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Abstract: To solve the problems of numerous influencing factors, such as the high uncer-
tainty and leakage risk of gas production pipelines in high-sulfur gas fields, a dynamic
analysis of a gas production pipeline’s leakage risk using a dynamic Bayesian network is
proposed. By means of Bow-tie model analysis, the primary risk sources of gas pipeline
leakage and different accidents are summarized. A temporal dimension was introduced to
construct a dynamic Bayesian network model, utilizing the Leaky noisy-OR gate model to
rectify and compute conditional probability, thereby facilitating dynamic risk prediction of
gas pipeline leakage. Taking the first section of the pipeline of a municipal gas collection
station as an example, with the help of GeNIe 4.0 Academic software, the influence degree
of each basic event on pipeline gas leakage was revealed. The change curve of gas leakage
probability over time was drawn, and the occurrence probability of potential consequences
of accidents was computed. The results indicate that the status of flanges, valves, and
pipelines are key factors in determining the occurrence of gas leakage accidents, and six
risk sources, including medium corrosion in gas leakage accidents, were determined, with
these having practical conspicuousness for strengthening the leakage protection of gas
pipelines and providing proper support for the formulation of relevant safety measures.

Keywords: leaky noisy-OR gate model; primary risk source; bow-tie model; risk analysis;
dynamic Bayesian network

1. Introduction
With large-scale development and the use of high-sulfur gas fields, the frequency of

gas leakage accidents has gradually increased. Based on the 11th European Gas Pipeline
Incident Data Group’s statistical data, there were 1411 gas leakage incidents from 1970 to
2019 [1]. If gas leakage cannot be appropriately detected and monitored in time, an ignition
source with enough energy will ignite the combustible gas and even cause an explosion.
The production station platform layout is compact, and once an explosion occurs, a chain
explosion reaction may occur, with serious damage and accident consequences. To ensure
the safe and regular operation of sulfur-containing oil and gas wells in the petrochemical
production area, leakage routes, possible risks, and preventive measures for monitoring
and analysis were investigated.

Numerous scholars have used conventional probability analysis methods for failure
probability analysis. Badida et al. employed fuzzy fault tree analysis to investigate an oil
and gas pipeline and determine the probability of pipeline failure under different natural
disasters [2]. Yan and Li employed de-blur to calculate hydrogen sulfide pipeline failure
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probability and realize quantitative analysis based on fault tree analysis (FTA) and event
tree analysis (ETA) [3]. The above ways have some defects when used for uncertainty
analysis of complex system risks, but in the realm of conveying and rationalizing uncertain
knowledge, the Bayesian network (BN) stands out as a highly efficient theoretical model
that can make up for the deficiencies of the above methods. In 2015, Li et al. combined a
sequence model of submarine pipeline leakage events with BN to achieve dynamic analysis
of the risk of submarine pipeline leakage accidents [4].

However, this method does not demonstrate the characteristics of pipeline leakage
risk changing over time. In 2019, Chang et al. (2019b) introduced the time dimension into a
traditional static BN and proposed a dynamic analysis of hydrogen leakage risk, combining
the Bow-tie (BT) model and dynamic Bayesian network (DBN), which solved the uncer-
tainty and dynamic problem of device leakage risk [5]. In 2020, Feng et al. recommended
augmenting the BN framework by incorporating the noisy-OR gate model [6]. In 2023,
Dong et al. utilized an enhanced version of the BN, which integrates historical data and
expert insights in conjunction with leaky noisy-or-gate model, effectively, predicted the
occurrence probability of construction risk accidents and further identified the risk factors
with high sensitivity to them [7]. In 2024, Cui et al. quantified the failure probability of each
component of a hydrogen-doped pipeline based on the historical failure data of a natural
gas pipeline and used these as prior probability to input into the BN for calculation; the
results showed that the BN could quantify the failure probability of the hydrogen-doped
pipeline more accurately [8]. Wang et al. used the same approach but considered multiple
consequences as safety barriers incorporated into the BN, and the results showed that
the risk of failure could be mitigated and prevented by considering a multidimensional
consequence impact assessment [9]. In 2025, Pang et al. introduced the weakest t-paradigm
algorithm and similarity aggregation method for the parameter learning of a fuzzy BN
in order to realize an accurate solution. The research results are of great significance for
revealing the evolution mechanism of ethane storage tank leakage accidents [10].

