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Abstract: The complexity of offshore operations demands that offshore platforms withstand the
variability and uncertainty of marine environments. Consequently, analyses of platform motion
responses must extend beyond single sea state conditions. This study employs the Computational
Fluid Dynamics (CFDs) software STAR-CCM+ for data acquisition and investigates platform motion
from two perspectives: adaptability analysis to different wave directions and adaptability analysis to
varying significant wave heights. The aim is to develop a model capable of predicting offshore plat-
form motion responses across multiple sea state conditions. The results demonstrate that integrating
the empirical mode decomposition (EMD) algorithm with residual convolutional neural networks
(ResCNNs) and Long Short-Term Memory (LSTM) networks effectively resolves the challenge of
insufficient prediction accuracy under diverse maritime conditions. Following EMD incorporation,
the model’s performance within the predictive range was significantly enhanced, with the coefficient
of determination (R2) consistently exceeding 0.5, indicating a high degree of model fit to the data.
Concurrently, the mean squared error (MSE) and Mean Absolute Percentage Error (MAPE) metrics
exhibited commendable performance, further substantiating the model’s precision and reliability.
This methodology introduces an innovative approach for forecasting the dynamic responses of
offshore structures, providing a more rigorous and accurate foundation for maritime operational
decisions. Ultimately, the research enhances the safety and productivity of offshore activities.

Keywords: neural networks; EMD; offshore platform; motion response; sea state condition

1. Introduction

In ocean engineering, accurately predicting the motion of offshore platforms under
varying sea state conditions is crucial for their offshore operations. The precise prediction
of offshore platform motion is of paramount importance for maintaining operational safety,
enhancing efficiency, and reducing costs in the field of marine engineering. Accurate
forecasting significantly mitigates the risks of platform capsizing and collisions due to
changes in sea conditions, thereby safeguarding the lives of personnel and the integrity of
equipment. Furthermore, it enables operators to plan offshore operations more effectively,
optimize operational processes, and thereby increase operational efficiency [1]. Concur-
rently, accurate predictions help to minimize equipment damage caused by adverse sea
conditions, significantly reducing the economic costs associated with offshore operations.
The synergistic effect of these factors not only improves the economic benefits of offshore
operations but also actively promotes the sustainable development and utilization of marine
resources. The marine environment’s inherent complexity and uncertainty have historically
made platform motion prediction challenging. However, advancements in computing
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technology and data acquisition have transformed this domain, with Computational Fluid
Dynamics (CFDs) and neural network technologies emerging as prominent research areas.
Marine modeling and ship motion prediction have improved with advanced machine
learning and hybrid models. Jae-Hoon Lee [2] has investigated an artificial neural network
system for ship motion prediction in navigation channels, integrating a neural network
based on Long Short-Term Memory (LSTM) encoders and decoders with convolutional
neural networks (CNNs) to account for the physical characteristics of ship motion induced
by waves. Chang-Zhe Chen [3] proposed a novel reduced-order model (ROM) based on
high-order dynamic mode decomposition (HODMD) for time-series prediction of ship
heading-keeping motion in waves. Elkhrachy [4] applied the Sverdrup Munk Bretschnei-
der (SMB) semi-analytical approach, along with the Emotional Artificial Neural Network
(EANN) and Wavelet Artificial Neural Network (WANN), to estimate wave characteristics
in the Gulf of Mexico and the Aleutian Basin. This research endeavored to assess the
precision and reliability of these methodologies and to scrutinize the variations in wave
patterns across different spaces and times. Heydarizad M [5] proposed a novel model
based on artificial neural networks (ANNs), stepwise regression, and ensemble machine
learning methods to simulate the stable isotope characteristics in precipitation. Jinxiu
Zhao [6] introduces a fully adaptive model for time–frequency coupling forecasting, which
is grounded in the Deep Operator Network and incorporates a self-attention mechanism.
This model, equipped with multi-head attention layers, allows the network to dynamically
learn and weigh the interdependencies among various frequencies within the frequency
spectrum. As a result, it demonstrates enhanced interpretability and broader applicabil-
ity. Changming Li [7] proposed a deep learning (DL) method known as the Propeller
Wake Convolutional Neural Network (PWCNN), which combines transformer encoders
and dilated convolutional blocks to capture multi-scale features of the wake. Guo, X [8]
has developed a novel method for automatically detecting photons reflected from the
shallow seafloor using ICESat-2 altimetry data. Compared to the traditional multi-band
ratio model, the backpropagation (BP) neural network model can effectively enhance the
accuracy of depth sounding. This approach facilitates the easier acquisition of shallow
water bathymetry without the need for in situ sounding data. Vicens-Miquel M [9] has put
forth a resilient deep learning framework designed to forecast water levels across various
tidal stations along the Gulf Coast, encompassing open shorelines, estuaries, and water-
ways adjacent to significant harbors. The chosen Seq2Seq architecture has demonstrated
notable enhancements over prior research, aligning with the operational benchmarks set
by the National Oceanic and Atmospheric Administration (NOAA). Specifically, the model
achieves prediction accuracies within 15 cm for a forecast horizon of up to 108 h at the
tide gauges in Port Isabel, with a success rate of 92.2%, and in Rockport, with a rate of
90.4%. Bolong Liu [10] proposed a method based on the optimization of backpropagation
neural networks using a Genetic Algorithm (GA), specifically the Non-dominated Sorting
Genetic Algorithm II (NSGA-II), to optimize the resistance performance under two different
conditions. The optimized configuration parameters achieved a 22.71% energy saving ratio
at cruising speed. Indu Kant Deo [11] proposed a deep learning technique for data-driven
prediction of wave propagation in fluid media. Compared to the standard recurrent neural
networks with long short-term memory units, the attention-based sequence-to-sequence
networks increased the time range of predictions. Denoising autoencoders further reduced
the mean squared error of predictions, enhancing the generalization capability across the
parameter space. Jiao Y [12] addressed the issue of large errors in coastal sea surface tem-
perature (SST) predictions from numerical models by employing the deep learning method
LSTM to develop an optimal SST forecasting model. The LSTM-based SST prediction
model effectively improved the accuracy of forecasts, reducing errors by an average of
78% compared to numerical models. Zhao X [13] investigated the application of convo-
lutional neural networks (CNNs) and recurrent neural networks (RNNs) in hydrological
forecasting, as well as their comparison. Zhuxin Ouyang [14] has introduced an integrated
approach that marries empirical mode decomposition (EMD) with TimesNet, resulting
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in the EMD-TimesNet model for significant wave height (SWH) prediction. This model
is adept at forecasting SWH with precision across diverse marine environments. Xianrui
Hou [15] has developed a short-term prediction technique for ship roll motion amidst
waves, leveraging the power of convolutional neural networks (CNNs). This method
has proven effective in accurately anticipating the ship’s roll behavior in wave conditions.
Yang Binghua [16] proposed a ship motion attitude ultra-short-term combined prediction
model based on a self-attention mechanism and long short-term neural network to address
the difficulty in accurately predicting ship motion attitudes. Fu Wanqian [17] developed
an adaptive sequence parallel sampling method and a point-by-point ensemble model
construction method to address the bottleneck challenges of long computation time and low
efficiency faced by high-precision CFD modeling techniques for severely nonlinear motions
of damaged ships in waves. Duan Shiliang [18] proposed a single-feature training deep
learning model based on motion difference training, as well as two multi-feature training
models: one using single-point significant wave height and wave steepness input, and
the other using multi-point significant wave height input. Wang Kejun et al. [19] applied,
fort the first time, the autoregressive neural network to the time-series forecasting of ship
roll motion, achieving good predictive results. Xu Pei et al. [20] proposed a method that
combines the backpropagation algorithm with the temporal differencing algorithm based
on autoregressive neural networks, improving the forecasting capability of autoregressive
neural networks.

