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Abstract: The floating platform is a critical component of the floating offshore wind turbine (FOWT),
and its internal structure design plays a key role in ensuring the safe operation of the FOWT. In this
study, the local model of the floating platform was firstly parameterized, and a response surface model
was obtained by conducting an orthogonal test. The response surface model was then optimized
using a gradient descent algorithm. Finally, the internal structure arrangement was validated through
a safety calibration. The optimization results indicate that the maximum stress of the optimized
model is reduced by 22.12% compared to the original model, while maintaining the same mass,
centroid, and other mass-related parameters. The optimization significantly improves the safety of
the structure and provides valuable references for the design and construction of a FOWT platform.

Keywords: floating offshore wind turbine; structural strength; response surface optimization;
gradient descent method

1. Introduction

Developing offshore wind power is a crucial strategy to support the national “double
carbon” goals and drive the transition to sustainable energy [1]. As a green, renewable,
and sustainable energy source, offshore wind power has garnered increasing attention
worldwide. Over the past decade, the global offshore wind power market has experienced
an average annual growth rate of 27%, with a cumulative installed capacity reaching
75.2 GW by the end of 2023 [2]. According to statistics, about 80% of the world’s wind
energy resources are located in sea areas deeper than 50 m, where offshore wind energy
offers several advantages over traditional onshore wind power, including higher wind
energy density, minimal impact on terrestrial ecosystems, and no land use conflicts. As
a result, the development of floating offshore wind turbines (FOWTs) has emerged as
an effective approach to develop far-reaching sea wind energy, playing an increasingly
important role in ensuring global energy security [3]. This is of great strategic importance
for the development of deep offshore resources [4].

The performance of the floating body must meet strict requirements to ensure safe
operation in the complex and changeable deep-sea environment. In the research on the
normal operation of offshore wind turbines (OWTs), an exploration of the structural design
of the floating offshore wind turbine platform helps to improve the safety redundancy
of the floating body. As a result, many scholars have recently focused on improving the
motion response and safety performance of offshore platforms. Tian et al. [5] investigated
the correlation between the main scale of the structure and the objective function, where
the structural weight and motion response are regarded as the objective function and the
NSGA-II algorithm is used to improve the computational efficiency. Yang et al. [6] studied
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the reliability-based optimization of a tripod-supported OWT under dynamic constraints.
The meta-model technology was used to replace the finite element calculation method to
improve the efficiency of the calculation. Structural mass was used as the objective function,
while uncertain factors such as material properties, geometry, and load types were included
as random variables. Their approach, combining global optimization with Monte Carlo
simulation, demonstrated effective optimization of both structural weight and dynamics.

Saeed et al. [7] proposed a new design scheme for a multi-functional floating platform
based on a density-based topology optimization method, which can significantly improve
the stiffness and durability of the platform and reduce the total mass of the new optimized
structure to 40.82% of the main structure. Chen et al. used a fully coupled aerodynamic–
hydrodynamic net mooring time-domain model constructed by combining AQWA and
FAST with the open-source code F2A for a preliminary analysis of a turreted deep-sea
aquaculture vessel powered by wind energy [8]. Lu et al. [9] used topology optimization
to develop a lightweight design for the tripod structure of OWTs. Their method notably
reduced weight while improving fatigue resistance compared to the original structure.
Karimi et al. [10] applied a multi-objective genetic algorithm (GA) optimization method
to evaluate different platforms to find the minimum cost and maximum performance
wind turbine form under specified environment conditions and sea state spectrum. Lee
et al. [11] developed a neural response surface method (NRSM) for objective optimization
problems, which is used to optimize the generated response surface combined with the
second-generation non-dominated sorting genetic algorithm (NSGA-II).

Ferri et al. [12] designed a multi-objective optimization program to determine the
optimal substructure configuration for a 10 MW FOWT at a specific site. Choi et al. [13]
used a design of experiments (DOE) approach to minimize the number of calculation
models required, employing a GA with neural network approximation to optimize the
platform and substructure of the 3 MW spar wind turbine system, resulting in a reliable
structural form. Additionally, Benifla et al. [14] developed an optimization framework for
the floating foundation of OWTs based on a genetic algorithm. Dou et al. [15] explored
a conceptual optimization design framework for the floating foundation with a mooring
system, capable of accurately determining designs that meet optimal conditions. Leimeis-
ter et al. [16] developed a method to optimize the floating concept by using the global
limit state, where the NSGA-II optimization algorithm is selected to find the optimal de-
sign solution. Hall et al. [17] built an optimization framework for the support structure
of a FOWT based on a genetic algorithm. Furthermore, Hegseth et al. [18] proposed a
linearized aerodynamic-hydrodynamic-servo-elastic FOWT model combined with gradient
optimization and analytical derivative methods.