The BT model of gas leakage is transformed into a DBN. The likelihood of intermediary
events is computed by utilizing the prior probability of crucial occurrences, leading to
posterior probability updating, concerning fundamental incidents. The goal of dynamic
risk analysis is accomplished by examining gas leakage probability across time.

2. Methodology
This study developed a novel risk analysis framework combining the Bow-tie model

and dynamic Bayesian network for gas pipeline leakage, as shown in Figure 1. The BT
model is a combination of FTA (hazardous identification) and ETA (accident process).
The BT model was mapped to the BN model by parameterizing the Leaky noisy-OR gate
model. Sensitivity analysis and diagnostic speculation analysis were performed using
GeNIe software. The DBN model was constructed by introducing the time dimension for
risk prediction to realize dynamic risk analysis.

2.1. Method of Dynamic Bayesian Network

In theory, a BN is a potent analytical tool for making deductions in situations char-
acterized by ambiguity. It can consider uncertainties, including the uncertainty of the
root nodes, risk factors, and consequences. Furthermore, the conditional dependence of
the uncertainty within the bounds of the parent and child nodes is represented by the
conditional probability table (CPT) in the BN. It uses the mature rationale of probabilistic
calculus as the basis for inference and uncertainty quantification.
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However, the BN is time-independent and cannot be used to represent temporal
evolution of a system. A dynamic Bayesian network (DBN) is a temporal extension of a
static Bayesian network, consisting of a static Bayesian network at the initial moment and a
transfer network, where each time slice corresponds to a static Bayesian network. It still has
the advantage of BN processing uncertainty. In addition, it models the system’s dynamic
behavior by introducing temporal correlation into the network, using the previous state
under existing conditions for current inference [7].

In applications, introducing time factors to process dynamic systems is exceedingly
complex, and to streamline the representation of intricate systems, the subsequent assump-
tions have been established as follows [4]:

Smooth hypothesis: The network topology remains unchanged over time, with condi-
tional probabilities remaining unchanged.

Markov model: The state at period T is only dependent on the state at period
T − ∆T, without being influenced by the states from time periods prior to T − ∆T. That is
Equation (1) below:

P
(
XT

∣∣XT−∆T , · · · XT0

)
= P(XT |XT−∆T) (1)

The establishment of the DBN model can be divided into two parts: establishment of
the SBN, which is used as the network structure and probability distribution at the initial
moment, and establishment of the transfer network. Figure 2 shows a simple example of
a DBN with a joint probability distribution similar to the BN and can be represented by
Equation (2), as follows [11,12]:

P(X1:T) =
T

∏
t=1

N

∏
i=1

P
[

Xt
i
∣∣Pa

(
Xt

i
)]

(2)

where Xt
i denotes the i-th node at time t (i = 1, 2, . . ., N), and Pa

(
Xt

i
)

denotes the parent
node of Xt

i in the network.
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2.2. Mapping of the BT Model to the BN Model

The BT model is a graphical means used to visually represent the entire accident
scenario, which helps to illustrate the cause-and-effect relationship between hazards and
potential consequences in a structured and clear manner [13]. It starts from the cause of the
incident to the end of the accident consequences and takes the accident as the center. The
fault tree (FT) on the left mainly identifies the hazard source and digs into the root cause of
the dangerous event, while the right event tree (ET) shows the consequences of the accident.
The analysis of the logical relationships among different events through the BT model is
beneficial for grasping the causes of the top event, which emerges due to the combination
of basic events. It also assists in identifying the failure pathways of safety barriers that
promote the escalation of consequences after the top event [14]. The conversion process
from the BT to the BN can be effectively segmented into two key stages.

• A node in the BN corresponding to each event, safety barrier, and accident consequence
in the BT model is established and connected by a directed arc;

• The prior probabilities of root nodes and the CPT of associated nodes within a BN
are determined according to failure probability and the logic gate of the basic event,
respectively. The OR gate and the AND gate are the main logical gates of the FT. The
method of converting them into conditional probability tables in a BN [15], considering
only two states of event occurrence (occurring) and N (not occurring), is illustrated in
Figure 3.
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After completing the above steps, the conversion process from the BT to the BN can be
realized, as shown in Figure 4.
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2.3. The Leaky Noisy-OR Gate Model

In a traditional DBN, the AND gate and the OR gate in FT determine the conditional
probabilities. The noisy-OR gate model serves in constructing partially eligible network
parameters of the determined network structure and is used in the absence of large data
samples. For the BN of this model, the following three conditions should be met:

• Each node in the network represents a binary variable denoting either occurrence (Y)
or non-occurrence (N);

• If node M has parent nodes X1, X2, . . ., Xn, they are conditionally independent of
each other;

• For each parent node Xi, there exists a connection probability with Equation (3).