This study is anchored in a rich dataset of marine environmental conditions and
leverages the advanced learning capabilities of neural networks to identify and address
complex nonlinear relationships within historical data, thereby enabling precise predictions
of offshore platform motion responses. This contributes to the early detection of potential
risks and accident prevention and provides robust technical support for the sustainable
development of offshore energy and marine engineering. Initially, this study employs
the STAR-CCM+2022.1 software for fluid dynamics simulation to obtain a dataset of
offshore platform motion under various marine conditions. Subsequently, a combination
of a residual convolutional neural network (ResCNN) and Long Short-Term Memory
(LSTM) networks is utilized to forecast platform motion under different wave heights and
wave direction angles. This research introduces the empirical mode decomposition (EMD)
algorithm to enhance predictive accuracy, particularly under varying wave direction angles.
Furthermore, the model’s performance was strictly assessed with R2, MSE, and MAPE,
confirming the reliability and accuracy of the predictions.

2. Basic Theory
2.1. Principle of Neural Network
2.1.1. The Principle of the Long Short-Term Memory Neural Network

The Long Short-Term Memory (LSTM) neural network was crafted to tackle the
challenges of vanishing or exploding gradients that traditional recurrent neural networks
(RNNs) face when dealing with extended sequence data [21]. Such challenges restrict
RNNs’ capacity to maintain long-term dependencies. LSTM overcomes these limitations
by incorporating gated units, which has led to its significant utility in domains like natural
language processing, speech recognition, and time-series forecasting.

The core of the LSTM network lies in its unique cell state, which runs through the
entire sequence, allowing information to be preserved or forgotten over long periods within
the network [22]. The LSTM network consists of three key gated units: the forget gate, the
input gate, and the output gate [23]. These gated units collectively determine the updating
of the cell state and the final output of the hidden state.

