simulated failure pressures closely
match the experimental values, demonstrating that the model can accurately predict the
burst pressure of corroded pipelines. Therefore, the validated finite element approach
was employed in this study to construct a failure pressure dataset for pipelines with



Materials 2025, 18, 3177

8 of 27

varying defect sizes and diameters, serving as the foundation for predictive modeling of
corrosion-defected pipeline failure.

Table 4. Finite element verification results.

Burst Pressure Numerical Simulation

Model Number (MPa) Result (MPa) Error (%)
IDTS-2 22.67 21.6 4.6
IDTS-5 20.87 19.2 8.6
IDTS-6 18.65 18.0 3.6

Figure 7. Comparison of blasting test results and finite element analysis results: (a) ITDS-2; (b) ITDS-5;
(¢) ITDS-6.

3.2. GABP Neural Network Model

The architecture of the BP neural network, as illustrated in Figure 8, consists of an input
layer, one or more hidden layers, and an output layer. The layers are interconnected through
weight matrices and threshold vectors, with each node in the hidden and output layers
assigned a specific threshold value. The learning process of the network primarily involves
forward signal propagation, backward error propagation, and iterative optimization of
weights and thresholds to minimize the prediction error.

Input Layer  Hidden Layer Output Layer

Figure 8. BP neural network structure diagram.

However, in practical applications, the BP neural network model often suffers from
poor prediction performance due to improper initialization of weights and biases, which
may cause the model to fall into a local optimum. To enhance the predictive accuracy
of the BP neural network, this study employed a genetic algorithm (GA) to optimize the
network [27,28], thereby achieving more accurate predictions of burst pressure and residual
service life.
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The core mechanism of genetic optimization lies in the selection, crossover, and mu-
tation operations performed on individuals based on a defined fitness function, allowing
high-fitness offspring to be retained. These offspring inherit the primary characteristics of
their parents while introducing new variations. During the evolutionary process, beneficial
traits that better adapt to the environment are preserved, while less suitable traits are grad-
ually eliminated. Through this iterative optimization process, the population ultimately
converges toward the optimal solution.

In the context of BP neural network optimization, the objective is to refine the connec-
tion weights and biases between the input layer and hidden layer, as well as between the
hidden layer and output layer. Initially, the network’s weights and thresholds are encoded
as chromosomes in the genetic algorithm, and a population is randomly initialized. The
mean squared error (MSE) of the BP network is used as the fitness function. Individual
fitness values are then calculated to guide the evolutionary process. If the current parameter
set has not reached optimal performance, iterative genetic operations—selection, crossover,
and mutation—are applied to evolve the population until an optimal parameter combi-
nation is obtained. These optimized parameters are then imported into the BP network,
completing the GA-based optimization. The optimization flow is illustrated in Figure 9.

BP Neural Genetic Algorithm
Network Module Optimization Module
Establish the BP Encode and generate

the initial population

Y Y

Determine the - Calculate the fitness value
network topology of individuals

neural network

Obtain initial Chromosome
EE— weights and —— selection
thresholds :
‘ Chromosome
Update Train the neural crossover
weights and network and *
thresholds compute the error : Chromosom
e mutation
Accuracy
equirement met; eptimizatioh

criteria
satisfied?

Figure 9. Flowchart of genetic algorithm optimization of BP neural network.

The training data for the BP neural network in this study were obtained from two sources:
experimental burst test data of defective pipelines reported in the literature [26,29-35] and the
dataset established in Section 3.1 of this study. A total of 270 data samples were compiled,
as detailed in Appendix A. Fifteen representative models were selected and retained as
comparative samples for evaluating failure pressure prediction between the GABP neural
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network and existing assessment methods and were not included in the neural network
training process. The remaining 255 data samples were randomly divided into a training
set (70%), a validation set (20%), and a testing set (10%).

The defect parameters were used as input variables, with a total of ten inputs that
includes the defect length (L), width (w), depth (d), axial spacing (S1), circumferential
spacing (Sc), internal or external position (P), pipe diameter (D), wall thickness (t), yield
strength (o), and ultimate tensile strength (). The failure pressure (Ps) was taken as
the output variable. For the hidden layer, the number of neurons plays a critical role. An
insufficient number of neurons may result in underfitting, failing to capture the complex
nonlinear relationships, while an excessive number can lead to overfitting. Therefore, an
empirical formula (6) was initially adopted to estimate the number of neurons, which
was subsequently fine-tuned based on the training performance to determine the optimal

h=\/p+q+a (6)

where h denotes the number of neurons in the hidden layer; p represents the number of

network configuration [36].

nodes in the input layer; g is the number of nodes in the output layer; and a is an integer
ranging from 1 to 10.

The training performance of the neural network can be evaluated using the mean
squared error (MSE). A smaller MSE indicates higher prediction accuracy. The expression

for MSE is given as [37]
. 2

MSE = i;(m -Y/) )
i=
where 1 denotes the number of input samples, Y represents the actual value, and Y/ refers
to the predicted value generated by the model.

The structure of the BP neural network for predicting the failure pressure of defective
pipelines is shown in Figure 10. The training process of the GABP neural network for pre-
dicting the failure pressure of corroded pipelines included the following steps: numerical
initialization, preliminary training of the BP neural network, optimization of the network
weights and thresholds using a genetic algorithm, retraining of the BP neural network with
the optimized parameters, and finally, the construction of the GABP neural network model.
The genetic algorithm parameters for predicting the failure pressure of defective pipes are
shown in Table 5. The entire optimization and training process was implemented using the
MATLAB (R2022b) numerical simulation platform. The training dataset was fed into the
GABP algorithm module, where the genetic algorithm iteratively optimized the BP neural
network. During the construction of the BP neural network model, different numbers
of hidden layer neurons were tested to identify the optimal configuration based on the
minimum mean squared error (MSE). As shown in Figure 11, the MSE reached its lowest
value when the number of hidden neurons was set to 11, indicating that this configuration
yielded the best prediction performance.