As mentioned above, current studies on optimizing the main dimensions of floating
bodies primarily focus on motion performance and total structural mass. The internal
stiffeners, bulkheads, and ribs of the platform contribute over 60% of the floating body’s
total mass, where their size and arrangement play a critical role in ensuring structural
safety, while the corresponding local structure optimization design is seldom carried
out previously.

In this study, an A-type floating body was selected as the research subject, with the aim
of optimizing its structural configuration to reduce maximum structural stress under ex-
treme sea conditions, based on an initially optimized model. First, the relationship between
internal structure variables, such as structural mass, centroid position, and maximum
stress, are determined through an orthogonal test. Based on the above results, the optimal
configuration relationship of reinforcement and other structures of floating foundation
structure are determined through the optimization process, employing the gradient descent
algorithm. Additionally, the optimized structure must be subjected to a strength verification
test to ensure its reliability under extreme sea conditions. Finally, the study outlines a
comprehensive optimal design methodology for the floating platform of FOWTs, based on
the steps and findings described below.



Energies 2024, 17, 6316 3 of 24

2. Theoretical Methods

FOWTs are located in a complex and changing marine environment and are constantly
subjected to the combined effects of wind and wave loads. These external forces have a
significant impact on the stability and performance of the wind turbine. In this study, the
theories of wind and wave are introduced as follows.

2.1. Wind Load Calculation Theory

Due to the different heights of each part of the fan, the average wind speed will also
be different, generally showing a gradient change rule [19]. The formula is as follows:

v(z) = v(h)
( z

h

)1/n
(1)

where z is the altitude; h is the reference height above sea level; v(h) is the average wind
speed at the reference height h; v(z) is the average wind speed at altitude z; and n is the
wind profile index of sea surface roughness, whose value is related to the time distance
and offshore distance when measuring wind speed is generally between 7~13 m/s.

In the strength analysis, wind load is an important factor to be considered. During
the normal operation of the FOWT, the area swept by the wind turbine blades should be
included when calculating the wind pressure area [20]. However, under extreme conditions,
when the wind turbine is in a downwind shutdown state, the wind load acting on the tower
becomes the dominant factor. In such cases, the wind load on the wind turbine tower can
be expressed as Equation (2) [21]:

F = 0.5CSCHρα AV2 (2)

where CS is the shape coefficient of the component; CH is the height coefficient, which
can refer to the specification DNVGL-OS-C301 [20]; ρα is the air density; A is the frontal
projection area of the windward surface of the component; and V is the wind speed.

2.2. Wave Field Calculation Theory

In this study, the wave load is calculated through the three-dimensional potential
flow theory [22], which accounts for drag, inertial, and diffraction forces. This theory is
particularly suitable for calculating the interaction of large-scale structures and waves when
the structure is stationary. The velocity potential function of the wave field is shown in
Equation (3) [23]:

Φ(1)(x, y, z) = Φ
(1)
I (x, y, z) + Φ

(1)
D (x, y, z) + Φ

(1)
R (x, y, z) (3)

where Φ(1) denotes the first-order velocity potential; Φ
(1)
D is the first-order diffraction

potential; and Φ
(1)
R denotes the first-order radiation potential.

ΦI is calculated as below:

ΦI =
igA
ω

· cosh(Kz + d)
cosh(Kd)

·e−K(xcosβ+ysinβ) (4)

where g is the acceleration of gravity; A is the amplitude; K is the wave number; d is the
water depth; and β is the wave direction angle.

The boundary conditions for solving the velocity potential of diffracted and radiation
waves are as follows:

(1) Diffracted wave

Free surface condition:

−ω2ΦD + g
∂ΦD

∂z
= 0 z = 0 (5)
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Object surface condition:
∂ΦD

∂n

∣∣∣∣
S
= −∂ΦI

∂n

∣∣∣∣
S

(6)

Seabed boundary condition:

∂ΦD

∂z

∣∣∣∣
z=−h

= 0 (7)

Infinite condition:

lim
R→∞

√
R

(
∂ΦD

j

∂R
− ikΦD

j

)
= 0 (8)

(2) Radiation wave

Free surface conditions:

∂2ΦR
j

∂n
= −ω2

g
ΦR

j z = 0 (9)

Object surface conditions:
∂ΦR

j

∂n

∣∣∣∣∣
S

= nj (10)

Seabed boundary conditions:

∂ΦR
j

∂n

∣∣∣∣∣
z=−h

= 0 (11)

Infinite condition:

lim
R→∞

√
R
(

∂Φ

∂R
− ikΦ

)
= 0 (12)

3. Development of Initial Model

In this study, a response surface optimization design method, incorporating the re-
sponse surface model and gradient descent algorithm, is employed to optimize an A-type
floating body. First, a parametric model was developed based on the initial model with
predefined boundary conditions, and the finite element analysis was conducted. Moreover,
the PB (Plackett–Burman) and CCD (Central Composite Design) tests were performed to
analyze the parameter sensitivity of the model variables and to establish the response sur-
face mode. The response surface equation was then optimized using the gradient descent
method. Finally, the optimized model was verified under extreme conditions. The specific
operation process is illustrated in Figure 1. The follow-up sections in this chapter describe
the development of the initial model and stress strength analysis.
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Figure 1. Optimized design process.