The forget gate’s function is to decide which information should be discarded from
the cell state of the previous time step. This process is implemented through a fully
connected layer with a sigmoid activation function, with output values ranging between
0 and 1, indicating the degree of information retention [24]. The input gate is responsible
for determining which parts of the current time step’s input information should be added
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to the cell state to update it. The input gate consists of two parts: one part determines
the acceptance weight of the information through a sigmoid function, and the other part
calculates the candidate state through a tanh function, representing the potential value
of new information [25]. The update of the cell state is a combination of the results of
the forget gate and the input gate, carried out through element-wise multiplication. The
output gate’s function is to determine the value of the next hidden state, deciding which
information in the cell state should be passed to the hidden state of the next moment or
served as the model output at the current moment. The activation value of the output gate
is also calculated through a fully connected layer with a sigmoid activation function, and
then the final hidden state is obtained through element-wise multiplication with the cell
state value after passing through the tanh function [26]. The computational formulas are as
follows [27]:

ft = σ(Wxyxt + Wh f ht−1 + Wc f ct−1 + b f ) (1)

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (3)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (4)

ht = Ottanh(ct) (5)

In the provided equations, the first represents the calculation for the forget gate; the
second denotes the input gate’s activation at time step t; ht−1 signifies the output from the
previous time step’s hidden layer. The terms W and b correspond to the weight matrix and
bias vector associated with the gate, respectively. The symbol σ represents the sigmoid
activation function. The third equation pertains to the input gate, which is responsible for
updating the cell state. Lastly, the fourth equation describes the output gate, which, in
conjunction with the cell state, generates the output ht.

2.1.2. Convolution Layer Principle

One-dimensional convolutional layers are pivotal components within convolutional
neural networks, specifically tailored for processing one-dimensional data. These layers
employ local connectivity, weight sharing, and sparse connectivity to slide a kernel across
the input sequence, applying the same convolutional filter to extract local features [28].
This architecture not only diminishes the number of model parameters and computational
complexity but also bolsters the model’s invariance to translations in the input data. The
utilization of multiple convolutional kernels enables the network to capture a diverse array
of features, while the incorporation of activation functions introduces nonlinear capabil-
ities to the model [29]. This structure is particularly adept at handling one-dimensional
sequences such as time-series data and audio signals, rendering it highly effective in tasks
such as speech recognition and time-series prediction.

In the context of research, the convolutional layer used is a one-dimensional variant
optimized for sequence data processing. Figure 1 illustrates one-dimensional convolution
with a kernel sliding over the input sequence, multiplying and summing to produce output
elements [30]. This process is repeated as the kernel moves across the entire sequence,
culminating in the formation of a new sequence that encapsulates the convolutional output
between the kernel and the original sequence. This approach effectively captures the
temporal dependencies within the data, providing a robust framework for analyzing
sequential information [31].
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2.2. Performance Evaluation Index

After training a machine learning model, evaluating its predictive accuracy and
making improvements based on the results is essential. This study uses three primary
metrics to assess the model’s predictive performance: the coefficient of determination (R2),
mean squared error (MSE), and Mean Absolute Percentage Error (MAPE) [33].

The coefficient of determination (R2) measures the proportion of the variance in the
actual data that is predictable from the model’s predictions. It reflects the model’s fit to the
data, with values approaching 1 indicating a better fit. Unlike other squared metrics, R2

can be negative, suggesting a poor fit when values are low [34]. In the realm of offshore
platform motion response prediction, a high R2 value signifies the model’s ability to capture
the intricate dynamics of platform motion, which is crucial for the accuracy and reliability
of the forecasts.

The mean squared error (MSE) and Mean Absolute Percentage Error (MAPE) both
measure the differences between the model’s predictions and actual values. MSE calculates
the average of the squared differences across all samples, providing a measure of the
prediction errors’ magnitude. Conversely, MAPE calculates the average of the absolute
relative errors for all samples, offering a percentage-based error measure. Both MSE and
MAPE are non-negative, with lower values indicating better model performance, as they
suggest smaller prediction errors [35]. In offshore platform motion response prediction,
MSE offers a quantitative measure of error, aiding engineers in evaluating and refining
models to reduce predictive errors and enhance platform stability and safety. MAPE
provides insight into the relative magnitude of prediction errors, which is essential for
assessing the model’s applicability and robustness under various sea conditions. A low
MAPE value indicates that the model’s predictions closely match actual observations,
which is vital for operational decision-making and risk management on offshore platforms.

3. Prediction Analysis of Motion Response of Offshore Platform Under Multiple Sea
State Condition Samples
3.1. Establishment of Neural Network Model

Long Short-Term Memory (LSTM) networks demonstrate superior performance com-
pared to Gated Recurrent Units (GRUs), Bidirectional Long Short-Term Memory (BiLSTM),
and Bidirectional Gated Recurrent Units (BiGRUs) due to their sophisticated gating mech-
anisms that adeptly manage long-term dependencies. The LSTM’s memory cell enables
selective information retention across time sequences, which is essential for complex se-
quential tasks. While GRUs offer a simplified structure with faster training times, LSTM
networks’ detailed control mechanisms typically yield better performance in tasks involving
intricate long-term dependencies. Although BiLSTM and BiGRUs provide comprehensive
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sequence understanding through bidirectional processing, LSTM’s unidirectional approach
offers greater computational efficiency through reduced parameter count. However, LSTM
exhibits limitations in feature extraction from highly nonlinear data.

