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Abstract – Reflection of propagating modes is studied at the exit of a cylindrical acoustic wave guide from
both an experimental and a numerical point of view. The plane mode and several purely azimuthal higher
modes are extracted by means of modal decomposition and the uncoupled reflection coefficients of each mode
are obtained using two microphonic antennas for Helmholtz numbers below 5.3. The reflection at the open end
of the guide is studied for different guide terminations: without flange, with a finite flange, with an infinite
rigid flange. A numerical model based on finite elements is set to mimic the experimental protocol: generation
of the acoustic wave by a locally vibrating wall (to represent the flush-mounted loudspeakers used in the
experiments), computation of the acoustic field in a cylindrical duct geometry and radiation in open space
(represented by a half sphere). Results are also compared with the theoretical predictions from the literature
when available. For the plane mode, the difference between the three sources of data is less than 5%; overall,
the agreement allows to discern an effect of termination for the plane mode and for the first higher mode.
An end with finite flange leads to intermediate behaviours between without flange and with an infinite flange
only for the reflection coefficient of the plane mode.

Keywords: Reflection of acoustic waves, Duct acoustics, Microphone antenna, Multimodal propagation, End
correction

1 Introduction

Although it is a classical problem of acoustics, predic-
tion and measurement of sound reflection at the exit of
an open guide is not straightforward. The problem depends
on the frequency range and the cross dimensions of the
duct. At low frequencies, for which the wavelengths are
large compared to the duct radius, only the plane wave
propagates. Many studies of sound radiation from a wave
guide have been concerned with this plane wave regime.
Various detailed calculations of the reflection of the plane
wave at the open end of a guide for unflanged [1] and
infinitely flanged [2–4] are available. Ando also provided a
solution for the reflection of the plane wave at the open
end of a circular duct including thick walls [3]. In addition,
experimental investigations for various flanges have been
compared to theoretical and numerical results [5]. The case
of sound radiation with a mean flow has also received great
attention due to its importance for the understanding of
noise generated by aircraft jet engine or air conditioning
systems (e.g. [6]).

At high frequencies, high-order modes can propagate in
addition to the plane wave, which increases the complexity
of the sound field. These modes appear as the frequency
exceeds their respective cut-on frequencies. The description
of reflection back into the guide, scattering into other modes
and radiation outside the guide are more complicated than
in the plane wave regime. Whatever the mode, its reflection
depends on the geometry of the duct termination. The liter-
ature on radiation of higher modes is less developed and
more theoretically or numerically oriented than the one
for plane waves. Zorumski [7] derived an equation for the
multimodal reflection matrix in the case of an infinitely
flanged guide. Rienstra [8] proposed an analytical descrip-
tion of reflection and conversion coefficients of higher modes
in circular and annular unflanged duct including the effect
of a mean flow. Snakowska et al. [9, 10] presented a numer-
ical approach of multimodal radiation for the same geome-
try, including reflection coefficient together with length
correction calculations. Dahl et al. [11] compared reflection
coefficients obtained from in-guide measurements with
those determined from numerical code calculation for an
unflanged duct. The results did not agree and a subsequent
study was proposed to determine the accuracy of com-
puted results for unflanged, flanged and thin guides [12].*Corresponding author: david.marx@univ-poitiers.fr
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Multimodal radiation impedance can also be computed
numerically for circular ducts of arbitrary wall thickness
[13] or for an arbitrary cross-sectional shape in an infinite
baffle [14].

On the experimental side, studies of acoustic modes
separation in cylindrical guides were published from the
seventies [15, 16]. Kerschen and Johnston [17] proposed a
measurement technique which performs modal separation
of broadband noise propagating in circular ducts. They used
2n microphones, spaced around the circumference of the
duct, to extract the (n � 1) order of circumferential modes
instantaneously. Åbom [18] used an extension of the two-
microphone transfer function method [19] which allowed
for the first time to get not only the mode decomposition
but also several terms of the reflection and transmission
matrices. Akoum and Ville [20] proposed a technique of
measuring the reflection matrix for duct discontinuities with
higher-order modes based on the measurement of the
acoustic pressure by microphone pairs in two cross sections
and separation of incident and reflected modes by use of
Fourier-Lommel transform. In the context of analysis of
noise generated by orifice plate in ducts, Horner and Hu
[21] developed a hybrid modal decomposition approach to
deconstruct the in-duct sound field into individual higher-
order mode contribution. In their approach, the process of
modelling the sound field is simplified by using uncoupled
calculations for the higher order modes. Uncoupled here
refers to the fact that a reflected mode of some order is
mainly generated by the incident mode of the same order,
cross-couplings between modes of different orders remaining
negligible. In [21] this is associated with a limited number of
measurements locations in the duct therefore with a rapid
decomposition. Further results by the same authors [22]
showed that the proposed hybrid decomposition approach
was efficient in estimating the propagation in a duct with
several orifices. Other beamforming-inspired deconvolution
methods, such as DAMAS, can be used to retrieve modal
amplitudes from flush-mounted microphones, including
their correlations [23].