3.1. Structural Parameters of Initial Model

The FOWT platform primarily consists of buoy columns, heave plates, pontoons, and
diagonal and transverse braces, arranged in a triangular configuration. The wind turbine
tower is set at the top of one of the three columns, while the ballast tank and empty cabin
are set inside the buoy column, heave plate, and pontoon to maintain the equilibrium
between the platform’s overall gravity and buoyancy of the platform. The main parameters
of the model and the schematic diagram of the model are presented in Table 1 and Figure 2,
respectively.

Table 1. Main parameters of FOWT.

Parameter of Model Value

Water depth 100 m
Center of gravity (0 m, 0 m, −7.2 m)

Platform mass 6035 t
Draft of platform 25 m

Ballast water density 1025 kg/m3

The numerical simulation of the floating platform structure was performed in SESAM
2021 [24], a specialized software developed by Det Norske Veritas (DNV) (Oslo, Norway)
for the design, analysis, and evaluation of marine engineering and offshore structures.
Specifically, the structural model was established using GeniE 2021 and the strength analysis
of local structure was carried out in Sestra 2021, which are both modules incorporated in
the SESAM software 2021. Additionally, the pontoon is divided into six sections, numbered
1~6 from bottom to top. The thickness distribution of the bulkhead and the arrangement of
the internal stiffener are shown in Figures 3 and 4, respectively.
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3.2. Marine Environmental Conditions

For the strength study of the platform structure, the hydrostatic pressure, structural
weight, wind load, and wave load are considered, which are applied to the floating platform
by linear superposition through multiplication with their respective sub-coefficients [23],
and the load sub-coefficients are shown in Table 2.

Table 2. Partial safety factors for loads.

Design Load Wave Load Wind Load Hydrostatic
Pressure

Structural
Weight

Coefficients 1.3 1.3 1.0 1.0

(1) Wind load distributed on the wind turbine tower

The wind load can be calculated by the horizontal wind force from Equation (2), which
takes into account wind speed, structural body type coefficient, air density, windward area,
and other factors to accurately determine the magnitude of the load exerted by the wind
on the structure. Herein, the limit state of wind load is considered with a wind speed of
51.5 m/s. The distributions of wind loads acting along the height of the tower, as well as
the total load on the blades, is provided in Table 3.

Table 3. Wind load distributed along the height of wind turbine tower.

Loading Positions (m) Wind Thrust Force (N)

29.75 45,529.12
40.25 62,669.36
51.75 69,545.74
63.25 74,016.26
74.75 73,998.12
86.25 76,616.77
97.75 78,147.65

109.57 82,906.32
119 m (Height of rotor center) 1,450,000

(2) Wave conditions under the most unfavorable conditions

Long-term forecast design wave method is a commonly used method in the field of
marine and shipbuilding engineering. It is mainly based on spectral analysis to forecast
ship profile wave load, statistically characterizing its frequency response function and
long-term distribution. It can determine the design wave parameters, such as wave height,
period, direction, etc., providing a basis for the design of the floating platform structure
and the strength assessment in order to more realistically reflect the actual wave loading
condition [25].

The calculation of wave loads on marine structures can generally be judged according
to the ratio of the characteristic size D and wavelength λ. For large-size components
(D/λ > 0.15), the wave loads were mainly calculated using the potential flow theory.
Based on the wave direction, wave height, and period tabulated in Table 4, the velocity
potential was determined according to Laplace’s equation and the boundary conditions
of free surface, object surface, and the seabed. Then, Bernoulli’s equation was employed
to calculate the fluid pressure, and finally, the wave load was obtained by integrating the
pressure on the surface of the structure [26]. In addition, the hydrostatic pressure and
structural weight were easily obtained according to the principles of hydrostatics and
Newton’s second law, respectively.



Energies 2024, 17, 6316 8 of 24

Table 4. Design wave for strength calculation.

Condition Number Direction (◦) Amplitude (m) Period (s)

LC1 0 8.17 6.8
LC2 0 6.46 9.6
LC3 0 6.96 10
LC4 0 8.17 19
LC5 75 8.05 7.2
LC6 90 7.87 25
LC7 90 8.05 27
LC8 105 8.05 7.2
LC9 180 6.46 9.6
LC10 180 6.96 10
LC11 180 8.17 19
LC12 270 7.87 25
LC13 270 8.05 27

3.3. Establishment of Finite Element Model

(1) Setting boundary conditions

In order to make up for the limitation that mooring system cannot be set directly on
the platform in GeniE software 2021, equivalent boundary conditions were adopted to
simulate the mooring effect [25], as shown in Figure 5. Regarding the translational degrees
of freedom at the center point of heave columns, the first point (SP1) is constrained in the X-,
Y- and Z-axis directions; the second point (SP2) is restricted along Y- and Z-axis directions;
and the third point (SP3) is limited only in the Z-axis direction [27].
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(2) Finite element model