To address the limitations of LSTM in handling nonlinear data, this study incorporates
convolutional layers to fully leverage the spatial features within the dataset. These layers
capture local patterns and contribute to a comprehensive feature representation, enhancing
the model’s ability to understand data complexity and improve prediction accuracy. By
increasing the number of convolutional layers, the model deepens, thereby strengthening
its feature extraction capabilities. Furthermore, a residual structure utilizing skip con-
nections is implemented to combine multi-level feature extraction results effectively. In
one-dimensional signal processing, ResCNNs outperform alternative methods such as
Independent Component Analysis (ICA), Fast ICA (FICA), Recursive Least Squares (RLSs)
filters, wavelet transforms (WTs), and Deep Neural Networks (DNNs) due to its deep
architecture, which automatically extracts complex nonlinear features from signals. The
end-to-end processing capability simplifies workflow by directly mapping noisy signals
to clean ones, eliminating extensive preprocessing requirements. ResCNNs’ multi-scale
feature fusion enables comprehensive capture of both local and global signal characteristics,
enhancing perceptual ability and facilitating precise extraction of motion characteristics
and dynamic change analysis.

The convolution sub-module comprises convolutional layers, standardization layers,
and hidden layers, while the loop operation module includes two LSTM layers, two hidden
layers, and two dropout layers. By integrating the strengths of these two algorithms,
compared to traditional forecasting models such as RNNs, LSTM, and GRUs, the capability
to learn deep features on the temporal dimension has been significantly enhanced, as has the
accuracy of predicting time-series trends on the temporal dimension. The model effectively
captures intrinsic characteristics data, overcoming the limitations of traditional forecasting
algorithms when dealing with complex and highly nonlinear datasets. Furthermore, the
synergistic interaction between spatial and temporal dimensions enables the model to more
effectively learn key features within the data, demonstrating significant advantages in data
analysis and prediction applications. The calculation process is shown in Figure 2.
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The predictive model in this study was developed using Python 3.8.5, utilizing the fol-
lowing key libraries with their respective versions: NumPy 1.18.0 for numerical operations,
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Pandas 1.1.3 for data manipulation, Matplotlib 3.3.2 for plotting, and TensorFlow 2.2.3 for
deep learning model development.

Subsequently, this model will be referred to as ResCNN-LSTM.

3.2. Platform Model Establishment

This research focuses on a semi-submersible offshore platform, characterized by its
structural composition that encompasses an upper deck, four columns with chamfered
edges, a pair of cylindrical cross braces, and a duo of buoyancy tanks, as depicted in Figure 3.
The geometric parameters of this platform are meticulously detailed in Table 1 [36].
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Table 1. Geometric parameters of the semi-submersible offshore platform.

Parameter Magnitude Unit

Molded length 58.0 m
Molded breadth 40.0 m

Deck length 39.4 m
Deck width 37.8 m

Main body height 19.2 m
Column height 10.9 m
Column section 7.2 × 7.2 m

Transverse brace diameter 1.25 m

During the numerical simulation of the original platform model, due to the significant
computational resources demanded by the viscous flow field calculations, a scaled-down model
with a reduction ratio of 1:50 was employed for the computational analysis. Table 2 presents a
comparative analysis of the operational parameters between the original and scaled models.
This scaling approach was implemented to optimize computational resource utilization.

Table 2. The working condition parameters of the original model and the scale model of the platform.

Parameter Platform Original Model Scale Model

Drainage volume 5.53 × 106 kg 44.21 kg
Draught 6.897 m 0.1379 m

Height of center of gravity 6.615 m 0.1323 m
Roll moment of inertia 1.08 × 109 kg·m2 3.46 kg·m2

Pitching moment of inertia 1.19 × 109 kg·m2 3.81 kg·m2

Bow moment of inertia 1.56 kg·m2 5.01 kg·m2
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3.3. Adaptive Analysis of Wave Direction Angle

The numerical wave tank was configured according to the dimensions of the scaled-
down model, with specific dimensions of 15 m in length, 8 m in width, and 5.5 m in molding
depth. The model was established based on the origin, and after scaling down, the draft
is 0.1379 m. Consequently, the water surface height was adjusted upward by 0.1379 m,
resulting in a wave flume depth of 4.1379 m below the waterline. The computational
domain for numerical simulations comprises a quiescent zone and an overlapping zone,
wherein the quiescent zone is designated as the wave propagation region. The direction of
the X-axis is defined as the wave incidence direction, with the angle of wave incidence set
at 0◦. The parameters of the wave are detailed in Table 3.

Table 3. Parameters of wave.

Significant Wave Height Spectrum Peak Period Number of Wave Components Incidence Angle

Condition one 0.1 1.56 s 75 0◦

Condition two 0.1 1.56 s 75 45◦

The framework uses a turbulence model and an implicit, unsteady time solver with
second-order time discretization. To reduce wave reflection at the outlet boundary, an
8 m-long damping zone is implemented, utilizing the Volume of Fluid (VOF) method for
wave simulation.

Figure 4 depicts the numerical computation domain.
To ensure simulation accuracy, an overlapping grid method was employed for the

simulation of the ship’s motion. The ship and a portion of the surrounding fluid domain
were meshed separately, with the ship and its immediate area designated as the overlapping
region. Under the condition of releasing certain degrees of freedom (heave and pitch),
the overlapping region was allowed to move within the scope of the background domain.
Data exchange between the overlapping and background grids was facilitated through
interpolation, thereby obtaining flow field information across the entire fluid domain.