The objective of the present work is to carry out a suf-
ficiently precise modal decomposition in order to distinguish
the reflection coefficients of different terminations for the
first higher-order modes in a cylindrical waveguide. We will
restrict ourselves to the measurement of the reflection coef-
ficients in a mid-frequency range so that the uncoupled
approach as defined above is justified. This permits a great
simplification of the description of the multi-mode wave
propagation and also reduces the number of microphones
to be used in the experimental study. This mid-frequency
range extends to Helmholtz numbers up to 5 approxi-
mately. In this range, the only modal conversion at the duct
termination is between the plane mode and the first radial
mode having no azimuthal dependence [20]. A consequence
of this is that, at sufficient distance from the termination,
uncoupling is indeed valid for the first three azimuthal
modes in the mid-frequency range, and for the plane mode
in a low-end sub-range of the latter, with a limit to be
specified below. This still allows to study reflection for
different terminations and provides simple experimental

and numerical tools useful for practical engineering applica-
tions. A test bench has been developed to study multimodal
acoustic reflection at different duct terminations without
any mean flow. The reflection coefficients and end correc-
tions are extracted using the classical two microphones
method [19, 24] but replacing the two microphones by
two microphone rings of 8 microphones each. For the plane
wave, results are compared with the models from the liter-
ature: without flange given by Levine and Schwinger [1],
with a finite flange given by Dalmont et al. [5] and with
an infinite rigid flange given by Norris and Sheng [4]. For
higher order modes, references exist without flange [8, 10]
and with infinite flange [7], but since no model is available
for an arbitrary termination, a numerical model of the
experiment is used for comparisons. The paper is organized
as follows. In Section 2 the experimental setup, the principle
of measurements and the estimation of the modes are
presented. The same model is used for the modal decompo-
sition in the experimental and in the numerical approach,
which is presented in Section 3. Results for reflection coeffi-
cients and end corrections are presented for the different
terminations in Section 4.

2 Experimental setup and propagation model
2.1 Guide, source and microphone arrays

We consider a circular wave guide made of rigid walls,
as shown schematically in Figure 1. The inner radius of
the duct is a = 0.088 m, corresponding to a 1143 Hz cut-
on frequency for the first higher mode. One extremity is
closed, the other is open and sound radiates in an anechoic
room, the source region standing at the entrance of the
anechoic room. At the duct open end, three different termi-
nations can be used, as shown in Figure 2. These are: a very
thin-edges termination (unflanged case), a termination with
an infinite flange, and a termination having a finite flange,
which is an intermediate situation between the former two.
The length L = �xe of the duct depends slightly on which
termination is used and varies between 1.32 m and 1.39 m.
The thickness of the infinite flange is 22 mm.

Figure 1. Schematic of the duct (not to scale). L = 1.32–1.39 m
(depending on termination); a = 0.088 m; L1 = 1.21 m;
Ls = 0.54 m; s = x2�x1 = 0.04 m; w = 0.09 m; microphones are
1/4”. Not to scale.

D. Marx et al.: Acta Acustica 2024, 8, 382



The wave guide is excited by an acoustic source,
described in [26], composed of 16 loudspeakers (Morel
MDM55 having a flat response for a wide frequency range,
with �3 dB cut-off frequencies at 450 Hz and 8500 Hz.).
The center of this source is located at a distance
Ls = xs � xe = 0.54 m from the rigid end of the duct,
and its width is about w = 0.33 m. The source is excited
by a sinusoidal signal and frequency is swept from 50 Hz
to 3300 Hz in 5 Hz increments. The duration of excitation
is 30 s for each working frequency and the chosen frequency
range allows to cover 5 propagating modes. For the present
study, only one pair of diametrically opposed loudspeakers
is used and the relative phase between them is adjusted to
favor the excitation of each given mode. An azimuthal
mode will be preferably excited if the loudspeakers generate
signals whose phase follow that associated with the target
mode. For example, the two loudspeakers diametrically
opposed have to be set out of phase to favor the (1, 0) mode
and the (3, 0) mode, or in phase to favor the (0, 0) mode,
where the mode orders (m, n) are defined in the next
section. Using such phase relationship yields significant
improvement of signal to noise ratio for frequencies above
the first cut-on frequency [33].

The pressure in the duct is measured using a microphone
antenna. Figure 3 shows the antenna consisting of 2 rings of
M microphones each, with M = 8. On a given ring, the
microphones are equidistant, separated by a 2p

M ¼ p
4 angle.

The first ring is at a distance L1 = x1 � xe = 1.21 m from
the rigid end, and the distance between the two rings is
s = x2 � x1 = 0.04 m. The class 1 microphones (BSWA
TECH type MPA451, frequency response 10 Hz to
50 kHz) are plugged to the guide via an orifice smaller than
the diameter of the microphone. The diameter of the orifice
is 6.8 mm and its length is 0.8 mm therefore the resonance
frequency of the very small plug-in cavity in front of the
microphone is much higher than the frequencies of interest
in this study. The acquisition is performed by an ETEP
Universal Recorder System 8.5.1. that has a 100 kHz
sampling frequency [33]. The synchronous detection method

is used to extract the microphone pressure recorded for 30 s
for each frequency step. A thermocouple measurement
allows to adjust the speed of sound to the actual ambient
conditions.