Based on the structural parameters of the floating platform, the initial model was
established in GeniE software, consisting of components such as buoy, pontoon, heave
plate, diagonal brace, and transverse brace. To accurately represent the real properties
of the structure, the buoy, pontoon, heave plate, bulkhead, and rib plate were modeled
as plate elements, while the diagonal brace, transverse brace, and internal skeleton were
constructed using beam elements. Additionally, the interior was separated by ribs, and the
overall strength of the model was ensured by the steel structure framework. This finite
element model was meshed with a size of 2 m, as shown in Figure 6.
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3.4. Stress Calculation of Initial Structure Model

According to DNV GL-OS-C103 [27], the structural design should satisfy the strength
requirement below the material yield stress with a proper safety factor. In this study, Q355
steel, which exhibits a yield strength of 355 MPa, was employed. After taking into account
a safety factor of 1.25, the structural stresses were required to remain below 284 MPa.
The results of the structural strength assessment under 13 conditions are listed, and all
cases satisfy the required specifications. Based on this validated initial model, structural
optimization was subsequently carried out.

4. Response Surface Optimization

The response surface method employed in this study is a widely used optimization
technique that constructs a mathematical model to describe the relationship between
parameters and response variables. This is achieved by fitting regression equations based
on a set of sample points generated through orthogonal experimental design, and is
applied to predict the optimal solution of the model under the set constraints [28]. The
orthogonal design serves to reduce the number of tests required and improve optimization
efficiency [29,30]. In this process, an orthogonal design table is used to disperse the variable
values, ensuring a balanced exploration of the design space. Analysis of variance, regression
analysis, model fitting, and optimization analysis were performed using Design Expert
2021, an experimental design software developed by Stat-Ease Inc. (Minneapolis, MN,
USA) [31]. Design Expert mainly analyzes the data derived from SESAM 2021 where the
results are imported into Design Expert, and the analysis of variance function of Design
Expert is used to evaluate the effects of different parameters on the structural performance.
The mathematical relationship between the structural response and the parameters is
explored with the help of regression analysis in order to construct an accurate regression
model, and optimization analyses are carried out in order to find the optimal solution for
the structural design.

4.1. Mathematical Model for Response Surface Optimization
4.1.1. Design Variables

The floating platform is mainly divided into three parts, viz., pontoon, buoy, and
heave plate. In the optimization process, the bulkhead thickness, stiffener spacing, and
stiffener size of the above parts are parameterized, including a total of 10 variables. The
correspondence between variables and structural dimensions, as well as the designed
variable value, are shown in Table 5. Therefore, the new floating body structure can be
constructed by combining the changed variable. That is, the design variable is:

X = (A, B, C, D, E, F, G, H, I, J)T (13)
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Table 5. Parametric modeling variable design table.

Variable Number Variable Name Variable Value

A Bulkhead thickness of buoy for 1~6 sections
(Figure 3)

0.018 m, 0.016 m, 0.016 m, 0.016 m, 0.016 m, 0.016
m

B Bulkhead thickness of heave plate 0.019 m
C Bulkhead thickness of pontoon 0.010 m
D Spacing between pontoon longitudinal stiffener 12.8◦

E Number of transverse stiffeners in buoy 22

F Size of float stiffener height = 1 m, web thickness = 0.015 m,
width = 0.3 m, top flange thickness = 0.015 m

G Spacing between heave plate stiffener 7◦

H Size of heave plate stiffener size height = 0.7 m, web thickness = 0.01 m,
width = 0.2 m, top flange thickness = 0.01 m

I Number of transverse stiffeners in pontoon 54

J Size of pontoon transverse stiffener height = 0.035 m, web thickness = 0.01 m,
width = 0.2 m, top flange thickness = 0.01 m

4.1.2. Objective Function

The objective of this optimization design is to optimize the local structure of the floating
platform by searching for the minimum solution of structural stress, i.e., the minimum
value of f (X), where f (X) is obtained by the experimental design software, Design Expert
software, based on the results of orthogonal tests. In summary, the optimized mathematical
model is:

X =
(

A, B, C, D, E, F, G, H, I, J)T

Min f (X)
s.t.(Mass)L ≤ Mass ≤ (Mass)U

s.t.(COMz)L ≤ COMz ≤ (COMz)U

(14)

where (Mass)L and (Mass)U are the lower and upper limit of platform mass; and (COMz)L
and (COMz)U are the lower and upper limit of platform center of mass, respectively.