The meshing process employed in this study uses the STAR-CCM+ software, which
incorporates surface reconstruction, a cutting body mesh generator, and a prism layer mesh
generator for mesh division. This approach, combined with overlapping mesh technology,
efficiently generates high-quality meshes. Within the numerical pool, the cutting body
mesh generator is used to produce high-quality hexahedral meshes. The prism layer
mesh consists of six layers with an extension rate of 1.2, resulting in a total mesh count of
2.61 million. The specific grid division is illustrated in Figure 5.

After conducting numerical simulation for the aforementioned conditions, the motion
time histories are depicted in Figures 6 and 7. The numerical simulation lasts for 500 s
with a time step of 0.01 s, yielding 50,000 time steps for both heave and pitch data. Only a
portion of the time histories is displayed in the figures.

The dataset was divided into training and testing subsets in a 7:3 ratio, following
the chronological order of the data. This study employs an advanced forecasting strategy
known as multi-step prediction, which analyzes motion data over twice the time duration
to predict the subsequent half-time duration of motion. Given that the marine platform
model used is scaled down according to a specific ratio, its motion period is also reduced in
accordance with Froude’s number principle to ensure dynamic similarity between model
tests and real-world conditions. The focus of this paper is to demonstrate the effectiveness
of this predictive method. Therefore, under the condition of reduced motion periods, we
selected motion posture data spanning four seconds as the input to predict the following
two seconds of motion posture, thereby validating our methodology.
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The number and size of convolutional kernels influence the model’s receptive field, fea-
ture extraction capabilities, and computational complexity. Activation functions introduce
nonlinearity into neural networks, control neuron activation, and affect learning speed,
convergence, and model generalization. The choice of the hyperbolic tangent function is
attributed to its centered output, smoothness, and favorable gradient properties, which
contribute to enhancing the training efficiency and generalization capability of neural
networks. Optimizers adjust parameters during model training to minimize loss functions
and improve model performance. The selection of the Adam optimizer is based on its
ability to adaptively adjust the learning rate for individual parameters, combining the
advantages of both momentum and RMSProp. Additionally, it exhibits robustness in hyper-
parameter sensitivity, typically delivering satisfactory performance across a range of tasks
with minimal tuning required. The initial training learning rate determines the step size
of model parameter updates at the beginning of training, influencing the learning speed
and convergence. During hyperparameter tuning, the following kernel sizes were tested
for the two LSTM layers: 128 and 64, 256 and 128, and 512 and 256. After comparing the
error situations, the combination of 256 and 128 was deemed most suitable. The number
and size of kernels in the convolutional layer are 2 and 4. The learning rate is 0.001, with
100 training epochs.

It is worth noting that after splitting the training set into individual samples, they are
shuffled randomly before being input into the model for training. This helps reduce the
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model’s attention to background noise, decrease sensitivity to missing data, and improve
the robustness of the model. Additionally, the order of the testing set data is kept unchanged
to ensure that the model’s predictions reflect the time-series information for analysis. The
prediction results are shown in Figure 8, where, due to the large number of samples, one
single sample for heave and pitch motion from each of the two conditions is selected for
demonstration of the results.
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model’s predictive capabilities and understanding of its accuracy at different time steps, 
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Figure 8. Diagram of individual predictions on the test set. (a) Single sample of 0−degree incident
angle heave test set, (b) 0−degree incident angle pitch test set single sample, (c) 45−degree incident
angle heave test set single sample, and (d) 45−degree incident angle pitch test set single sample.

The model’s ability to capture trends and variations in individual sample motion is
evident when observing the predicted time history curves. These curves demonstrate the
model’s accurate predictions. To objectively assess the model’s predictive capabilities, the
R2 metric is used for evaluation. This metric provides a more objective assessment of the
model’s predictive capabilities and understanding of its accuracy at different time steps, as
shown in Figure 9.
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Figure 9. R2 comparison diagram.

The figure reveals that for wave incident angles of 0 and 45 degrees, the model
successfully predicts heave and pitch motions of the offshore platform throughout the
entire time period. An R2 value of 1 signifies a perfect match between predicted and true
values, with values closer to 1 indicating better performance. Examining the heave and
pitch motions for a wave incident angle of 0 degrees, it is evident that the R2 values for both
motions remain consistently above 0.5 across the entire predicted time steps. This highlights
the model’s robust predictive capability for these motions. While a slight downward trend
in prediction accuracy is observed over time, this is typical in multi-step forecasting due to
increasing uncertainty and data variability. The gradual nature of this decline indicates a
balanced and stable overall prediction performance, emphasizing the model’s consistency
and accuracy throughout the process.