Pi = P(M|Xi) = P
(

M
∣∣X1, X2, · · · Xi, · · · Xn

)
(3)

That is, only the probability of node M is Y when Xi is Y and the other is N, presuming
that M has only two parent notes, Xi and Xall, where Xall denotes the total of other factors
excluding Xi. Meanwhile, the corresponding conditional probability is computed based on
Pi and Pall. Then, there are Equations (4) and (5).

P(M|Xi) = 1 − (1 − Pi)(1 − Pall) = Pi + Pall − PiPall (4)

P
(

M
∣∣Xi

)
= Pall (5)

By Combining Equations (4) and (5), the connect probability can be obtained accord-
ingly Equation (6).

Pi =
P(M|Xi)− P

(
M
∣∣Xi

)
1 − P

(
M
∣∣Xi

) (6)

However, there are numerous influencing factors, and the occurrence of fault events is
not absolute (such as Y without N). Henrion first proposed the notion of leak probability
and then came up with the Leaky noisy-OR gate extension model, which can cover the
deficiency [16]. Therefore, the introduction of this model integrates unknown omission
factors into a single element, denoted as XL. Equation (6) can explain the connection
probability of holistic parent nodes of node M, thereby enabling the expression of the
conditional probability of node M in Equation (7)

P(M = Y) = 1 − (1 − PL)∏i:Xi∈Xp

(
1 − PXi

)
(7)

where M = Y represents event M occurrence, Xi stands for the i-th parent of the node M,
while Xp annotates all parent nodes of M excluding Xi, and PL represents the occurrence
probability of omission factor XL.
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3. Dynamic Risk Analysis of Gas Leakage
3.1. In Situ Application

The gas production pipeline from a high-hydrogen sulfide gas well in a city to the
gas collection station was the central location in the east Sichuan gas transmission project.
The hydrogen sulfide content was up to 15.16%. The gas field acid gas gathering and
transmission pipeline network includes line 1, line 2, and line 3. The design pressure
was 10.7 and 14.4 MPa, and the pipe diameter range was DN150–DN500, totaling ca.
61 km. The pipeline material selected was high-sulfur-resistant carbon steel pipe + a
supporting corrosion inhibitor, control technology for laser leakage detection was placed
in the tunnel, and the safety measures of interception valve room + emergency plan +
emergency evacuation broadcast + emergency torch system were adopted.

3.2. Establishment of the BT Model

In “Hydrogen Sulfide Protection in Natural Gas Extraction and Transmission Oper-
ations”, the authors described petrochemical production area gas leakage; the literature
research and accident scenario analysis summarize the five main unsafe factors of gas
leakage—valve leakage, flange leakage, environmental factors, the dangerous state of the
pipeline, and human factors, as shown in Figure 5 [17]. The symbols and specific meanings
of the events are given in Tables 1 and 2.
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Table 1. Description of the intermediate events.

Order Number Event Description Order Number Event Description

T Gas leakage M10 Defects in pipeline design
M1 Flange leak M11 Plumbing mechanical failure
M2 Valve leakage M12 Pipeline defect management
M3 Environmental factors M13 Insufficient corrosion resistance
M4 Unsafe state of the pipeline M14 Internal corrosion
M5 Human factors M15 External corrosion
M6 The seal is not strict M16 Equipment fatigue
M7 Internal leakage M17 Pipe vibration
M8 Out leakage M18 Thermal fatigue
M9 Piping corrosion M19 Mechanical fatigue

Table 2. Description and prior probability of basic events.