2.2 Propagation model

In this section, we present the classical multimodal
sound propagation in a circular duct. It is intended to
describe sound propagation in the rigid section downstream
of the source, between x = xs and x = 0. Then, the open end
of the duct at x = 0 is considered and the reflection coeffi-
cient at this extremity is introduced. The implication of the
choice of a rigid reflecting termination at the other end of
the duct at x = xe is finally briefly discussed.

Cylindrical coordinates are denoted by x, r, h. The prop-
agation of sound within the guide in the section located
between x= xs and x= xe is governed by the following wave
equation and boundary conditions:
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@
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Figure 2. Terminations: (a) unflanged, (b) infinite flange, (c) finite flange.

Figure 3. Microphone antennas.
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where c0 is the sound speed. The acoustic pressure within
the lossless guide can be expressed as a combination of
eigenmodes according to [27]:

pðx; r; h; tÞ ¼
Z 1

�1

X1
m¼�1

X1
n¼0

Jm jmn
r
a

� �
½Aþ

mne
�jcmnx

þ A�
mne

jcmnx�e�jmhejxt
dx
2p

; ð2Þ

where x is the angular frequency, with corresponding
wavenumber in free space k = x/c0. Equation (2) states
that the pressure field is the sum of modes indexed by inte-
gers (m, n) where m = �1...1 is the azimuthal order, and
n = 0,...,1 is the radial order. Each mode contains a right-
propagating component of amplitude Aþ

mnðxÞ and a left-
propagating component of amplitude A�

mnðxÞ. The radial
shape of the modes is determined by Jm which is the mth
Bessel function of the first kind, and denoting by kmn the
(n + 1)th zero of its derivative gives J 0

mðjmnÞ ¼ 0 (note that
in the present notations n = 0 corresponds to the first zero).
Each mode is associated with an axial wavenumber

cmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðjmna Þ2

q
, which is real if the mode propagates

and imaginary if it is cut-off. A given mode is propagating
(resp, cut-off) if x is larger (resp, lower) than its cut-off
angular frequency defined by xc;mn ¼ c0jmn

a ; equivalently,
the cut-off frequency is fc;mn ¼ c0jmn

2pa . The values of jmn and
fc,mn for the first cut-on modes (m, n) are given in Table 1.
In this table, a = 0.088 m and c0 = 343.2 m�s�1 are used,
which corresponds to our experimental apparatus. For
frequencies up to 3300 Hz, under study in this paper, only
the modes listed in this table are propagating. This corre-
sponds to the following range for the Helmholtz number:
ka = xa/c0 < 5.3.

We now consider the open end of the duct, at x = 0, and
introduce the reflection coefficient, which is the quantity of
interest in this work both experimentally and numerically.
At the open end of the guide, a given propagating mode
is partly radiated outward, and partly reflected back into
the duct, where it is transformed into other modes of the
same circumferential order but of arbitrary radial order.
As a result, the amplitude of a mode travelling from the
duct open extremity is [7]:

A�
mn ¼

X1
q¼0

RmnqA
þ
mq; ð3Þ

where Rmnq can be seen as the components of a reflection
matrix. Note that we have fixed x = 0 at the open end
(as in [7]), otherwise extra phase factors would be present
in equation (3). In general the reflection of a mode onto
itself is prevailing, that is, Rmnn � Rmnq for q 6¼ n, yielding
Rmnn � A�

mn=A
þ
mn. This relation, which consists in supposing

that the modes are uncoupled, is only an approximation,
but it may become exact in certain frequency ranges that
we are going to consider. In particular, for the mode
(0, 0), the expansion reads: A�

00 ¼ R000A
þ
00 þ R001A

þ
01þ

R002A
þ
02 þ :::. In the present work, the frequency range

(f < 3300 Hz) limits the number of propagating modes,

meaning Aþ
0q ¼ 0; 8q � 2, provided measurements are

performed sufficiently far from discontinuities or sources.
Below the cut-on frequency of mode (0,1), we also have
Aþ
01 ¼ 0. However, for f > fc,01 we have Aþ

01 6¼ 0 and
A�
00 ¼ R000A

þ
00 þ R001A

þ
01, meaning R000 6¼ A�

00=A
þ
00. Similar

analysis for the other azimuthal mode orders gives the
following expression for the reflection coefficients to be
extracted from the experiments:

R000 ¼ A�
00=A

þ
00 f < fc;01; ð4Þ

R100 ¼ A�
10=A

þ
10 red f c;10 < f < fc;11; ð5Þ

R200 ¼ A�
20=A

þ
20 fc;20 < f < 3300Hz; ð6Þ

R300 ¼ A�
30=A

þ
30 fc;30 < f < 3300Hz : ð7Þ

Results for R000 will therefore be presented only for frequen-
cies below the cut-on frequency of mode (0, 1), and those for
R100 below the cut-on frequency of mode (1, 1). Equations
(4)–(7) are correct as long as measurements are performed
far from any discontinuity or source. Also, note that we
have not used any transverse mode normalization in
equation (2). In general, the reflection coefficient depends
on the particular normalization used, but this is not the
case for Rm00 considered here (since any normalization
would multiply both Aþ

m0 and A�
m0 by the same factor).