Table 5. Genetic algorithm parameters for predicting the failure pressure of defective pipes.

Number of Number of Number of
Indicator Population Chromosome  Maximum  Crossover  Mutation Neurons in Neurons in Neurons in Selection
Size Length Generation Rate Rate the Input the Hidden the Output Mechanism
Layer Layer Layer
Roulette
Value 50 133 100 0.8 0.05 10 11 1 wheel

selection
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Input Layer Hidden Layer Output Layer

Figure 10. The BP neural network structure for predicting failure pressure of defective pipelines.
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Figure 11. The MSE values associated with varying numbers of hidden layer neurons in the neural
network model employed for failure pressure prediction.

The convergence curve of the genetic algorithm optimization is shown in Figure 12.
The horizontal axis represents the number of iterations, while the vertical axis represents
the fitness function value, i.e., the mean squared error (MSE). As observed in the figure,
the MSE value stabilized after approximately 53 generations, indicating that the genetic
algorithm had converged to the optimal solution. At this point, the minimum MSE no
longer changed and remained stable at a value of 5.19, confirming the effectiveness of the
GA-based optimization process.

50

MSE

0 1
0 10 20 30 40 50 60 70 80 90 100

Number of Iterations/times

Figure 12. Genetic algorithm optimization of BP neural network convergence curve.
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3.3. Optimized Results

A total of 50 independent training sessions were conducted for both the BP and GABP
neural networks. The performance of these models was evaluated using the Pearson
Correlation Coefficient (R), where a value closer to 1 indicates a better fit between predicted
and actual values. The Pearson coefficients for all 50 training instances are shown in
Figure 13. The BP neural network yielded an average R value of 0.7689 with a standard
deviation of 0.0478, whereas the GABP network achieved a significantly higher mean of
0.9824 and a lower standard deviation of 0.0196. These results suggest that the GA-BP model
not only provides greater predictive accuracy but also demonstrates enhanced stability, as
indicated by the narrower distribution range and higher proximity to R = 1. The Wilcoxon
signed-rank test yielded a p-value of 0.0012, indicating that the difference in prediction
performance between the two models is statistically significant at the 95% confidence level.

Y
sir
.
GABP
o8
~.
°. . Mean Value of the GABP Network
o :‘ ‘.‘ ., : o e, < Mean Value of the BP Network
BP b..._.?._:.._.ﬁ_.i ® GABP Neural Network Model
. se s .8 & BP Neural Network Model
X « ° T Maximum ~ Minimum
1 1 1 1 1
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Pearson Correlation Coefficient

Figure 13. Pearson correlation coefficients corresponding to 50 independent training runs.

Figures 14 and 15 present the regression plots corresponding to the best-performing
models (in terms of R value) for the training, testing, and validation datasets of the BP
and GABP networks, respectively. All data were normalized prior to plotting. In these
figures, the diagonal “Ideal Line” represents the condition where R = 1, indicating perfect
agreement between the predicted and actual values. The closer the regression curve is to
this line, the better the fitting performance of the network.

A comparison of the regression results reveals that the BP network exhibited relatively
low correlation across the training (R = 0.85426), validation (R = 0.81085), and testing
(R = 0.82248) sets, resulting in an overall correlation coefficient of R = 0.83993. These
values reflect a less reliable predictive performance, with substantial discrepancies between
the measured and predicted outcomes. In contrast, the GA-BP network—optimized by
adjusting the weights and thresholds between the input and hidden layers—achieved
significantly higher correlation coefficients of 0.99671 (training), 0.98098 (validation), and
0.97949 (testing), with an overall R value of 0.99251. These results are nearly ideal (R = 1),
and as shown in the figures, the data points are closely clustered around the diagonal line,
indicating minimal deviation and superior fitting performance. This outcome demonstrates
that the GABP neural network offers a more accurate and reliable method for predicting
the failure pressure of corroded pipelines.

The optimization results of the BP neural network using the genetic algorithm are
represented by weight and bias matrices. By fixing these matrices during retraining, the BP
neural network can consistently converge to a stable optimal solution, thereby ensuring
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high prediction accuracy and reproducibility. The optimized matrices corresponding to the
best-performing model among the 50 training sessions are shown below.

The weight matrix w;; from the hidden layer to the output layer is given as follows:
[ 1.145 —-2981 0718 0302 0261 —1.825 0.526 0307 —0.847 —0.130]
0310 —-1.070 0254 1746 —1.661 —0.401 0541 0527 —-1.184 -2.191
-1375 0683 1587 1938 0113 —-0.119 -2454 0730 0.063 —1.367
—-0260 —-0376 1873 —0.065 —-0223 1128 —1.089 —-1.007 1.097  0.256
0.862 —0.507 1.143 —3.142 0.666 —0913 -—-2532 0252 2671 —1.219
—-0.734 -1938 0362 1170 —-1.383 -0.368 —-1401 -0274 1533  0.592 ®)
—-1.193 1157 —-0.236 0448 —0438 —-2.626 —-0.956 —0.032 0.136 —1.391
0384 —-0.578 -—2.016 —-0221 -1905 -0.251 0210 1765 —1.136 —0.145
—1.404 —-0473 2493 —-0513 —-1291 0.237 0651 1936 0311 —0.348
0.088 —0.146 0.788 1574 —0.936 —-0936 —-0413 0.881 —0.329 1.459
| 0.155 —0.038 —-0.270 0.692 1750 —0.145 1.660 —0311 —-1.70 —0.955]
1 . : - 1
O  Data @ D) @) Data .
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Figure 14. Fitting effect diagram of BP neural network: (a) training set fitting effect diagram
(b) validation set fitting effect diagram; (c) test set fitting effect diagram; (d) overall fitting effect diagram.
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Figure 15. Fitting effect diagram of GABP neural network: (a) training set fitting effect diagram;
(b) validation set fitting effect diagram,; (c) test set fitting effect diagram; (d) overall fitting effect diagram.