Order Number Prior Probability Order Number Prior Probability

Gas leakage T / Piping erosion X16 0.0005
Impurities inside the flange X1 0.0146 External corrosion layer failure X17 0.001

Gasket aging X2 0.0053 Poor anti-corrosion testing X18 0.001
Bolt looseness varies X3 0.0048 Pipe weld defect X19 0.0015

Flange medium corrosion X4 0.0170 Poor craftsmanship X20 0.025
Coating failure of X5 0.0114 Ambient temperature change X21 0.003

Failure of corrosion inhibitor X6 0.0092 Gas temperature change X22 0.004
Valve medium corrosion X7 0.0170 Stress concentration X23 0.027

Valve quality is unqualified for X8 0.0092 Gas medium X24 0.0087
Valve disk root aging X9 0.0046 Fast gas flow rate X25 0.02

Impurity at the junction X10 0.0284 High gas flow rate X26 0.025
Equipment spacing too close X11 0.0007 False hazard judgment X27 0.0009

Natural calamities X12 0.000124 Inappropriate operation X28 0.00022
Medium corrosion X13 0.0170 Inappropriate maintenance X29 0.00847

Internal corrosion layer failure X14 0.000673 Check not performed X30 0.0001
No inner coating X15 0.000116 Inspection irregularities X31 0.015

Gas detector alarm SB1 0.05 Effectively turn off SB2 0.33
Ignore immediately SB3 0.1 Retarded ignition SB4 0.45

Gas leakage causes several different physical consequences and associated hazards.
Because of the long length of the pipeline, it cannot be closely monitored, monitoring is
not timely, and leakages cannot be found immediately; hence, the type of pipeline leakage
accident is generally continuous leakage. Continuous gas leakage may cause combustion,
explosion, and personnel poisoning. According to event tree process deduction, these
consequences are usually caused by the constant failure of safety barriers, which include
the gas monitor alarm; when set off, it is effective immediately but can be delayed and
result in consequences divided into four stages: corresponding deflagration accidents, jet
fires, steam cloud explosions, and personnel poisoning. In this paper, the usual start and
manual emergency shutdown of the automatic emergency shutdown were both effective
shutdowns, and the realization of this barrier largely depended on the regular operation of
the gas detection and alarm system pair. The instant ignition barrier halted the buildup
of vapor clouds from gas leakage, consequently averting the escalation of potential faults
stemming from leaks. The breakdown of safety barriers can give rise to four consequences
of hydrogen sulfide leakage, and the severity of hydrogen sulfide leakage is described by
the number of pipe accidents and consequences delineated by Ramírez et al., as summarized
in Table 3 [18].
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Table 3. Consequences of pipeline failure.

Symbol Consequences of the Accident
Consequence Factors

Casualty Material Damage Pecuniary Loss

C1 Safe diffusion Not have Not have Not have
C2 Combustion (jet fire) Commonly Large Large
C3 Steam cloud explosion More Large Large
C4 Personnel poisoning casualties Huge Huge Huge

3.3. Modeling of Dynamic Bayesian Network

Based on the previous theoretical analysis, the Bow-tie model was transformed into a
Bayesian network model, as shown in Figure 6.
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3.4. Determination of the State Transition Probability

The DBN demonstrates the dynamic nature of accident scenarios through temporal
evolution, employing transition probability to regulate node changes across varying time
frames. Nodes within a specific time slice exclusively rely on the parent node within the
same slice and the corresponding node from the preceding slice [19], with their probabilities
interpreted as the state values of the parent node evolving with time [20]. The Weber
distribution was selected to describe the failure probability of different events and it fit to
the failure probability out of the normal distribution.

Assume that t denotes the present time slice, where λ represents the prior probability,
and ∆t denotes the time interval between consecutive slices. Wang et al. indicated that
the state transition probability of every node could be determined by Equation (8) [21].
Taking node X14, the internal corrosion layer failure, as an example, the construction of the
transition probability is expressed in Table 4.

P(Xi(t) = N|Xi(t − ∆t) = N ) = 1, P(Xi(t) = Y|Xi(t − ∆t) = N ) = 0
P(Xi(t) = Y|Xi(t − ∆t) = Y ) = e−λ∆t, P(Xi(t) = N|Xi(t − ∆t) = Y ) = 1 − e−λ∆t (8)

Table 4. The transition probability of node X14.

X
X(t − 1) Y N

Y 0.61596816 0
N 0.38403184 1
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The BN mode network model for gas leakage risk was transformed into a DBN as
described above in Figure 7.
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4. Results and Discussion
4.1. Leakage Probability
4.1.1. Probabilities of the Root and Barrier Nodes

Owing to the uniqueness and non-replicability of oil and gas industry accidents,
coupled with the difficulties encountered in acquiring a considerable quantity of accident-
related data, a portion of the fault data was derived from reference statistics [1,22,23];
with its failure rate as a node prior probability, and for no specific statistical data factors,
operational errors, improper maintenance, and other factors were based on published
studies [6,21,24,25], as listed in Table 3, where the effective shutdowns include automatic
and manual emergency shutdown, and the possibility of failure is derived from the dynamic
risk assessment at a natural gas station by Zarei et al. [26]. The failure probability of safety
barriers can be treated as the prior failure probability of barrier nodes in the BN.