The termination at x = xe in this work is taken to be
rigid and the consequence of this is discussed. First, it
should be noted that the reflection coefficient at the open
end of the duct is fixed by the open-end termination at
x = 0 only. In particular, it does not depend on the nature
of the termination at the other end. At least this is true as
long as this other end is not open itself, which would create
a coupling between the two extremities through the outside
of the duct [29]. However, the use of a rigid termination at
x = xe has an impact on the global sound field within the
duct and this may have practical consequences. In particu-
lar this creates resonances and anti-resonances in the duct
(see also the discussion of Fig. 6). If microphone antennas
are located close to a pressure node, finding the mode ampli-
tudes from the microphone signals (which is the inverse
problem presented in the next section) is badly conditioned.
In the present experimental setup this has been avoided by
using, among several initially possible loudspeaker axial
locations, the one for which this problem does not occur.
Another option would have been to use an absorbing

Table 1. List of all propagating modes (m, n) in the frequency
range under study (1st column), with associated value of jmn

(2nd column) and cut-off frequency (3rd column).

Mode (m, n) jmn fc,mn (Hz)

(0, 0) 0 0
(1, 0) 1.8412 1143
(2, 0) 3.0542 1896
(0, 1) 3.8317 2379
(3, 0) 4.2012 2608
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termination made of foam, or to use more antennas with
uneven spacing between them.

2.3 Inverse problem

In order to obtain the reflection coefficients Rm00 by
using equations (4)–(7), it is necessary to compute A�

m0 from
the measured microphone signals at the antenna. This
inverse problem is solved by using a multimodal extension
of the two-microphone technique. In each antenna, the M
microphones are located at equispaced angles hq, with
q = 0, ..., M�1, and at the wall (r = a). Taking the Fourier
transform in time of equation (2) written at r = a and
h = hq, gives the pressure pq for microphone at angle hq:

pq x;xð Þ ¼
X1

m¼�1
Pm x;xð Þe�j2pmq=M

¼
XM=2�1

m¼�M=2

Pm x;xð Þe�j2pmq=M ð8q ¼ 0; :::;M � 1Þ; ð8Þ

where the second equality is due to the fact that a limited
number of azimuthal modes can be measured using the
antenna, which is valid in the frequency range of interest,
and where

Pmðx;xÞ ¼
X1
n¼0

Jm jmnð Þ½Aþ
mne

�jcmnx þ A�
mne

jcmnx� ð9Þ

¼ J 0 jm0ð Þ½Aþ
m0e

�jcm0x þ A�
m0e

jcm0x� 8m ¼ �M
2
; :::;

M
2
� 1

� �
:

ð10Þ
The transition from equations (9) and (10) is possible when
only the modes of radial order n = 0 are present, which is
the case in the whole frequency range for |m| = 2, 3, in
the range f < fc,01 for m = 0, and in the range f < fc,11 for
|m| = 1, in line with the frequency range in which equations
(4)–(7) are valid. The second sum in equation (8) is a
discrete Fourier transform. The amplitudes Pm are then
obtained from the inverse discrete Fourier transform

Pmðx;xÞ ¼ 1
M

XM�1

q¼0

pqðx;xÞej2pmq=M : ð11Þ

Pressure measurements are performed at the two rings
located at x = x1 and x = x2, therefore giving access to
pq(x1, x) and pq(x2, x), and in turn to Pm(x1, x) and
Pm(x2, x) from equation (11). Writing equation (10) at
the two positions gives:

J 0 jm0ð Þ½Aþ
m0e

�jcm0x1 þ A�
m0e

jcm0x1 � ¼ Pmðx1;xÞ ð12Þ

J 0 jm0ð Þ½Aþ
m0e

�jcm0x2 þ A�
m0e

jcm0x2 � ¼ Pmðx2;xÞ ð13Þ

so that the reflection coefficient at the end of guide can be
expressed as

Rm00ðxÞ ¼ A�
m0

Aþ
m0

¼ Pmðx2;xÞ � Pmðx1;xÞe�jcm0ðx2�x1Þ

Pmðx1;xÞejcm0ðx2�x1Þ � Pmðx2;xÞ e�2jcm0x1 :

ð14Þ
This is the main outcome of the microphone antenna
processing in the experiments or simulations and will be
discussed below. The expression is valid for frequencies
below fc,01 for R000, below fc,11 for R100, and below
3300 Hz for R200 and for R300. Rm00 is a complex quantity,
and it is customary to represent its modulus, |Rm00(x)|,
and, rather than its phase, its end correction, dm00(x). This
characterizes the inertial character of the open termination
of the guide and is defined implicitely as Rm00ðxÞ ¼
�jRm00ðxÞje�2jcm0ðxÞdm00ðxÞ. This is an extension to the multi-
modal case of the expression usually given for the plane
wave [1, 28]. This extension is particularly justified for the
reflection coefficient Rm00 since this has a value close to
�1 at the cut-on frequency of mode (m, 0), just as the plane
mode at zero frequency. An explicit expression is:

dm00ðxÞ ¼ j
2cm0ðxÞ

ln
�Rm00ðxÞ
jRm00ðxÞj

� �
: ð15Þ

Such an extension to higher order modes was also proposed
in [10]. Equations (14) and (15) were obtained under the
assumption that the non-propagating modes have a null
amplitude at the microphone rings. They will be used in
the following to compute Rm00 from the experiments or
numerical simulations.