The weight matrix wj, from the hidden layer to the output layer is given as follows:

[—0.667 —0.5765 — 0.303 0.502 0.127 0.131 0.748 0.658 0.137 0.068 0.362] " )
The bias matrix b; for the hidden layer neurons is given as follows:
[2.938 0.281 0.432 0.061 0.845 0.425 — 0.955 — 2.638 0.251 1.049 0.830 | (10)
The bias matrix by for the output layer neurons is given as follows:
by = [1.152] (11)

In the BP neural network, the weighted sum of input parameters plays a crucial role in
feature extraction, importance evaluation, nonlinear mapping, and error propagation. This
value indicates the degree of influence each input parameter has on the output within the
GABP neural network. A larger value signifies that the activation function primarily adjusts
the output based on that particular feature. The calculation formula for the weighted sum

of input parameters is given by [38]
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n
z=) wixi+b (12)
i=1
where z represents the weighted sum; x; denotes the value of the i-th input feature; w; is the
corresponding weight; b is the bias term; and 7 is the total number of input parameters.
The weighted sums of the input parameters in the GABP neural network are shown in
Figure 16. Among these parameters, defect depth d was found to have the greatest influence
on failure pressure, while circumferential spacing Sc had the least. This result indicates
that the defect depth is the most critical parameter in predicting the failure pressure of
defective pipelines using the neural network, and accurately determining the defect depth
is essential for the reliability of the assessment.
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Figure 16. The impact of the weighted summation of individual parameter weights on the prediction

of failure pressure in the neural network model.

3.4. Model Validation

During the training and optimization processes of both the BP and GABP neural
networks, the trends of the measured values, BP-predicted values, and GABP-predicted
values for each sample in the testing set are illustrated in Figure 17. It can be observed
that the BP neural network exhibits significant fluctuations in its predictions, with error
distributions lacking clear regularity.
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Figure 17. Comparison of GABP and BP neural network prediction results.
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In contrast, the GABP neural network demonstrated a substantial improvement in
prediction accuracy. The maximum deviation between the predicted and actual failure
pressures by the GABP model was 2.3 MPa, corresponding to a relative error of 9%.
Furthermore, as shown in the error comparison plot in Figure 18, the prediction deviations
of the GABP neural network consistently fluctuated around zero, indicating that the BP
neural network optimized via a genetic algorithm achieved superior accuracy in predicting
the failure pressure of corroded pipelines. In this context, the prediction error was defined
as the neural network output minus the experimentally measured value.

20 N B e . T T T T T T T T 1
—¥—BP Network Prediction Error

15 [-{=®=GABP Network Prediction Error

Prediction Error/Mpa
(=] W
T

-20 1 1 L 1 1 1 il 1 L 1 1 1 1 1 L L 1 1 1 1 L L 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Testing Set Sample ID

Figure 18. Comparison of GABP and BP neural network prediction errors.

The 15 sets of burst test data for defective pipelines retained in Section 3.2, which were
not involved in the training process of the neural network, were selected to validate the
accuracy and generalization capability of the GABP neural network model. The defect
parameters of these pipelines are summarized in Table 6. These parameters were input
into the trained GABP network to generate predicted failure pressures. In parallel, failure
pressures were also calculated using conventional standards, including DNV RP-F101,
PCORRC, ASME B31G, ASME B31G/RSTRENG, and C-FER, for comparison. As illustrated
in Figure 19, the results indicate that the failure pressures estimated by traditional assessment
methods were generally lower than the actual measured values, reflecting a conservative
bias. In contrast, the predictions produced by the GA-BP neural network showed strong
agreement with the experimental results, demonstrating high prediction accuracy. The
maximum deviation between predicted and actual failure pressures was only 4.08%.

Table 6. Pipe parameters for failure pressure prediction verification.

GABP Predicted

Serial Number D/mm t/mm L/mm dmm w/mm  Test Value/MPa Value/MPa Error/%
1 458.8 8.10 39.60 5.39 31.90 22.68 22.5 0.79
2 459.4 8.00 40.05 3.75 32.00 24.2 24.05 0.62
3 3239 9.80 255.60 7.08 95.30 27.5 27.29 0.76
4 3239 9.66 305.60 6.76 95.30 24.3 23.98 1.32
5 3239 9.71 350.00 6.93 95.30 21.8 21.57 1.06
6 3239 9.71 394.50 6.91 95.30 19.8 19.5 1.52
7 3239 991 433.40 7.31 95.30 16.5 16.74 1.45
8 3239 9.74 466.70 7.02 95.30 15 15.43 2.87
9 3239 9.79 488.70 6.99 95.30 24.11 24.58 1.95

10 3239 9.79 500.00 6.99 95.30 21.76 22.33 2.62
11 3239 9.74 527.80 7.14 95.30 17.15 17.85 4.08
12 762 17.50 50.00 8.75 50.00 24.3 23.85 1.85
13 762 17.50 100.00 8.75 50.00 19.8 20.14 1.72
14 762 17.50 200.00 8.75 50.00 23.32 23.12 0.86
15 762 17.50 300.00 8.75 50.00 22.64 22.31 1.46
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Figure 19. Comparison of failure stresses predicted by various evaluation methods and the

GABP network.

4. Prediction of Remaining Life of Pipelines

4.1. Corrosion Rate Prediction Model
In high-sulfur-containing corrosive environments, the corrosion rate of X52 steel

is influenced by multiple factors, primarily including the partial pressures of CO; and
H,S, the temperature of the transported medium, and the flow velocity. These factors
exhibit a highly nonlinear and complex mapping relationship with the corrosion rate
rather than a simple linear correlation [39,40]. Currently, comprehensive mathematical
models that consider multiple corrosion factors remain insufficiently developed. However,
artificial neural networks, due to their powerful fuzzy recognition and nonlinear prediction
capabilities, provide an effective approach for corrosion rate prediction. Therefore, in this
study, a corrosion rate prediction model based on a genetic algorithm (GA)-optimized BP
neural network was constructed to enhance prediction accuracy and adaptability, thereby
enabling a more precise assessment of the corrosion behavior of X52 steel in high-sulfur
environments. The genetic algorithm parameters used to predict the sulfur corrosion rate

are shown in Table 7.