The optimization of floating platform involves two key steps. The first step is con-
cerned with the hydrodynamic optimization of the overall structure. This optimization
requires the precise determination of key parameters such as mass, center of gravity, mo-
ment of inertia, and main scale. The goal of this optimization is to design a floating platform
with excellent hydrodynamic characteristics and lower steel consumption, the detailed
description of which referring to the reference [32] published by our group recently. These
optimized parameters will provide a solid foundation for subsequent work.

The second step, viz., the current research work, involves optimizing the local struc-
tural strength. In the local structural optimization process, the thickness of internal rein-
forcement, the size of steel bars, and the layout of compartments are used as optimization
variables. Due to practical constraints, it is difficult for the locally optimized model to
correspond precisely to the parameters of the initial model. Herein, the constraints for
the second step of local structural optimization are set to keep the variation of structural
parameters (mass, center of mass) within ±5%, based on an in-depth study of the hydro-
dynamic performance of the floating body. Within this tolerance (±5%), the impact on
the hydrodynamic performance of the floating body is negligible, and at the same time,
sufficient space is provided for the optimization of the local structural dimensions [32].

4.2. Plackett–Burman Test

The significant factor is determined by executing the Plackett–Burman test, viz., com-
paring the difference between the two levels of each factor and the overall difference and
conducting the parameter sensitivity analysis of the variables with the least number of
tests [33]. The orthogonal test with n = 12 (Number of tests) is designed by investigating the
10 variables and defining the maximum stress value as the response value. The factor level
and coded value of Plackett–Burman design are presented in Table 6, where variables A, B,
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C, F, H, and J are all expressed in the form of variation coefficient to reflect the variation
visually, viz., the ratio of changed size to initial size.

Table 6. Plackett–Burman design factor level and coding value.

Test Number
Variable Number

A B C D E F G H I J

Lower limit 0.9 0.9 0.9 19 5 0.9 6 0.9 25 0.9
Upper limit 1.1 1.1 1.1 23 9 1.1 8 1.1 29 1.1

After orthogonal tests, the distribution of the maximum and minimum stress results is
shown in Figure 7. It is obvious that LC4 and LC11 are the most unfavorable among the 13
working conditions, thus the subsequent analysis should focus on these two conditions.
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The F-value is a crucial statistical metric in regression analysis, which is usually
employed to evaluate whether the model as a whole is statistically significant. Specifi-
cally, if the computed F-value is large and the corresponding p-value, derived from the
F-distribution, is less than the pre-established significance level of α = 0.05, it indicates that
the model is significant. In this context, by comparing the magnitudes of the F-values of
different variables, the relative importance or significance of these variables can be ranked.
The higher the F-value of a variable, the more significant its contribution to the model.
The R2 and R2

adj are important indicators of closeness of the linear relationship between
multiple independent variables and a dependent variable, where an absolute value closer
to 1 indicates a stronger linear relationship between the independent variables and the
dependent one. In regression analysis, R2 rises with the increasing number of independent
variables, even if the new independent variables have no substantial explanatory signifi-
cance to the dependent variable, which may induce misjudgment. However, the R2

adj can
make up for this shortcoming by taking into account the number of independent variables
and the sample size, making the assessment of goodness of fit more objective and precise,
which provides a reliable basis for choosing the reliable model and judging the validity of
independent variables. Below are the formulas for R2 and R2

adj [34]:

f (X) = β0 + β1X1 + β2X2 + . . . + βkXk + ϵ (15)
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SST =
n

∑
i=1

(
f (X i)− f (X)

)2
(16)

SSR =
n

∑
i=1

(
f̂ (X i

)
− f (X)

)2
(17)

R2 = SSR/SST (18)

R2
adj = 1 − (1 − R2)

n − 1
n − j − 1

(19)

where X1, X2, . . . , Xk are the independent variables, β0, β1, . . . , βk are the regression
coefficients, ε is the random error, SST is the sum of squared total deviations, SSR is the
computed sum of squared regressions where n is the number of samples, f (Xi) is the i−th
observation, f (X) is the sample mean of f (X), f̂ (Xi) is the ith observation predicted by the
regression model, and j is the number of independent variables.

From Table 7, the order of magnitude of the F-values shows that the variable significance
of the condition 4 model meets the requirements (B > J > H > C > E > D > A > F > G > I). The
model correlation coefficient R2 is 0.9155 determining an excellent model correlation. The
correction coefficient R2

adj is 0.8672, viz., the model can explain more than 86.72% of the
response value changes. Table 8 shows that the p-value of the model under LC11 is 0.0682
more than 0.05, illustrating the model does not fit well in the regression area in this study,
which is led by too many unrelated factors the model contains. Therefore, the variance
analysis of the model was performed again after removing the irrelevant factors, as shown
in Table 9. According to the F-value, the degree of influence is sorted: J > B > H > C > E > D
> F > A > I > G. In this case, it is found that the model correlation coefficient R2 is 0.9150,
indicating a high model correlation, and the correction coefficient R2

adj is 0.8665, meaning
the model can explain more than 86.65% of the response value changes.