Regarding the 45-degree wave incident angle, the overall R2 values show a slight
decrease compared to the 0-degree scenario. This reduction can be attributed to the
increased impact experienced by the offshore platform at this angle, leading to more
pronounced nonlinear motions and greater irregularity in motion patterns. The pitch
motion, in particular, is significantly affected by fluid resonance issues, making prediction
more challenging. Despite these challenges, the R2 values for heave motion remain above
0.3 throughout the entire predicted time span, while those for pitch motion generally exceed
0.2. This indicates that the model maintains its predictive capability without any instances
of failed fitting.

3.4. Adaptive Analysis of Significant Wave Height

An adaptive study on the significant wave height has been conducted to predict the
heave and pitch motions of offshore platforms with the same wave direction angle but
varying significant wave heights. The numerical wave tank and mesh refinement settings
are identical to those in Section 3.3 Specific wave parameters are detailed in Table 4.

Table 4. Operating parameters.

Significant Wave Height Spectrum Peak Period Number of Wave Components Incidence Angle

Condition one 0.07 1.41 s 75 0◦

Condition two 0.1 1.56 s 75 0◦
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After conducting numerical simulation for the aforementioned conditions, the motion
time histories are depicted in Figures 10 and 11. Because of the numerical simulation
spanning 500 s, only partial time histories are displayed.
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Figure 11. Time history curve of local motion in working condition two. (a) Local diagram of 100−140 s
heave motion. (b) Local diagram of 100−140 s pitch motion.

The sample set division strategy and prediction strategy are consistent with the pre-
vious section. After shuffling the training set, it is inputted into the model for training.
The parameters of the forecasting model are basically the same as those in Section 3.3. The
prediction results are shown in Figure 12, where, due to the large number of samples, one
single sample for heave and pitch motion from each of the two conditions is selected for
demonstration of the results.
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Figure 12. Diagram of individual predictions on the test set. (a) Heave test set single sample (H1/3 
= 0.07 m). (b) Pitch test set single sample (H1/3 = 0.07 m). (c) Heave test set single sample (H1/3 = 0.1 
m). (d) Pitch test set single sample (H1/3 = 0.1 m). 
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heave and pitch motions of the offshore platform under varying significant wave heights. 
The time history curves show well-aligned rising and falling trends, indicating the 
model’s ability to accurately capture the platform’s motion patterns. To further evaluate 
the prediction performance, the R2 metric is utilized, as illustrated in Figure 13. 

Figure 12. Diagram of individual predictions on the test set. (a) Heave test set single sample
(H1/3 = 0.07 m). (b) Pitch test set single sample (H1/3 = 0.07 m). (c) Heave test set single sample
(H1/3 = 0.1 m). (d) Pitch test set single sample (H1/3 = 0.1 m).

Figure 12 clearly demonstrates the model’s excellent performance in predicting the
heave and pitch motions of the offshore platform under varying significant wave heights.
The time history curves show well-aligned rising and falling trends, indicating the model’s
ability to accurately capture the platform’s motion patterns. To further evaluate the predic-
tion performance, the R2 metric is utilized, as illustrated in Figure 13.

Analysis of the heave motion reveals that the R2 values exhibit minimal disparity
between the two operational scenarios, maintaining consistent predictive accuracy through-
out the entire forecasting horizon. This suggests that the model maintains stable predictive
capabilities for heave motion even under varying significant wave heights, indicating a
degree of adaptability. Similarly, examination of the pitch motion shows that the R2 values
display marginal variance over the predicted time steps, reflecting consistent predictive
performance. Although the prediction accuracy for pitch motion slightly lags behind that of
heave motion, the overall R2 values generally exceed 0.4, with no instances of fitting failure.
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In summary, the effects of different significant wave heights on the prediction model
for heave and pitch motions are relatively negligible, showing comparable performance
across the two operating conditions and demonstrating a relatively balanced performance.
This indicates that the model has good adaptability to the motion time history curves
under different significant wave height conditions. However, the influence of different
wave directions on the heave and pitch motions has a relatively significant impact on
the prediction model. The predictions vary greatly between the two scenarios due to the
different motion frequencies present under different wave directions. These frequency
differences are challenging to eliminate through neural networks, thus causing the model to
struggle to adapt well to these intricate motion patterns, presenting a challenging aspect for
prediction. To address this issue, further optimization of the prediction model is necessary
to better capture the frequency differences in motion under different wave directions and
enhance the accuracy of the prediction model.

4. Improved Motion Response Prediction Model Based on EMD Algorithm
4.1. Construct EMD-ResCNN-LSTM Model

The empirical mode decomposition (EMD) algorithm is a signal processing technique
specifically designed for analyzing nonlinear and non-stationary signals [37]. In time-
signal processing, various alternative methods exist for signal decomposition besides
empirical mode decomposition (EMD), including Ensemble Empirical Mode Decomposition
(EEMD), Complementary Ensemble Empirical Mode Decomposition (CEEMD), Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Extreme
Point Symmetric Mode Decomposition (ESMD), Variational Mode Decomposition (VMD),
and Local Mean Decomposition (LMD) [38]. Despite these alternatives’ advantages, EMD is
often preferred for its adaptability and direct applicability to the analysis of non-stationary
signals. This method differs from traditional time-series analysis techniques such as Fourier
analysis or wavelet transforms in that it decomposes the signal based on their intrinsic
properties without requiring specific basis functions. It automatically separates the original
signal into multiple Intrinsic Mode Functions (IMFs) and a trend component (Residue),
thereby avoiding the subjectivity associated with manually selecting basis functions and
demonstrating its adaptive characteristics [39].