Table 7. Genetic algorithm parameters for predicting sulfur corrosion rates.

Number of Number of Number of
Indicator Population Chromosome  Maximum Crossover  Mutation Neurons in Neurons in Neurons in Selection
Size Length Generation Rate Rate the Input the Hidden the Output Mechanism
Layer Layer Layer
Roulette
Value 50 100 0.8 0.05 4 8 1 wheel
selection

The existing literature [39,41,42] indicates that the primary factors affecting the corro-
sion rate of pipelines in CO, and H;S coexisting environments are the partial pressures of
corrosive substances, the temperature of the transported medium, and the flow velocity
of the transported medium. Accordingly, these parameters were selected as the input
layer of the neural network, comprising four input variables, with the corrosion rate as the
output layer, having one output target. The BP neural network structure for predicting
the sulfur corrosion rate is shown in Figure 20. The validation results show that with four
inputs and one output, setting the number of neurons in the hidden layer to eight yielded
the minimum mean squared error (MSE), and the MSE values corresponding to different
numbers of hidden layer neurons are presented in Figure 21. Thirty samples of X52 steel
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corrosion rates related to sulfur-containing corrosion were collected from references [43—47]
as the training data. The training results, shown in Figure 22, demonstrate that the GABP
network model achieved an MSE of 0.0369 and a correlation coefficient of 0.99544.

Input Layer Hidden Layer Output Layer

Figure 20. BP neural network structure diagram for predicting sulfur corrosion rates.
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Figure 21. The MSE values associated with varying numbers of hidden layer neurons in the neural
network model developed for predicting the sulfur corrosion rate.
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Figure 22. GABP network prediction corrosion rate fitting diagram.
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The weighted sums of the input parameters are shown in Figure 23. The results
indicate that the partial pressure of H,S had the greatest impact on the prediction outcome,
with a weighted sum of 0.3906. The influences of CO; partial pressure and the flow velocity
of the transported medium were approximately equal, with weighted sums of 0.2571 and
0.2623, respectively. In contrast, temperature had the least effect on the prediction results,
with a weighted sum of 0.09.

0.5

0.3906

N
~
T

i
w
T

0.2571 0.2623

Weighted sum of weights
(=}
()

e
—_
T

0.09

H,S Co, Gas flow rate  Medium temperature
partial pressure partial pressure
Input parameters
Figure 23. The impact of the weighted summation of individual parameter weights on the prediction
of sulfur corrosion rate within the neural network model.

The optimized weight matrix w;; from the input layer to the hidden layer is as follows:

[ 2.153 0.170 1.826 0.198
1.499 1.611 2.231 0.337
1.427 0.240 0.061 1.354
2.154 1.255 2.042 2.025
1.720 0.634 2.620 0.693
0.655 0.631 1.678 1.979
1.266 1.731 1.450 1.335

| 2.480 0.402 1.201 3.017

(13)

The weight matrix wj, from the hidden layer to the output layer is as follows:
[0.375 0.936 0.801 0.945 0.985 0.456 0.731 0.593]" (14)
The bias matrix b; for the hidden layer neurons is as follows:
[2.511 1.847 1.249 2.216 0.910 1.623 2.738 2.636] (15)
The bias matrix by for the output layer neurons is as follows:
by = [1.324] (16)

The correlation coefficient and mean squared error (MSE) of the network indicate
a high degree of fit, demonstrating that this neural network is well suited for predicting the
corrosion rate of X52 steel in sulfur-containing environments. Validation was performed
using six datasets from reference [43], with the results presented in Table 8. The maximum
prediction error was found to be 7.94%. These results confirm that the model can accu-
rately predict the corrosion rate of X52 steel under the combined effects of H,S and COs,
highlighting its significant engineering applicability.
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Table 8. Error in neural network prediction of corrosion rate.
. CO, Partial H,S Partial Flow Measured Predicted
Nsueiglile " Pressure Pressure Tem;/)f éature Velocity Corrosion Rate  Corrosion Rate  Error/%

/MPa /MPa /(m/s) /(mm/year) /(mm/year)

1 0 0 40 4 0.00858 0.008 6.75

2 0 0.1 60 6 0.03325 0.0312 6.16

3 0 0.2 80 8 0.3786 0.3567 5.78

4 0.1 0 60 8 0.02618 0.0241 7.94

5 0.1 0.1 80 4 0.4066 0.3985 1.99

6 0.1 0.2 40 6 0.5038 0.4938 1.98

4.2. Remaining Life Prediction Method

Based on the method for determining the remaining life of corroded pipelines pro-
posed in the American standard NACE SP 0502-2010 “Direct Assessment Method for
Pipeline Corrosion” [48], the remaining life can be predicted according to the pipeline
operating pressure, wall thickness, and corrosion rate. The expression is given as follows:

t
TR =C X Sy~ (17)
Gr
where C represents the correction factor and is taken as 0.85; t denotes the wall thickness of
the pipeline; G stands for the corrosion rate; and Sy indicates the safety margin.

Based on the GABP network model established in this study, the failure pressure of
the corrosion-defected pipeline and the defect corrosion rate under its service environment
were first predicted. Subsequently, the remaining service life of the defective pipeline was
calculated using Equation (17). The entire process was implemented through programming
on the Matlab platform, where the pre-trained GABP networks for failure pressure and
corrosion rate prediction were integrated with the remaining life prediction formula. By
inputting the relevant parameters, predictions and evaluations of both the failure pressure
and remaining life could be achieved. The detailed procedure is illustrated in Figure 24.

Safety Assessment of Sour
Corrosion-Defective Pipelines

I
Y Y

In-line Inspection of
Pipeline

Analysis of Transported
Medium

!

v

Defect Parameter
Extraction

Partial Pressures of
Corrosive Species,
Temperature, and Flow

Rate
Neural Network-Based Neural Network-Based
Prediction of Failure Prediction of Corrosion
Pressure Rate

I

Estimation of Remaining
Service Life and Internal
Pressure Bearing Capacity

v

Assessment Completion

Figure 24. Prediction process for residual bearing capacity of pipelines with sulfur corrosion defects.