The results of the Plackett–Burman test are identified by the Lenth method [35]. The
semi-normal probability of the standardized effects for LC4 and LC11 are obtained as
shown in Figure 8. It is found that the standardized effect points of factors B, C, H, and J
are far from the fitting point, which means the thickness of the heave plate and pontoon
bulkhead as well as the size of the heave plate and pontoon stiffener are the four factors
affecting the maximum stress. According to the Pareto diagram of the standardized effects
of factors as shown in Figure 9, it can be seen that the t-value of the statistical test for factors
B, C, H, and J exceeds the limit for determining the significance of the factors; therefore,
these factors can be further proved to be significant factors.

Table 7. Significance analysis of condition 4 results.

Source Sum of Squares Degree of Freedom Mean Square F p Significant

Model 6.905 × 1015 10 6.905 × 1014 289.45 0.0457 Yes
A 4.481 × 1013 1 4.481 × 1013 18.78 0.1444 No
B 2.084 × 1015 1 2.084 × 1015 873.46 0.0215 Yes
C 9.426 × 1014 1 9.426 × 1014 395.10 0.0320 Yes
D 1.684 × 1014 1 1.684 × 1014 70.58 0.0754 No
E 3.057 × 1014 1 3.057 × 1014 128.13 0.0561 No
F 4.470 × 1013 1 4.470 × 1013 18.74 0.1445 Yes
G 1.140 × 1013 1 1.140 × 1013 4.78 0.2731 No
H 1.323 × 1015 1 1.323 × 1015 554.57 0.0270 Yes
I 6.278 × 1012 1 6.278 × 1012 2.63 0.3517 No
J 1.975 × 1015 1 1.975 × 1015 827.71 0.0221 Yes

Residual 2.386 × 1012 1 2.386 × 1012 — — —
Cor Total 6.908 × 1015 11 — — — —
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Table 8. Significance analysis of condition 11 results.

Source Sum of Squares Degree of Freedom Mean Square F p Significant

Model 6.994 × 1015 10 6.994 × 1014 129.89 0.0682 No
A 8.128 × 1013 1 8.128 × 1013 15.09 0.1604 No
B 1.988 × 1015 1 1.988 × 1015 369.12 0.0331 Yes
C 1.037 × 1015 1 1.037 × 1015 192.50 0.0458 Yes
D 1.484 × 1014 1 1.484 × 1014 27.56 0.1198 No
E 2.251 × 1014 1 2.251 × 1014 41.79 0.0977 No
F 8.338 × 1013 1 8.338 × 1013 15.48 0.1584 No
G 1.571 × 1013 1 1.571 × 1013 2.92 0.3372 No
H 1.355 × 1015 1 1.355 × 1015 251.61 0.0401 Yes
I 3.555 × 1013 1 3.555 × 1013 6.60 0.2363 No
J 2.026 × 1015 1 2.026 × 1015 376.25 0.0328 Yes

Residual 5.385 × 1012 1 5.385 × 1012 — — —
Cor Total 7.000 × 1015 11 — — — —

Table 9. Significance analysis of condition 11 results (after correction).

Source Sum of Squares Degree of Freedom Mean Square F p Significant

Model 6.979 × 1015 9 7.754 × 1014 73.52 0.0135 Yes
A 8.128 × 1013 1 8.128 × 1013 7.71 0.1090 No
B 1.988 × 1015 1 1.988 × 1015 188.47 0.0053 Yes
C 1.037 × 1015 1 1.037 × 1015 98.29 0.0100 Yes
D 1.484 × 1014 1 1.484 × 1014 14.07 0.0643 No
E 2.251 × 1014 1 2.251 × 1014 21.34 0.0438 Yes
F 8.338 × 1013 1 8.338 × 1013 7.91 0.1066 No
H 1.355 × 1015 1 1.355 × 1015 128.46 0.0077 Yes
I 3.555 × 1013 1 3.555 × 1013 3.37 0.2078 No
J 2.026 × 1015 1 2.026 × 1015 192.10 0.0052 Yes

Residual 2.109 × 1013 2 1.055 × 1013 — — —
Cor Total 7.000 × 1015 11 — — — —
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Overall, too many variables in the response surface analysis might lead to the response
surface model being inaccurate [36]. Therefore, only the top four variables with greater
influence were retained, including the thickness of the heave plate and pontoon bulkhead
as well as the size of the heave plate and pontoon stiffener.

4.3. Response Surface Analysis (Central Composite Design)

Based on the conclusion of the previous subsection, four variables were selected for the
Central Composite Design test [37,38], including the thickness of the heave plate bulkhead,
the thickness of the pontoon bulkhead, the size of the heave plate stiffener, and the size of
the pontoon stiffener, which were relabeled as A, B, C, and D, respectively. By setting the
parameter range and interval to 0.8~1.2 and 0.025, respectively, a total of 332 combinations
of orthogonal test combinations were obtained. The stress maximum value, mass, and
centroid position were taken as the response values in the test, and the ultimate goal was
to obtain the smallest maximum stress value under each working condition. Meanwhile,
the parameter ranges of mass and centroid were kept within ±5% of the initial model
parameters as shown in Figure 10. Table 10 shows that the experimental design factor level
and coded value.
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Table 10. Central Composite Design factor levels and coded values.