Integrating the empirical mode decomposition (EMD) algorithm with the ResCNN-
LSTM forecasting method can significantly enhance the accuracy and applicability of
time-series prediction models [40]. Compared to traditional forecasting models and the
aforementioned ResCNN-LSTM, this combination provides a more comprehensive un-
derstanding of signal characteristics. It effectively analyzes signal frequency changes,
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accurately extracts the Intrinsic Mode Functions (IMFs) and trend components, and pre-
cisely captures the instantaneous frequency of the signal, providing valuable input for
subsequent predictions. This approach is particularly suitable for forecasting the heave
and pitch motions under different wave incidence angles. The integration substantially im-
proves the model’s accuracy and applicability, aligning well with the data’s actual physical
significance. Compared to traditional CFD (Computational Fluid Dynamics) numerical pre-
dictions, the computational resources required for this model’s predictions are significantly
reduced, resulting in lower computational costs.

Hence, this section presents a predictive approach utilizing the combined EMD-
ResCNN-LSTM model, specifically aimed at conducting ultra-short-term forecasts for
offshore platform motion responses under diverse wave incident angles. Figure 14 vividly
depicts the EMD decomposition process, providing a clear illustration of the signal de-
composition procedure. Similarly, Figure 15 delineates the prediction methodology of
the EMD-ResCNN-LSTM model, offering readers a detailed and intuitive reference for
understanding and implementing the model.
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4.2. Prediction Results and Error Analysis

This section employs the offshore platform motion response data under different wave
incident angles provided in Section 2.2 as the dataset for analyzing and predicting model
performance. To evaluate the empirical mode decomposition algorithm’s decomposition
capability, heave data from operational condition one were selected as the test sample. The
EMD algorithm was applied to decompose the sample data, yielding a series of intrinsic
mode function components and a trend component. These components and the trend
component were then combined to reconstruct the original signal.

Comparison between the reconstructed and the original signal revealed high simi-
larity, as shown in Figure 16, with the reconstruction error effectively controlled below
10−8 m. This finding strongly demonstrates the EMD algorithm’s efficiency in handling
non-stationary signals. It not only accurately decomposes the signal but also reliably
reconstructs the original signal, which is crucial for practical engineering applications.
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After validating the EMD algorithm’s effectiveness through verification, it was applied
to decompose and process the data. Detailed decomposition analysis was conducted on
the heave and pitch data recorded under different operational conditions. Due to the
substantial volume of post-decomposition data, Figure 17 presents only the decomposition
results of the heave motion data under operational condition one.

The IMF components and residuals obtained from the EMD decomposition of heave
and pitch motion data under operational conditions one and two were used to establish
ResCNN-LSTM models. The data were split into training and testing sets in a 7:3 ratio. A
multi-step prediction approach was implemented, using four seconds of motion data as
the input to predict the subsequent two seconds. Consequently, the input layer comprises
400 nodes, while the output layer contains 200 nodes. The mean squared error of the
multidimensional output served as the loss function, with Adam as the optimization
algorithm. Training continued for 100 epochs with an initial learning rate of 0.001. To
facilitate comparison, the predictive outcomes of the EMD-ResCNN-LSTM model under
two operational conditions are compared with the ResCNN-LSTM model. Due to the large
sample size, two individual samples from each operational condition’s heave and pitch test
sets were randomly selected for demonstration, as illustrated in Figures 18–21.
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Figure 19. Single sample from pitch test set of operational condition one. (a) 400−406 s; (b) 480−486 
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Figure 20. Single sample from heave test set of operational condition two. (a) 435−441 s; (b) 
460−466 s. 

Figure 18. Single sample from heave test set of operational condition one. (a) 425−431 s; (b) 474−480 s.
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Figure 20. Single sample from heave test set of operational condition two. (a) 435−441 s; (b) 
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Compared to the ResCNN-LSTM model, the EMD-ResCNN-LSTM model exhibits
better performance in predicting peak and trough values, with results closely matching
actual values and showing a smaller error range. By incorporating the EMD algorithm,
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the model gains a more comprehensive understanding of signal characteristics, demon-
strating a high capability to capture instantaneous frequencies for heave and pitch motions
under different wave incident angles. This enhanced ability allows the model to uncover
underlying patterns and information within the data, approximating an overall probability
distribution model. Leveraging this approximate distribution through deductive reasoning,
the model can derive potentially accurate future predictions, thus enhancing its predictive
accuracy and highlighting its superiority.