Materials 2025, 18, 3177

21 of 27

4.3. Model Application Illustrative Example

Taking a segment of a sulfur-containing gas field’s gathering pipeline as an example,
the pipeline material examined was X52 steel, with a diameter of 323 mm and a wall
thickness of 13 mm. The design operating pressure was set to 9.6 MPa, while the actual
operating pressure ranged from 5.2 to 8.2 MPa. The transported medium temperature
was set to 30 °C, with partial pressures of H,S and CO; measured at 0.116 MPa and
0.126 MPa, respectively. The gas flow velocity was set to 4 m/s. Coupon tests determined
the corrosion rate of this pipeline segment to be 0.1 mm/year, while the corrosion rate
predicted by the neural network was 0.098 mm/year. In-line inspection results revealed the
presence of five independent corrosion defects within the pipeline segment. The corrosion
defects were sufficiently spaced to ensure that their impacts on the remaining service
life could be regarded as independent. Based on this assumption, the five defects were
treated as independent failure sites during the remaining life evaluation. By inputting these
parameters into the prediction model, the failure pressure and remaining service life of the
pipeline segment were obtained. The defect parameters, failure pressures, and remaining
service lives are summarized in Table 9. Without any protective measures, the minimum
failure pressure of this segment was predicted to be 22.3 MPa, which satisfies the design
pressure requirement of 9.6 MPa. However, the minimum remaining service life was found
to be only 4.6 years, indicating a need for enhanced monitoring and timely replacement of
this pipeline segment.

Table 9. Results of safety assessment of pipelines with sulfur corrosion defects.

Serial Number L/mm w/mm d/mm P{MPa Remaining Life/Year
1 110 21 6.1 33.0 5.621087
2 95 18 5.3 31.2 5.188696
3 87 32 7 28.8 4.612174
4 80 24 8 29.5 4.780326
5 70 18 5.9 35.0 6.101522

5. Conclusions

(1) The mechanical properties of pipeline steel exposed to high-sulfur corrosive environ-
ments were experimentally investigated to assess the effects of such harsh service
conditions on material strength degradation. The results indicated that, despite pro-
longed exposure to a high-sulfur environment, the material property parameters
of the corroded pipeline steel exhibited no significant degradation in its intrinsic
mechanical properties, although geometric stability was reduced due to corrosion.

(2) The Johnson—Cook constitutive model for X52 pipeline steel was calibrated, with the
numerical simulation results showing a high degree of agreement with the experi-
mental curves. This constitutive model was demonstrated to accurately describe the
plastic hardening characteristics of X52 steel.

(3) A genetic algorithm-optimized backpropagation (GABP) neural network model was
developed to predict the failure pressure and corrosion rate of defected pipelines. The
predictive accuracy and fitting performance of the GABP model were compared with
those of the conventional BP neural network. The results show that the GABP neural
network achieved higher prediction accuracy for both the pipeline failure pressure
and X52 sulfur corrosion rate, with maximum errors of 4.08% and 7.94%, respectively.
Furthermore, based on the two neural network models, the failure pressure and
service life of an in-service pipeline in a sulfur-containing gas field were predicted,
demonstrating strong practical engineering guidance value.
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Appendix A

Table Al. Training dataset for neural network.

Serial Number D/mm t/mm L/mm d/mm w/mm Material oy/MPa o,/MPa Pf/MPa
1 458.8 8.10 39.60 5.39 31.90 X80 601.00 684.00 22.68
2 459.4 8.00 40.05 3.75 32.00 X80 589.00 730.50 24.20
3 762 17.50 50.00 8.75 50.00 X52 495.00 565.00 27.50
4 762 17.50 100.00 8.75 50.00 X52 495.00 565.00 24.30
5 762 17.50 200.00 8.75 50.00 X52 495.00 565.00 21.80
6 762 17.50 300.00 8.75 50.00 X52 495.00 565.00 19.80
7 762 17.50 600.00 8.75 50.00 X52 495.00 565.00 16.50
8 762 17.50 900.00 8.75 50.00 X52 495.00 565.00 15.00
9 762 17.50 200.00 4.20 50.00 X52 474.10 556.60 24.11

10 762 17.50 200.00 8.90 50.00 X52 474.10 556.60 21.76
11 762 17.50 200.00 13.10 50.00 X52 474.10 556.60 17.15
12 762 17.50 100.00 8.40 50.00 X52 474.10 556.60 24.30
13 762 17.50 300.00 8.50 50.00 X52 474.10 556.60 19.80
14 762 17.50 200.00 8.40 100.00 X52 474.10 556.60 23.42
15 762 17.50 200.00 9.00 200.00 X52 474.10 556.60 22.64
25 14224 19.25 180.00 10.40 0.50 X100 740.00 774.00 15.35
26 14224 20.10 385.00 3.80 0.50 X100 795.00 840.00 20.12
27 914.4 16.40 150.00 9.00 0.50 X100 739.00 813.00 21.40
28 914.4 16.40 450.00 6.00 0.50 X100 739.00 813.00 24.02
29 324 6.40 20.70 3.23 19.30 X52 382.00 570.00 16.64
30 324 6.01 19.35 3.60 18.99 X52 382.00 570.00 16.22
31 324 6.30 19.80 3.57 19.31 X52 373.00 522.00 15.95
32 324 6.31 20.13 3.73 19.74 X52 373.00 522.00 14.16
33 324 6.16 20.12 3.73 19.99 X52 356.00 514.00 18.85
34 324 6.27 19.91 3.73 20.20 X52 356.00 514.00 19.13
35 324 6.25 19.93 3.76 20.11 X52 356.00 514.00 19.27
36 324 6.18 19.92 3.79 20.01 X52 421.00 520.00 19.44
37 508 7.10 40.00 1.07 15.95 X70 485.00 590.00 19.02
38 508 8.70 80.00 2.61 31.90 X70 485.00 590.00 20.78
39 508 10.00 150.00 4.50 47.85 X70 485.00 590.00 19.54
40 508 12.00 300.00 7.20 63.80 X70 485.00 590.00 16.36
41 508 17.50 600.00 13.13 79.76 X70 485.00 590.00 13.79
42 660 7.10 80.00 3.20 82.90 X70 485.00 590.00 11.75
43 660 8.70 150.00 5.22 207.24 X70 485.00 590.00 11.13
44 660 10.00 300.00 7.50 20.72 X70 485.00 590.00 7.55