2.4 Estimation of modes, calibration and data
adjustment

Equation (14) makes it apparent that the correctness of
the calculated reflection coefficient depends critically on the
accurate calibration of the microphones, with respect to
both their amplitude and their phase. Calibration of micro-
phones is usually achieved using a piston-phone; this
consists in placing each microphone in a sound field with
a known pressure level at a single given frequency. When
phase calibration is needed, each microphone response is
generally compared to the response given by a reference
microphone under the same broadband sound field. This
allows to obtain the relative phase response as a function
of frequency between the two microphones.

These usual calibration methods however does not
account for slight changes, a couple of percents of the pres-
sure amplitude, in the microphone response in situ com-
pared to its non-mounted response. These slight changes,
that were observed in our set up thanks to preliminary
experiments, are due to minute variations in the ambient
conditions and in the position of the microphone in its hous-
ing when mounted. To cope with this problem, several tech-
niques of in-situ calibration have been developed in other
contexts [30, 31]. In the present study, because we aim to
achieve the required precision to faithfully reveal the differ-
ence of higher modes reflection coefficients and length
corrections for different terminations, a two-step calibration
was performed: first the sensitivity of each microphone was
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determined using a piston-phone; then the calibration was
adjusted once the microphones were mounted, for both
amplitude and phase. Using the above presented modal
structure of the acoustic field is the basis of the adjustment:
for each frequency range between cut-off frequencies, the
number and structure of propagating modes are known;
this yields an a priori for the pressure distribution along
the circumference at each microphone ring. In the following,
the method is presented when applied to two frequency
ranges: below the (1, 0) cut-off frequency and between
(1, 0) and (2, 0) cut-on frequencies. The same principle is
applied for other frequency ranges.

Adjusting the microphone responses relies on equations
(8) and (11). Based on existing calibration, the measured
microphone pressures pq(x1, x) yield a first estimation (indi-
cated by a hat) of the modal amplitudes that writes, in the
case of the first ring:

P̂ mðx1;xÞ ¼ 1
M

XM�1

q¼0

pqðx1;xÞej2pmq=M : ð16Þ

Below the first cut-on frequency, fc,10, and far from any dis-
continuity, only the plane mode should be present, meaning
that we should have:

P̂ mðx1;xÞ ¼ P̂ 0ðx1;xÞdm;0 ð17Þ
that is, only P̂ 0 should be non zero. In this equation, dm,0 is
the Kronecker delta function. However, this is not exactly
what is observed following the mounting of the micro-
phones. In the application of equation (11), the pressure
at microphone q is adjusted by a factor aq so that a modified
computation of the mode amplitudes becomes:

Pmðx1;xÞ ¼ 1
M

XM�1

q¼0

aqðxÞpqðx1;xÞej2pmq=M

ð8m ¼ 0; :::;M � 1Þ: ð18Þ
The values of aq(x) are determined by imposing that only
the plane mode is detected according to:

Pmðx1;xÞ ¼ 1
M

XM�1

q¼0

aqðxÞpqðx1;xÞej2pmq=M

¼ P̂ 0ðx1;xÞdm;0 ð8m ¼ 0; :::;M � 1Þ ð19Þ

where the plane wave amplitude is forced to be the
initially estimated one, P̂0. The effect of this adjustment
is to enforce the rejection of modes which should not be
present. For each frequency, the former equation is a
system for the coefficients aq(x), which is solved analyti-
cally. The computed values aq(x) are then used all along
the measurement in the range from 0 Hz to the first cut-on
frequency. Figure 4 shows the result of this plane mode
calibration for the first antenna used in this study. The
set of coefficients aq(x), that quantify the change due to
the adjusted calibration, have a mean value that is
between 0.98 and 1.01 depending on the microphone for
frequencies up to approximately 1070 Hz and it goes from

0.8 to 1.1 when the frequency gets close to the first cut-on
frequency.

The adjustment of calibration coefficients when higher
modes are present consists in extending the previous
method beyond the first cut-on frequency. For the working
frequencies between the first and the second cut-on fre-
quency, the plane mode but also the modes (±1, 0) propa-
gate. As previously, the initial calibration is used to
compute a first estimation of the modal amplitudes, P̂ m.
Then, microphone response adjustment factors aq(x) are
searched by imposing that the new estimation of the ampli-
tudes should be zero for non propagating modes:

Pmðx1;xÞ ¼ 1
M

XM�1

q¼0

aqðxÞpqðx1;xÞej2pmq=M

¼ P̂ 0dm;0 þ P̂ 1dm;1 þ P̂�1dm;�1 ð8m ¼ 0; :::;M � 1Þ: ð20Þ
For each frequency, this a linear system to solve to obtain
the values of aq(x). These factors are used to correct micro-
phone amplitudes between the first and second cut-on
frequencies. The process can be repeated in the other fre-
quency ranges, and for the second microphone ring. The
adjustment of calibration was performed for modes (0, 0),
(1, 0), (2, 0), (3, 0). Away from cut-on frequencies, for the
first antenna, aq(x) for the different modes are between
0.99 and 1.01 for mode (1, 0), between 0.97 and 1.04 for
mode (2, 0), and between 0.89 and 1.12 for mode (3, 0),
showing a slight increase of the correction with the
frequency. The adjustment for the second antenna yields
corrections for each mode that are close to these values.