Test Number
Variable Number

A B C D

Lower limit 0.800 0.800 0.800 0.800
Upper limit 1.200 1.200 1.200 1.200

The results obtained by significance analysis of the model are shown in Table 11. It is
observed that the four response value models of the von Mises stress under LC4 and LC 11,
as well as the mass and the center of mass, are extremely significant (p < 0.05). As shown
in Table 12, the model correlation coefficient R2 and the correction coefficient R2

adj are all

above 0.98 with an excellent model fitting degree, where R2
adj means all models can explain

more than 98% of the response value changes. Therefore, each regression model can be
used to analyze and predict the above-mentioned four response value models (A, B, C, D).

Table 11. Results obtained by model significance analysis.

Model Degree of Freedom Sum of Squares Mean Square F p Significant

von Mises stress (LC 4) 3.329 × 1017 14 2.378 × 1016 1541.21 <0.001 Yes
von Mises stress (LC 11) 3.318 × 1017 14 2.370 × 1016 1331.08 <0.001 Yes

Mass 6.353 × 1012 14 4.538 × 1011 4.04 × 1010 <0.001 Yes
COMz 42.98 14 3.07 1.03 × 107 <0.001 Yes

Table 12. Model correlation coefficient and correction coefficient.

Model R2 R2
adj

von Mises stress (LC 4) 0.9855 0.9894
von Mises stress (LC 11) 0.9833 0.9825

Mass 0.9999 0.9999
COMz 0.9999 0.9999

Based on the obtained regression model, the error distribution of the value predicted by
the model and the correlation between the predicted and experimental value are shown in
Figure 11. To better evaluate the model, an index, the prediction errors not exceeding ±2 SD
(standard deviation), is defined as a criterion for excellent prediction model. According to
the error distribution maps of the four models in Figure 11a,c,e,g, the sample prediction
error values are within ±2 SDs (standard deviations), while no anomalous sample points
indicate the high prediction accuracy of the model. From the correlation diagram of the
model predicted value and the experimental value in Figure 11b,d,f,h, it is obvious that the
sample points are all near the 45◦ diagonal with a small difference, which indicates a high
goodness fit between predicted and experimental values.

The change range of the limiting mass and centroid is selected to be ±4% for predicting
the minimum stress in the feasible region. Meanwhile, the A variable (heave plate bulkhead
thickness) and C variable (heave plate stiffener size) are adjusted to 0.8~1.4 and 0.7~1.2,
respectively, to make the variable prediction point fall within the variable range, as shown
in Table 13.
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Table 13. Estimation range.

Name Goal Lower Limit for
LC4

Upper Limit for
LC4

Lower Limit for
LC11

Upper Limit for
LC11

A In range 0.8 1.4 0.8 1.4
B In range 0.8 1.2 0.8 1.2
C In range 0.7 1.2 0.7 1.2
D In range 0.8 1.2 0.8 1.2

von Mises stress Minimize and in range 1.98 × 108 3.86 × 108 1.98 × 108 3.86 × 108

Mass In range 5.80 × 106 6.28 × 106 5.80 × 106 6.28 × 106

COMz In range −7.488 −6.912 −7.488 −6.912

The response surface diagram of the maximum von Mises stress value, mass, and centroid
position within the prediction range under LC4 and LC11 are presented in Figures 12 and 13,
respectively. The feasible region for minimum solution of the maximum stress value is
determined by the boundaries of the limit mass and centroid position. In Figure 12, the
predictions for mass and centroid position based on the response surface model under LC4
remain within the allowable limits. The minimum solution of the predicted von Mises
stress maximum value is 2.21 × 108 Pa, with the credibility being as high as 0.88.

In Figure 13, it is found that the mass and COMz predicted by the response surface
model under LC11 remain within the allowable range, where the minimum solution of the
largest predicted von Mises stress value is 2.23 × 108 Pa, whose credibility value is 0.882
with a fine predicted feasibility. Moreover, the variable values can be roughly estimated,
thanks to the optimal value prediction point in the response surface model falls within the
range of the four variables; subsequently, the response surface equation needs to be solved
by using a numerical calculation method to determine the specific variable value.
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4.4. Gradient Descent Method Solution 
The gradient descent method is a widely used numerical algorithm for solving the 

minimum value of the objective function. The optimization process begins at a random 
point and progresses toward the minimum value along the direction of the steepest de-
scent defined by the objective function. To enhance robustness, the search process should 
initiate from multiple starting points within the design space. After a certain number of 
iterations, the optimal solution can be identified [39]. 