45 660 12.00 600.00 1.80 41.45 X70 485.00 590.00 22.67
46 660 17.50 40.00 5.25 62.17 X70 485.00 590.00 34.41
47 711 7.10 150.00 5.33 44.65 X70 485.00 590.00 6.54

48 711 8.70 300.00 1.31 66.98 X70 485.00 590.00 15.54
49 711 10.00 600.00 3.00 89.30 X70 485.00 590.00 14.54
50 711 12.00 41.00 5.40 111.63 X70 485.00 590.00 20.35
51 711 17.50 80.00 10.50 22.33 X70 485.00 590.00 25.90
52 813 7.10 300.00 2.13 127.64 X70 485.00 590.00 941

53 813 8.70 600.00 3.92 25.53 X70 485.00 590.00 8.79

54 813 10.00 130.00 6.00 51.06 X70 485.00 590.00 13.72

55 813 12.00 80.00 9.00 76.58 X70 485.00 590.00 13.51
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Table A1l. Cont.

Serial Number D/mm t/mm L/mm d/mm w/mm Material oy/MPa o,/MPa Pf/MPa
56 813 17.50 150.00 2.63 102.11 X70 485.00 590.00 28.71
57 1016 7.10 600.00 4.26 95.71 X70 485.00 590.00 4.24
58 1016 8.70 40.00 6.53 127.61 X70 485.00 590.00 8.81
59 1016 10.00 80.00 1.50 159.51 X70 485.00 590.00 13.33
60 1016 12.00 150.00 3.60 31.90 X70 485.00 590.00 14.18
61 1016 17.50 300.00 7.88 63.80 X70 485.00 590.00 16.89
62 762 17.50 10.00 3.50 132.93 X52 495.00 565.00 31.40
63 762 17.50 20.00 3.50 132.93 X52 495.00 565.00 30.30
64 762 17.50 50.00 3.50 132.93 X52 495.00 565.00 29.50
65 762 17.50 100.00 3.50 132.93 X52 495.00 565.00 27.90
66 762 17.50 200.00 3.50 132.93 X52 495.00 565.00 27.50
67 762 17.50 400.00 3.50 132.93 X52 495.00 565.00 27.10
68 762 17.50 600.00 3.50 132.93 X52 495.00 565.00 26.80
69 762 17.50 800.00 3.50 132.93 X52 495.00 565.00 26.70
70 762 17.50 1000.00 3.50 132.93 X52 495.00 565.00 26.66
71 762 17.50 1200.00 3.50 132.93 X52 495.00 565.00 26.65
72 762 17.50 10.00 8.75 132.93 X52 495.00 565.00 27.90
73 762 17.50 20.00 8.75 132.93 X52 495.00 565.00 26.66
74 762 17.50 50.00 8.75 132.93 X52 495.00 565.00 25.18
75 762 17.50 100.00 8.75 132.93 X52 495.00 565.00 22.94
76 762 17.50 200.00 8.75 132.93 X52 495.00 565.00 22.42
77 762 17.50 400.00 8.75 132.93 X52 495.00 565.00 22.31
78 762 17.50 600.00 8.75 132.93 X52 495.00 565.00 21.95
79 762 17.50 800.00 8.75 132.93 X52 495.00 565.00 21.76
80 762 17.50 1000.00 8.75 132.93 X52 495.00 565.00 21.73
81 762 17.50 1200.00 8.75 132.93 X52 495.00 565.00 21.72
82 762 17.50 10.00 14.00 132.93 X52 495.00 565.00 25.20
83 762 17.50 20.00 14.00 132.93 X52 495.00 565.00 23.90
84 762 17.50 50.00 14.00 132.93 X52 495.00 565.00 22.36
85 762 17.50 100.00 14.00 132.93 X52 495.00 565.00 19.87
86 762 17.50 200.00 14.00 132.93 X52 495.00 565.00 16.88
87 762 17.50 400.00 14.00 132.93 X52 495.00 565.00 16.79
88 762 17.50 600.00 14.00 132.93 X52 495.00 565.00 16.77
89 762 17.50 800.00 14.00 132.93 X52 495.00 565.00 16.78
90 762 17.50 1000.00 14.00 132.93 X52 495.00 565.00 16.76
91 762 17.50 1200.00 14.00 132.93 X52 495.00 565.00 16.75
92 762 17.50 50.00 2.00 132.93 X52 495.00 565.00 30.86
93 762 17.50 50.00 5.00 132.93 X52 495.00 565.00 28.17
94 762 17.50 50.00 9.00 132.93 X52 495.00 565.00 25.30
95 762 17.50 50.00 14.00 132.93 X52 495.00 565.00 22.35
96 762 17.50 150.00 2.00 132.93 X52 495.00 565.00 30.00
97 762 17.50 150.00 5.00 132.93 X52 495.00 565.00 25.75
98 762 17.50 150.00 9.00 132.93 X52 495.00 565.00 22.26
99 762 17.50 150.00 14.00 132.93 X52 495.00 565.00 16.93
100 762 17.50 300.00 2.00 132.93 X52 495.00 565.00 29.40
101 762 17.50 300.00 5.00 132.93 X52 495.00 565.00 26.20
102 762 17.50 300.00 9.00 132.93 X52 495.00 565.00 22.41
103 762 17.50 300.00 14.00 132.93 X52 495.00 565.00 17.22
104 762 17.50 200.00 3.50 20.00 X52 495.00 565.00 27.50
105 762 17.50 200.00 3.50 60.00 X52 495.00 565.00 27.16
106 762 17.50 200.00 3.50 100.00 X52 495.00 565.00 26.21
107 762 17.50 200.00 3.50 140.00 X52 495.00 565.00 26.04
108 762 17.50 200.00 3.50 180.00 X52 495.00 565.00 25.93