2.5 Example of modal decomposition result

Figure 5 shows an example of results for the pressure
amplitude obtained for the different modes extracted by
the 8 microphones of the first ring. As expected, the plane
mode amplitude (blue) is high for all the working frequen-
cies. At the first cut-on frequency fc,10 the amplitude of
the (1, 0) mode (green) increases greatly, as does the ampli-
tude of higher modes ((2, 0) mode in red and (3, 0) mode in
cyan) at their own cut-on frequencies. The emergence of
propagating modes is very good at low frequencies (more
than 40 dB for the plane mode); it decreases as the fre-
quency increases but keeps fair for the frequency range
under study. Some spikes are seen in Figure 5 and a zoom
in on some of them is shown in Figure 6 which displays
the pressure amplitude for the plane wave mode between
450 Hz and 700 Hz. The red vertical lines mark the frequen-
cies of maxima of the pressure amplitude. It appears that
these frequencies are related to the resonance of the whole
guide, fresonance ¼ ð2nþ1Þc0

4L . The minima of the pressure ampli-
tude (marked by the green lines in Figure 6) are partly asso-
ciated with anti-resonances. But the values of these minima
are also a complex result of interaction of the whole guide
anti-resonance, the position of the microphones in the wave
pattern and the efficiency of the source in exciting the guide
at the given frequency. These interactions get even more
complex at higher frequencies so that it is impossible to
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extract any periodic pattern in Figure 5 for frequencies
above fc,10.

3 Numerical simulation of the experimental
bench

Numerical simulations have been performed in order to
support the experimental data, in particular for the finite
flange case for which no theoretical data exist. The numer-
ical setup is specified and validated in the present section.
Simulations are carried out with the commercial, finite-
element solver Comsol Multiphysics. Helmholtz’ wave
equation for pressure

r 1
q
rp

� 	
þ k2

q
p ¼ 0 ð21Þ

is solved for an air medium (c0 = 340 m�s�1 and
q0 = 1.23 kg�m�3). The gradient and divergence operators
are approximated with a finite element method and the
resulting system is solved using the Biconjugate Gradient
Stabilized algorithm. A three-dimensional model of the
experimental apparatus is designed, comprising a wave
guide of circular cross section having one extremity closed
by a rigid plate, and the other extremity open, as sketched
in Figure 7. At the outlet of the pipe, the infinite space is
represented with a half sphere for a baffled pipe, while a
complete sphere (nearly complete in fact, since it is limited
by the duct walls) is meshed for the unbaffled and the
flanged pipe. On this sphere a non-reflection boundary con-
dition is used to faithfully simulate the radiation condition,
the sphere radius R being taken sufficiently large for this to
be possible. The rigid wall condition is used on the pipe

Figure 4. Adjustment of microphonic calibration for the plane mode; left: pressure amplitudes pq(f) before (dashed lines) and p0qðf Þ
after (plain line) adjustment; right: zoom in the frequencies around 900 Hz.

Figure 5. Modal decomposition in a guide with a termination
without flange. Blue: amplitude of the plane mode; green: (1, 0)
mode; red: (2, 0) mode; cyan: (3, 0) mode; the black vertical lines
indicate the theoretical cut-on frequencies fc,10, fc,20, fc,30.

Figure 6. Pressure amplitude of plane mode (zoom in of
Figure 5 between 450 Hz and 700 Hz). The red vertical lines
indicate maxima of pressure amplitudes for plane mode and the
green ones indicate frequencies of minima.
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walls and the baffle and the flange surfaces. In the simula-
tions, the loudspeakers are modelled by a small vibrating
portion of the pipe wall near the closed end, with imposed
acceleration, with the same location Ls and width w as in
the experiment (see Fig. 1). The frequency of the excitation
is defined as a linear sweep with a frequency step of 10 Hz
up to 3300 Hz. A typical grid is shown in Figure 7. In all of
the cases, it is made of triangular prism elements in the
duct, with equal size along the axis, and of tetrahedral
element in the outer domain.

Numerous tests were conducted to eliminate bias from
numerical parameters [25]. In particular, the mesh size has
been set to 6 elements by wavelength (for the minimum
wavelength of the frequency range). A sphere radius of
R = 300 mm was found to satisfy the radiation correction
accurately for both the flanged and unbaffled configurations.
Distances between the open end and the circular array for
mode decomposition were adjusted, as well as the geometry
and grid of the chamfer (un-baffled case) and of the finite
flange. The final settings are listed in Table 2. An illustration
of solution fields is provided in Figure 8 for the infinite flange
configuration. In Figure 8a, the calculated pressure is a
combination of different modes, all mixed in one complex
field in the general case. Figures 8b, 8c and 8d show the
calculated pressure at particular frequencies for which a
single mode is dominant. It would be possible to excite
essentially one single mode using a surface acceleration with
a controlled spatio-temporal distribution, as shown in [25],

but it has not been done here to remain close to the experi-
mental situation.