Subsequently, the performance evaluation metrics of R2, MSE, and MAPE were used
to conduct an error analysis of both models. The R2 computation results of the EMD-
ResCNN-LSTM model were compared with the R2 results of the ResCNN-LSTM model
from Section 2.2, as illustrated in Figures 22 and 23.
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Figure 22 shows that the EMD-ResCNN-LSTM model’s R2 values exceed those of the
ResCNN-LSTM model for all predicted time steps, regardless of wave incident angle (0
or 45◦). The EMD-ResCNN-LSTM model demonstrates superior predictive performance,
effectively addressing the shortcomings of the ResCNN-LSTM model and reducing dis-
crepancies in predicting heave motion of offshore platforms under different wave incident
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angles. The results illustrate a significant decrease in the variability of R2 values for heave
motion predictions across different wave incident angles after undergoing processing with
the EMD-ResCNN-LSTM model. Notably, there is a substantial improvement in the fore-
cast accuracy of heave motion, with R2 values consistently exceeding 0.7 throughout the
prediction time steps, particularly evident at a 45◦ wave incident angle.

Figure 23 compares the R2 performance for roll motion predictions. The results demon-
strate that the EMD-ResCNN-LSTM model consistently outperforms the ResCNN-LSTM
model in terms of R2 values throughout the prediction time series, indicating higher
predictive accuracy. Additionally, the model effectively minimizes prediction outcome dis-
crepancies across different wave incident angles, thereby enhancing roll motion predictive
quality over the entire forecasting period. Particularly noteworthy is the performance at
a 45◦ wave incident angle, where the R2 values predominantly exceed 0.4, representing
significant advancement over previous models.

MSE assesses average output data deviation, while MAPE evaluates the overall per-
formance of the predicted wave height sequence. These metrics offer distinct evaluation
frameworks: MSE from a two-dimensional data plane perspective and MAPE from a
three-dimensional data space, providing a more comprehensive evaluation of the model’s
predictive capacity. This distinction is elaborated in Table 5.

Table 5. Comparison of MSE and MAPE.

ResCNN-LSTM EMD-ResCNN-LSTM

MSE MAPE MSE MAPE

Heave (0◦) 4.00 × 10−5 0.21 3.55 × 10−5 0.19
Heave (45◦) 6.99 × 10−5 0.38 4.25 × 10−5 0.23

Pitch (0◦) 5.23 × 10−5 0.26 5.15 × 10−5 0.25
Pitch (45◦) 1.01 × 10−4 0.72 7.63 × 10−5 0.52

The MSE data in Table 5 demonstrate that the EMD-ResCNN-LSTM model consistently
outperforms the ResCNN-LSTM model under identical operating conditions. This suggests
inherent limitations in using the ResCNN-LSTM model directly for predictions. The mo-
tion response data comprise intricate frequency features that fluctuate substantially with
varying wave incident angles, complicating the extraction of pertinent information. How-
ever, by integrating the EMD algorithm, the intricate original signal can be decomposed
into components with distinct frequency characteristics, enabling more precise capture of
transient frequency changes and reducing noise interference. Similarly, the MAPE values
show that the EMD-ResCNN-LSTM model consistently exhibits lower values compared to
the ResCNN-LSTM model under identical operating conditions. These results demonstrate
that the EMD-integrated model performs well in terms of both MSE and MAPE. The mutual
validation between these metrics indirectly confirms the accuracy of the R2 values.

In conclusion, this section rigorously assesses the efficacy of integrating the EMD algo-
rithm using three distinct dimensions of metrics. The incorporation of the EMD algorithm
effectively mitigates the non-stationarity and nonlinearity present in the raw data, resulting
in a remarkable enhancement in forecasting accuracy. This improvement is consistently
evident throughout the entire forecasting horizon, elevating the model’s performance to a
higher standard and bolstering its applicability in real-world engineering settings.

5. Conclusions

This article introduces an innovative neural network-based predictive model for
forecasting offshore platform motion response, designed to adapt to various sea state
conditions. Through comprehensive analysis of evaluation metrics and predictive out-
comes, the model’s accuracy is thoroughly evaluated. This study reveals that integrating
the empirical mode decomposition algorithm into the residual convolutional neural net-
work and Long Short-Term Memory networks to form the EMD-ResCNN-LSTM model
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significantly enhances predictive performance across different wave incident angles. The
coefficient of determination remained above 0.5 throughout the time steps, with both mean
squared error and Mean Absolute Percentage Error indicating satisfactory results. This
advancement enables more precise capture of crucial motion characteristics in predicting
offshore platform motion response under complex sea state conditions, resulting in im-
proved prediction reliability and accuracy. The model has currently been analyzed only for
specific wave heights and wave direction angles. Further validation is necessary to assess
its applicability under more complex conditions involving the combined effects of wind,
waves, and currents, as well as in real-world maritime settings. Moreover, the accuracy
and stability of the model’s predictions over longer time scales also require additional
verification. Future research could expand upon this foundation to investigate offshore
platform motion behavior precision and reliability across a broader spectrum of maritime
conditions and over an extended temporal horizon.

The research outcomes provide robust technical support for the safe offshore plat-
forms’ operation and efficient marine engineering management. They enable preemptive
hazard identification to safeguard lives and property while optimizing operational strate-
gies to minimize unnecessary resource consumption. This integrated approach ensures
safety while achieving cost savings, thus meeting dual objectives of security and efficiency
enhancement. Furthermore, it offers new perspectives and methodologies for deeper
understanding and prediction of the marine environment.
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