For the optimal targeting function 𝑓(𝑋), the update formula of the gradient descent 
method is as follows [40]: 𝑋ାଵ = 𝑋 − 𝛼∇𝑓(𝑋) (20)
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4.4. Gradient Descent Method Solution

The gradient descent method is a widely used numerical algorithm for solving the
minimum value of the objective function. The optimization process begins at a random
point and progresses toward the minimum value along the direction of the steepest descent
defined by the objective function. To enhance robustness, the search process should initiate
from multiple starting points within the design space. After a certain number of iterations,
the optimal solution can be identified [39].

For the optimal targeting function f (Xi), the update formula of the gradient descent
method is as follows [40]:

Xi+1 = Xi − α∇ f (Xi) (20)

where Xi+1 is the updated parameter vector, Xi is the current parameter vector, α is the
learning rate, which is used to control the step size of the update, and ∇ f (Xi) is the gradient
of the objective function f (Xi) at Xi.

Based on the response surface equations established in Section 4.3, the constraint
conditions and optimization objectives are set up; subsequently, the optimal solution of the
response surface model is obtained after 10,000 iterations. The optimization process and
results are shown in Figure 14 and Table 14, respectively.
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Table 14. Optimal results.

Loading Condition
Variable Number Target Value

A B C D von Mises Stress (Pa) Mass (kg) COMz (m)

LC4 1.297 1.116 0.788 1.049 2.263 × 108 6.246 × 106 −7.488
LC11 1.365 1.163 0.742 0.995 2.260 × 108 6.245 × 106 −7.488

4.5. Results Verification

To verify the model obtained by the optimization process, a finite element model was
established in GeniE software 2021 and imported into HydroD software 2021 for structural
strength calculation.

The von Mises stress of the optimal model is shown in Table 14, where the predicted
maximum structural von Mises stress under LC4 is 226.3 MPa, larger than 226 MPa of the
case under LC11. Therefore, the predicted model for the case under LC11 is determined to
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be the optimal solution. As shown in Table 15, the mass and centroid position are increased
by 3.36% and 3.85%, respectively, which satisfies the requirement that the gap between the
initial and optimized model is within ±5%. Moreover, the maximum von Mises stress value
of the optimized model is reduced by 22.12% after optimization, achieving the purpose of
improving the structural safety in this study.

Table 15. Comparison before and after optimization.

Variable Name Optimized Model Variable Values Comparison

A Bulkhead thickness of heave plate 0.0259 m —
B Bulkhead thickness of pontoon 0.01163 m —

C Size of heave plate stiffener
height = 0.5894 m,

web thickness = 0.00842 m, width = 0.1684 m,
top flange thickness = 0.00842 m

—

D Size of pontoon transverse stiffener
height = 0.0348 m,

web thickness = 0.00995 m, width = 0.199 m,
top flange thickness = 0.00995 m

—

— Mass 6.245 × 106 kg 3.36%
— COMz −7.48826 m 3.85%
— von Mises stress 2.260 × 108 Pa −22.12%

5. Conclusions

In this paper, the floating wind turbine platform is taken as the research object, the local
structure is parametrically analyzed using the orthogonal test method to obtain the optimal
arrangement, and the optimal results are verified in terms of strength. The following
conclusions are obtained.

(1) The initial model of the structure is established in GeniE software 2021, which is
mainly composed of pontoon, buoy, and heave plate. The mass of the initial model
steel structure is 6035 t, and the coordinates of the center of mass position are (0, 0,
−7.2 m). The maximum stress value of the initial model was calculated in Sestra
software 2021 as 276 MPa.

(2) A total of 10 variables, namely bulkhead thickness, spacing of stiffener, and size of
stiffener, were parameterized for the three parts of pontoon, buoy, and heave plate. A
Plackett–Burman test was used to analyze the significance of the 10 variables, which
were ranked according to the p-value. It was determined that the thickness of the
heave plate and pontoon bulkhead, and the section size of heave plate and pontoon
stiffener are the most important factors influencing the magnitude of the structural
stress in the floating platform.

(3) The Central Composite Design method was used to further analyze the above four
variables. A total of 332 orthogonal tests were established, the factor levels of the
selected variables were in the range of 0.8~1.2, the stress maxima, mass, and center
of mass were used as the objective functions, all response surface models had p-
values less than 0.0001, and the model correlation coefficients and model correction
coefficients were above 0.98. The response surface models can well predict the changes
of the response values of the stress maximum, mass, and center of mass under various
working conditions.

(4) Based on the gradient descent algorithm, the minimum solution of the stress maximum
value was solved by controlling the function range of mass and center of mass. After
optimization, the maximum von Mises stress of the model was reduced by 22.12%
under extreme conditions, and the mass and center of mass were increased by 3.36%
and 3.85%, respectively, which satisfies the requirement of not exceeding ±5% between
the initial model and the optimized one, achieving the purpose of improving structural
safety in this study.
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