The computed acoustic pressure is saved at virtual
microphones placed at the same positions as in the experi-
ments, that is, on the two rings of 8 microphones each,
placed at position x1 and x2 (see Fig. 1). These estimates
are post-processed as indicated in Section 2.3, using
equations (11), (14) and (15).

4 Results

Results obtained from the numerical simulation pre-
sented in Section 3 and those obtained from the measure-
ments presented in Section 2 are plotted in Figures 9 and
10, respectively for the modulus of the reflection coefficient
given in equation (14) and the length correction given in
equation (15). Evolutions from literature material or
analytical derivation are also plotted, as listed in Table 3.
All results are plotted as a function of the Helmholtz
number ka, and also as a function of frequency. In the latter
case, the frequency is obtained from the Helmholtz number
according to f = ka/(2pa/c0Þ by taking for the speed of
sound c0 the experimental value, for all the curves.

For the unbaffled end, analytical results are taken from
Rienstra [8] for higher modes and has been found identical
to that reported by Snakowska et al. [32], and Levine and
Schwinger [1] for the plane mode. It should be noted that

Figure 7. Simulation domain parameters for no flange, infinite flange and finite flange (left, from top to bottom, respectively; the
greyed area represents the excitation location) and grid topology for infinite flange (right). On sphere portions, a non-reflecting
boundary condition is specified; at excitation, an imposed acceleration is specified; all other boundaries are set as rigid walls.
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these analytical models are for a duct which is semi infinite
(that is, extends to x = �1 in the notations of Fig. 1). As
argued in the end of Section 2.2, the fact that the inside of
the duct, both in the experiments and in the numerical
models, is ended by a rigid termination at x = xe is not in
contradiction with this model, since the radiation impe-
dance or reflection coefficient is independent of the left ter-
mination within the duct. However, outside the duct, the
analytical model is slightly different from the experimental
and numerical implementations. In the simulations, the
way to approach the theoretically semi-infinite duct consists
in using non-reflecting boundary conditions on the sphere
limiting the domain outside the duct. In the experiments,
the duct is necessarily truncated, so that the experimental
geometry has some differences with both the numerical
and theoretical geometries. However, as specified in
Section 3, numerical convergence tests have indicated that
the reflection coefficient is independent of the sphere radius
when this radius is R 	 0.3 m. This seems to indicate that
the finite length of the duct in the experiments, which is
about 1 m, is not critical for the reflection coefficient. In
addition, it will be seen below that the agreement between
the experiments and the analytical model tends to be better
at low frequency than at high frequency. The finite extent
of the duct being expected to have a larger effect at low
frequency, this is further evidence that the finite length of
the duct is not critical in this work.

Concerning the infinite flange, the evolution is obtained
from analytical derivation using the theory of Zorumski [7];
this has been found identical to Norris and Cheng [4] for the
plane mode. Finally, for the finite flange, the semi-empirical
laws proposed by Dalmont et al. [5] are used. Note that
no reference data could be found for this termination at
higher modes. Comparison between the three estimation
methods, and the behavior of higher-order modes, as well
as the influence of termination, are discussed in the follow-
ing sections.

4.1 Comparison between sources of data

Overall, measurements and simulations return similar
decrease of the reflection coefficient and the length correc-
tion with the frequency. The termination influence emerges
clearly from the spurious fluctuations for two first modes of
both quantities. This provides cross validation of both esti-
mation methods. By yielding smoother plots, the numerical
results enable better reading of the evolution with frequency
and comparison between terminations.

When available, the theoretical models reproduces the
simulations with less than 5% error. Close to the onset
frequencies, the agreement is better for the magnitude of
the reflection coefficient, while it is worse for the length
correction. The worst visible difference between numerical
and theoretical values is noticed at the low-frequency limit

Figure 8. Total pressure field in the baffled pipe obtained with the numerical simulation, (a) combination of many modes at 2350 Hz,
(b) plane mode is dominant at 1000 Hz, (c) mode (1, 0) is dominant at 1760 Hz and (d) mode (2, 0) is dominant at 2250 Hz.

Table 2. Geometrical and numerical parameters of the simulations. See definitions in Figure 7. All lengths are in mm. The total guide
length is L = L' + LBi for i = 1, 2, 3 according to the termination.

a L' s LB1 LB2 LB3 R d h b a

88 1210 40 120 280 110 300 53 15 30 20�
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for the finite flange, plane mode: Dalmont et al.
returns d/a 
 0.73 while the present simulations return
d/a 
 0.70.

4.2 Reflection coefficient and length correction for
higher modes

For m = 1 and m = 2, the numerical results show non-
horizontal onset, contrary to the plane mode, as predicted
by theoretical formulas. Except this, the decrease of the
reflection coefficient with frequency for higher modes
follows the same tendency as that of the plane mode. The
agreement between the measurements and the analytical
derivation is noteworthy form = 3, for which no simulation
could be conducted due to computational costs.