109 762 17.50 200.00 8.75 20.00 X52 495.00 565.00 22.42
110 762 17.50 200.00 8.75 60.00 X52 495.00 565.00 21.43
111 762 17.50 200.00 8.75 100.00 X52 495.00 565.00 19.77
112 762 17.50 200.00 8.75 140.00 X52 495.00 565.00 19.29
113 762 17.50 200.00 8.75 180.00 X52 495.00 565.00 19.12
114 762 17.50 200.00 14.00 20.00 X52 495.00 565.00 16.88
115 762 17.50 200.00 14.00 60.00 X52 495.00 565.00 15.67
116 762 17.50 200.00 14.00 100.00 X52 495.00 565.00 13.97
117 762 17.50 200.00 14.00 140.00 X52 495.00 565.00 13.58
118 762 17.50 200.00 14.00 180.00 X52 495.00 565.00 13.31
119 610 12.70 17.60 6.35 47.00 X52 460.00 555.00 23.75
120 610 12.70 35.20 6.35 47.00 X52 460.00 555.00 22.50
121 610 12.70 52.80 6.35 47.00 X52 460.00 555.00 21.50
122 610 12.70 70.40 6.35 47.00 X52 460.00 555.00 20.80
123 610 12.70 88.00 6.35 47.00 X52 460.00 555.00 20.00
124 610 12.70 132.00 6.35 47.00 X52 460.00 555.00 18.30
125 610 12.70 176.00 6.35 47.00 X52 460.00 555.00 17.20
126 610 12.70 220.00 6.35 47.00 X52 460.00 555.00 16.00
127 610 12.70 264.00 6.35 47.00 X52 460.00 555.00 14.80
128 610 12.70 308.00 6.35 47.00 X52 460.00 555.00 14.20
129 457 14.00 16.00 7.00 35.00 X52 460.00 555.00 20.00
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Serial Number D/mm t/mm L/mm d/mm w/mm Material oy/MPa o,/MPa Pf/MPa
130 457 14.00 32.00 7.00 35.00 X52 460.00 555.00 18.40
131 457 14.00 48.00 7.00 35.00 X52 460.00 555.00 16.40
132 457 14.00 64.00 7.00 35.00 X52 460.00 555.00 16.00
133 457 14.00 80.00 7.00 35.00 X52 460.00 555.00 15.20
134 457 14.00 120.00 7.00 35.00 X52 460.00 555.00 14.10
135 457 14.00 160.00 7.00 35.00 X52 460.00 555.00 13.20
136 457 14.00 200.00 7.00 35.00 X52 460.00 555.00 12.50
137 457 14.00 240.00 7.00 35.00 X52 460.00 555.00 11.90
138 457 14.00 280.00 7.00 35.00 X52 460.00 555.00 10.20
139 1422 14.40 28.60 7.70 112.00 X80 638.00 739.00 16.30
140 1422 14.40 57.20 7.70 112.00 X80 638.00 739.00 15.80
141 1422 14.40 85.80 7.70 112.00 X80 638.00 739.00 14.60
142 1422 14.40 114.40 7.70 112.00 X80 638.00 739.00 14.30
143 1422 14.40 143.00 7.70 112.00 X80 638.00 739.00 14.00
144 1422 14.40 214.50 7.70 112.00 X80 638.00 739.00 11.90
145 1422 14.40 286.00 7.70 112.00 X80 638.00 739.00 10.80
146 1422 14.40 357.50 7.70 112.00 X80 638.00 739.00 9.90
147 1422 14.40 429.00 7.70 112.00 X80 638.00 739.00 9.60
148 1422 14.40 500.50 7.70 112.00 X80 638.00 739.00 9.20
149 1016 14.40 24.20 7.70 80.00 X80 638.00 739.00 23.80
150 1016 14.40 48.40 7.70 80.00 X80 638.00 739.00 22.90
151 1016 14.40 72.60 7.70 80.00 X80 638.00 739.00 21.40
152 1016 14.40 96.80 7.70 80.00 X80 638.00 739.00 20.40
153 1016 14.40 121.00 7.70 80.00 X80 638.00 739.00 19.10
154 1016 14.40 181.50 7.70 80.00 X80 638.00 739.00 17.10
155 1016 14.40 242.00 7.70 80.00 X80 638.00 739.00 16.20
156 1016 14.40 302.50 7.70 80.00 X80 638.00 739.00 15.30
157 1016 14.40 363.00 7.70 80.00 X80 638.00 739.00 13.80
158 1016 14.40 423.50 7.70 80.00 X80 638.00 739.00 13.10
159 457 14.00 80.00 7.00 35.87 X52 460.00 555.00 16.20
160 457 14.00 80.00 7.00 71.75 X52 460.00 555.00 16.00
161 457 14.00 80.00 7.00 107.62 X52 460.00 555.00 15.90
162 457 14.00 80.00 7.00 143.50 X52 460.00 555.00 15.80
163 457 14.00 80.00 7.00 179.37 X52 460.00 555.00 15.60
164 457 14.00 80.00 7.00 215.25 X52 460.00 555.00 15.30
165 610 12.70 88.00 6.35 47.89 X52 460.00 555.00 21.20
166 610 12.70 88.00 6.35 95.77 X52 460.00 555.00 21.10
167 610 12.70 88.00 6.35 143.66 X52 460.00 555.00 21.00
168 610 12.70 88.00 6.35 191.54 X52 460.00 555.00 20.90
169 610 12.70 88.00 6.35 239.43 X52 460.00 555.00 20.70
170 610 12.70 88.00 6.35 287.31 X52 460.00 555.00 20.40
171 1016 14.40 121.00 7.70 79.76 X80 638.00 739.00 19.20
172 1016 14.40 121.00 7.70 159.51 X80 638.00 739.00 19.00
173 1016 14.40 121.00 7.70 239.27 X80 638.00 739.00 18.80
174 1016 14.40 121.00 7.70 319.02 X80 638.00 739.00 18.50
175 1016 14.40 121.00 7.70 398.78 X80 638.00 739.00 18.10
176 1016 14.40 121.00 7.70 478.54 X80 638.00 739.00 17.80
177 1422 14.40 143.00 7.70 111.63 X80 638.00 739.00 14.00
178 1422 14.40 143.00 7.70 223.25 X80 638.00 739.00 13.80
179 1422 14.40 143.00 7.70 334.88 X80 638.00 739.00 13.70
180 1422 14.40 143.00 7.70 446.51 X80 638.00 739.00 13.50
181 1422 14.40 143.00 7.70 558.14 X80 638.00 739.00 13.20
182 1422 14.40 143.00 7.70 669.76 X80 638.00 739.00 12.90
183 457 14.00 80.00 2.80 71.75 X52 460.00 555.00 22.00
184 457 14.00 80.00 4.20 71.75 X52 460.00 555.00 19.90
185 457 14.00 80.00 5.60 71.75 X52 460.00 555.00 18.20
186 457 14.00 80.00 7.00 71.75 X52 460.00 555.00 14.20
187 457 14.00 80.00 8.40 71.75 X52 460.00 555.00 10.80
188 457 14.00 80.00 9.80 71.75 X52 460.00 555.00 7.50
189 457 14.00 80.00 11.20 71.75 X52 460.00 555.00 4.00
190 610 12.70 88.00 2.60 95.77 X52 460.00 555.00 23.80
191 610 12.70 88.00 3.90 95.77 X52 460.00 555.00 22.00
192 610 12.70 88.00 5.20 95.77 X52 460.00 555.00 21.50