4.1.2. Preparation of the Conditional Probability Table

Gas pipeline leakage is affected by numerous factors. Employing logical gate oper-
ations, the CPT exhibits only two states, occurrence and non-occurrence, but there may
be a large error when the parent node is present and the child node is not. Consequently,
the Leaky noisy-OR gate model presented in the preceding section enhanced the accuracy
of the CPT with the middle node external corrosion (M15). For example, it has three root
nodes, X16, X17, and X18, defined as follows:

P(M15 = Y|X16 = Y) = 0.84, P(M15 = N|X16 = N) = 0.73, P(M15 = Y|X17 = Y) = 0.65,

P(M15 = N|X17 = N) = 0.71, P(M15 = Y|X18 = Y) = 0.29, P(M15 = N|X18 = N) = 0.85

The connection probability was obtained according to Equation (6), PC16 = 0.781,
PC17 = 0.507, and PC18 = 0.165. Considering the omission factor XL, it is assumed for ease of
calculation that it follows a Gaussian probability density distribution with a confidence level
of 99%, which ensures that the effect of the unknowns is confined to a small range, beyond
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which is defined as the leak probability. Thus, P (XL = Y) = 0.01 [6]. With Equation (7), the
conditional probability of node M15 is shown in Table 5.

Table 5. External corrosion (M15) conditional probability table.

X16 Y N

X17 Y N Y N

X18 Y N Y N Y N Y N

M15
Y 0.911 0.893 0.982 0.783 0.592 0.512 0.173 0.01
N 0.089 0.107 0.018 0.217 0.408 0.488 0.827 0.99

Similarly, the CPT of T can also be deduced. Assumptions define the following
probability values:

P (T = Y|M1 = Y) = 1, P (T = N|M1 = N) = 0.55

P (T = Y|M2 = Y) = 1, P (T = N|M2 = N) = 0.55

P (T = Y|M3 = Y) = 0.34, P (T = N|M3 = N) = 0.91

P (T = Y|M4 = Y) = 0.89, P (T = N|M4 = N) = 0.89

P (T = Y|M5 = Y) = 0.63, P (T = N|M5 = N) = 0.55

According to Equation (6), the connection probability of C1, C2, C3, and C4 can be
obtained; thus, PC1 = 1, PC2 = 1, PC3 = 0.27, PC4 = 0.86, and PC5 = 0.51, the same as M15.
Like Equation (7), the CPT of T can be seen in Table 6a,b.

Table 6. The conditional probability of node gas leakage (T).

a

M1 Y

M2 Y N

M3 Y N Y N

M4 Y N Y N Y N Y N

M5 Y N Y N Y N Y N Y N Y N Y N Y N

T
Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b

M1 N

M2 Y N

M3 Y N Y N

M4 Y N Y N Y N Y N

M5 Y N Y N Y N Y N Y N Y N Y N Y N

T
Y 1 1 1 1 1 1 1 1 0.95 0.89 0.64 0.27 0.93 0.87 0.51 0.01
N 0 0 0 0 0 0 0 0 0.05 0.11 0.36 0.73 0.07 0.13 0.49 0.99

The accuracy of the conditional probability tables for all nodes can be enhanced by
implementing the aforementioned steps, thereby refining their precision and reliability.
Finally, GeNIe software calculates that the gas leakage probability in the gas pipeline was
reduced from 0.168 to 0.106. Figure 8 depicts the modified results derived from the model.
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4.2. Sensitivity

Sensitivity analysis is an analytical approach to identifying the factors that prominently
influence the target event. It enables quantifying and assessing the extent or sensitivity of
the impact on the target event, thereby facilitating a comprehensive understanding of the
underlying factors that affect it. GeNIe software was used to conduct sensitivity analysis
for gas leakage accidents, and node T was installed as the target node. Figure 9 displays
the final results of sensitivity analysis; nodes with darker shades indicate higher sensitivity.
Specifically, nodes X1, X2, X4, X7, X15, and M15 exert the most prominent ascendancy on
the incidence of gas leakage events.
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Figure 9. Sensitivity analysis of node T.