As for the correction length, the experimental values
asymptotically match the numerical and analytical ones
with a slight negative offset, after a sharp increase from zero
at the onset. The modes m 	 1 exhibit an evolution that

matches the plane mode, that goes grossly like 1/f.
Typically, one has d/a 
 [0.4, 0.3, 0.22, 0.15] at
f 
 [1200, 1900, 2600, 3300] Hz, respectively. The depen-
dency on m is weak as well as on the termination.

4.3 Influence of termination

For the plane mode, the magnitude of the reflection
coefficient clearly differs for the different terminations and
the three methods (experiments, theory, and simulations)
agree on the same evolution: for low frequencies, the no
flange and finite flange cases are very close to each other;
as the frequency increases, the finite flange case gets closer
to the infinite flange one. As a matter of fact, for wave-
lengths much smaller than the flange, the latter is seen as
being infinite by the wave, whereas for wavelengths much
larger than the flange the latter is assimilated as a non exist-
ing obstacle (no flange). This is clearly observed for the
three sets of data, and was also observed in [5].

Figure 9. Modulus of the reflection coefficient for the tested ends and modes, plotted vs frequency. The corresponding Helmholtz
number is indicated on the top axis. The grey band corresponds to uncertain frequency range for the corresponding mode onset, see
Section 4.4. For comparison data details, see Table 3.

Table 3. Data used for comparisons in Figures 9 and 10. (a) stands for analytical derivation, (m) stands for measurements, (n) stands
from numerical simulation.

Termination/mode (m, n) (0, 0) (1, 0) (2, 0) (3, 0)
Infinite flange Present (a, according to Zorumski [7])
Finite flange Dalmont et al. [5] (m, n)
Without flange Levine and Schwinger [1] (a) Rienstra [8] (a)
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However, for modes m = 1 and m = 2, the reflection
coefficients computed from the simulations for the finite
flange case are smaller in magnitude than for the infinite
flange case for the lowest simulated frequencies; that is,
the dash-dotted line is lower than the plain line. In partic-
ular, at 1600 Hz, one has |R100| 
 [0.40, 0.48, 0.58] with
finite flange, infinite flange and without flange, respectively.
Results of measurements for m = 1 and m = 2 above, and
close to their respective cut-on frequencies show similar
trends: infinite flange reflection coefficient (closed circles)
has a higher magnitude than finite one (plus symbol), con-
trary to the plane mode case. For the highest mode (m= 3),
the experimental results for the different terminations get
very close to each others.

The influence of the termination on the end correction
is about 10% at the mode cut-on, and then decreases
with increasing frequency. In general, the finite flange
end can not be considered as an intermediate condition
between the unflanged and the infinite flange ends: this is
only the case for the plane mode, at all frequencies for the
reflection coefficient while only for ka < 0.5 for the end
correction.

4.4 Error analysis

As was observed by previous authors (e.g. [21]), the
greatest errors in the estimation of the reflection coefficient

occur right above the cut-on frequency because the uncou-
pled model does not include evanescent contributions. In
Figures 9 and 10, grey areas correspond to the frequency
ranges for which the errors in the estimation of the modulus
and phase of the reflection coefficient is a limiting factor.
For higher modes, these ranges correspond to those pro-
posed by [18, 20]; it is not the case for the plane mode.
Indeed, the theoretical limits given by these authors for
the two-microphone transfer function technique applied to
the plane mode is 0.1p < ks < 0.8p; this yields, for our
experimental conditions a low frequency limit of 428 Hz.
As apparent from Figures 9 and 10, the estimation of the
reflection coefficient is satisfactory for frequencies lower
than this limit. When considering (14), it is possible to esti-
mate the origin and the value of the uncertainty in the
reflection coefficient by listing and estimating the errors
in the input data used to obtain this coefficient: tempera-
ture measurements, distance between microphones, dis-
tance from open end, pressure measurements. Setting
uncertainties for these different quantities according to sen-
sors and/or machining of pieces allows to analyse the origin
of the final error [33]. It shows that the low-frequency error
is mainly due to uncertainty in pressure measurements and
set the limit frequency to 180 Hz. The low frequency limit
actually observed in our measurement is lowered compared
to Åbom and Bodén limit thanks to the use of the syn-
chronous detection together with a sinusoidal excitation.

Figure 10. Length correction for the tested ends and modes, plotted vs frequency. The corresponding Helmholtz number is indicated
on the top axis. The grey band corresponds to uncertain frequency range for the corresponding mode onset, see Section 4.4. For
comparison data details, see Table 3.
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This extends the validity of the two-microphone method to
lower frequencies.

5 Conclusion

The present paper studies acoustic wave reflection at
different types of terminations, for the plane mode and
the first three purely azimuthal higher modes, below
Helmholtz numbers of 5.3. Experimentally, it was possible
to distinguish the end-geometry effect on both the magni-
tude of the reflection coefficient and the end correction,
although measurement noise increases with the mode order.
Numerical calculation was developed to mimic the experi-
ments and a satisfactory agreement was observed between
calculated and measured reflection coefficients. Results
were also compared to available previous studies so that
multiple-cross-validation was proposed. The numerical sim-
ulation can be considered with confidence in order to extend
the investigations to radial modes, not easily accessible by
instrumentation, and to other forms of terminations. More-
over, the simulations give the external radiating field, useful
in many applications, and could be extended to the situa-
tion in which a mean flow is present.
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