193 610 12.70 88.00 6.50 95.77 X52 460.00 555.00 20.10
194 610 12.70 88.00 7.80 95.77 X52 460.00 555.00 18.20
195 610 12.70 88.00 9.10 95.77 X52 460.00 555.00 9.50
196 610 12.70 88.00 10.40 95.77 X52 460.00 555.00 5.20
197 1016 14.40 121.00 2.88 159.51 X80 638.00 739.00 24.00
198 1016 14.40 121.00 4.32 159.51 X80 638.00 739.00 21.80
199 1016 14.40 121.00 5.76 159.51 X80 638.00 739.00 20.80
200 1016 14.40 121.00 7.70 159.51 X80 638.00 739.00 20.00
201 1016 14.40 121.00 8.64 159.51 X80 638.00 739.00 18.20
202 1016 14.40 121.00 10.08 159.51 X80 638.00 739.00 16.40
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Serial Number D/mm t/mm L/mm d/mm w/mm Material oy/MPa o,/MPa Pf/MPa
203 1016 14.40 121.00 11.52 159.51 X80 638.00 739.00 13.60
204 1422 14.40 143.00 2.88 223.25 X80 638.00 739.00 17.00
205 1422 14.40 143.00 4.32 223.25 X80 638.00 739.00 15.80
206 1422 14.40 143.00 5.76 223.25 X80 638.00 739.00 14.00
207 1422 14.40 143.00 7.70 223.25 X80 638.00 739.00 13.00
208 1422 14.40 143.00 8.64 223.25 X80 638.00 739.00 11.00
209 1422 14.40 143.00 10.08 223.25 X80 638.00 739.00 8.80
210 1422 14.40 143.00 11.52 223.25 X80 638.00 739.00 8.00
211 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 19.34
212 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 20.45
213 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 20.76
214 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 21.56
215 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 22.06
216 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 22.14
217 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 22.18
218 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 22.20
219 610 8.10 39.60 2.45 31.90 X80 601.00 684.00 22.21
220 610 8.10 39.60 4.90 31.90 X80 601.00 684.00 16.75
221 610 8.10 39.60 490 31.90 X80 601.00 684.00 18.57
222 610 8.10 39.60 4.90 31.90 X80 601.00 684.00 19.72
223 610 8.10 39.60 4.90 31.90 X80 601.00 684.00 20.85
224 610 8.10 39.60 4.90 31.90 X80 601.00 684.00 21.52
225 610 8.10 39.60 4.90 31.90 X80 601.00 684.00 21.31
226 610 8.10 39.60 4.90 31.90 X80 601.00 684.00 21.61
227 610 8.10 39.60 4.90 31.90 X80 601.00 684.00 21.65
228 610 8.10 39.60 490 31.90 X80 601.00 684.00 21.66
229 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 13.79
230 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 15.15
231 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 16.47
232 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 18.21
233 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 18.78
234 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 19.29
235 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 19.81
236 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 19.84
237 458.8 8.10 39.60 7.35 31.90 X80 601.00 684.00 19.87
238 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 20.90
239 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.20
240 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.10
241 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 17.10
242 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.50
243 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 15.20
244 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 22.00
245 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 22.00
246 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 23.50
247 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 24.00
248 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 20.00
249 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 24.40
250 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 16.00
251 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 20.00
252 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 20.50
253 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 20.80
254 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.00
255 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.20
256 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.40
257 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.50
258 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 21.70
259 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 18.80
260 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 23.20
261 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 23.50
262 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 23.70
263 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 23.90
264 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 24.10
265 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 24.30
266 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 24.50
267 458.8 8.10 39.60 5.39 32.10 X80 638.00 739.00 24.50
268 458.8 8.10 39.60 2.45 31.90 X80 601.00 684.00 23.84
269 458.8 8.10 39.60 2.45 31.90 X80 601.00 684.00 22.73
270 458.8 8.10 39.60 2.45 31.90 X80 601.00 684.00 24.61
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