Except for the sensitivity analysis conducted on the marginal probability of nodes,
it can also be conducted for the conditional probability and marginal probability of the
BN, drawing sensitivity analysis with gas leakage as an example; as shown in Figure 10,
the gas leakage accident probability (P(T = Y) = 0.10679) is the conditional probability
P(T = Y|M1 = N, M2 = N, M3 = N, M4 = Y, M5 = N), followed by P(M4 = Y|M9 = Y,
M10 = N, M11 = N).
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Figure 10. A tornado plot for BN sensitivity analysis.

4.3. Diagnostic Speculation

The node T is set as an evidence node to indicate that a gas leakage accident occurs,
and the probability of the failure of each safety barrier remains unchanged and independent
of each other. The reverse inference function of DBN was utilized to receive the posterior
probability of every node, update the probability of a basic event, and compare it with the
prior probability, as illustrated in Figure 11. There were impurities in the flange X1, flange
medium corrosion X4, and valve medium corrosion X7, with an impurity at the junction
X10, pipeline in the medium corrosion X13, and poor production process X20 with a higher
posterior probability. While the basic events, X1 and X4, can cause a flange leak, X7 and X10

can cause a valve to leak, and X2 and X13 can lead to the intermediate event pipeline being
unsafe. These essential events with high posterior probability and a substantial increase
in probability are considered key events and can provide corresponding suggestions for
reducing the risk of gas leakage. It shows that the status of flanges, valves, and pipes are
the key factors determining the occurrence of gas leakage accidents.
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4.4. Risk Prediction

The percentage of gas leakage in the pipeline can be predicted within the next ten time
slices by utilizing the causal inference feature of the established DBN model. As depicted in
Figure 12a, it can be observed that in the first four time slices, the leakage probability shows
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a gradual upward trend, while the subsequent stabilization proceeds. For the specific topic
of gas pipelines, this trend coincides with the regularity of the bath curve, which further
verifies the accuracy of the analytical method.
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A predictive analysis of the DBN can achieve the dynamic probability of the results.
Figure 12b shows the probability of accidents C1 and C2 occurring in ten months. Because
of the exceedingly low occurrence probabilities of C3 and C4, they are not depicted here.
The dynamic occurrence probability of C1 and C2 gradually increases with time. Once the
leakage accident occurs, the occurrence probability of gas-safe diffusion C1 is nearly five
times that of C2.

5. Conclusions
A BT model was employed to assess and consolidate the primary risk sources of

gas leakage and the consequences of different leakage accidents caused by the failure of
the safety barrier. Based on the dynamic Bayesian network, dynamic risk analysis of gas
pipeline leakage was performed, and the following conclusions were drawn:

• By conducting sensitivity analysis, the impact of each node in the SBN on the occur-
rence of gas leakage accidents T was evaluated, and X1, X2, X4, X7, X15, and M15 were
the key impact events of gas leakage accidents of node T, which had a notable impact
on the occurrence of gas leakage accidents of node T.

• GeNIe software was used to compute the prior probability of the intermediate node,
assuming that the probability of a basic event is updated if gas leakage has occurred.
By comparing the ratio of the posterior probability to the prior probability, it was
determined that the status of the flange, valve, and pipeline are critical factors in the
occurrence of gas leakage accidents.

• On the basis of the developed DBN model, the probability of gas leakage in 10-time
slices was predicted by GeNIe software, and the gas leakage probability and accident
consequences C1 and C2 were drawn over time, indicating that occurrence probability
increased with time.

In this study, there was some prior probability, conditional probability, and transition
probability determined based on research and mathematical model deduction. Although
the Leaky noisy-OR gate model was introduced to enhance accuracy, the validity and relia-
bility of the data are still difficult to verify. In practical engineering scenarios, the accuracy
of probability analysis could be improved by combing pipeline-specific corrosion monitor-
ing records and maintenance logs. The Bayesian network can be systematically enhanced
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by increasing the factors affecting gas pipeline leakage to make it more comprehensive
and complete. Additionally, the accuracy of the prediction results of DBN also needs to
be further verified. In practical application, it is recommended to collect the probability
information of multiple time slices. The probability of the earliest influencing factor with
temporal attributes can be set as the initial parameter of the DBN, and the probability of
other time slices can be used as reference values to compare and analyze the result of the
model. Dynamic risk analysis of gas leakage is crucial for guaranteeing the long-term stable
transportation of pipelines. By continuous model optimization and improvement, potential
safety accidents can be prevented, and more effective responses can be guaranteed.
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