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Abstract: Integrating renewable energy sources with aquaculture systems on floating multi-use
platforms presents an innovative approach to developing sustainable and resilient offshore infras-
tructure, utilizing the ocean’s considerable potential. From March 2021 to January 2022, a 1:15-scale
prototype was tested in Reggio Calabria, Italy, which gave crucial insights into how these structures
behave under different wave conditions. This study investigates the application of Artificial Neural
Networks (ANNs) to predict changes in mooring loads, particularly at key points of the structure.
By analyzing metocean data, several ANN models and optimization techniques were evaluated to
identify the most accurate predictive model. With a Normalized Root Mean Square Error (NRMSE)
of 1.7–4.7%, the results show how ANNs can effectively predict offshore platform dynamics. This
research highlights the potential of machine learning in developing and managing sustainable ocean
systems, setting the stage for future advancements in data-driven marine resource management.

Keywords: artificial neural networks; offshore platforms; aquaculture platforms; mooring loads;
renewable energy

1. Introduction

The transition to renewable energy is crucial for addressing the interconnected chal-
lenges of climate change, energy security, and sustainable development. Offshore wind
energy, with its higher and more consistent wind speeds compared to land-based alter-
natives, represents a substantial advancement in reducing carbon emissions [1]. Offshore
wind farms take advantage of stronger sea winds, producing electricity for longer periods
and avoiding common issues like noise pollution that often arise with onshore wind [2].
As the global population continues to grow, the demand for sustainable energy intensifies,
driving innovation in areas like Marine Renewable Energy (MRE) and aquaculture [3].
These industries play a crucial role in addressing energy demands while also contributing
to broader socio-economic goals. The concept of “Blue Growth” highlights the sustain-
able use of ocean resources, with developments like multi-use offshore platforms that
combine energy production with other functions, making them more cost-effective and
operationally efficient [3,4]. This integrated approach to ocean space addresses immediate
energy needs while establishing a foundation for future technological and environmental
balance, essential for long-term sustainability.

As the focus on renewable energy grows, there is an increasing interest in the structural
dynamics of offshore platforms [5,6]. This research is essential to ensure the reliability and
efficiency of these structures, especially in harsh marine environments, as they take on
multiple roles, from energy generation to aquaculture. Studies looking into the dynamic
responses of these platforms under different environmental conditions are particularly im-
portant [7,8]. They help to better understand the limits and capabilities of these structures,
leading to improvements in design and technology, especially in mooring systems, which
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are vital for sustainable development [9]. Moreover, advancements in related areas, such
as structural health monitoring and electrical transmission, particularly through sensor
applications in offshore cables and multi-terminal high-voltage networks, further highlight
the growing significance of offshore infrastructure research [10–13].

The use of Artificial Neural Networks (ANNs) and Machine Learning (ML) techniques
in marine engineering has been highlighted by various studies, including applications
in the optimization of marine structures [14]. More recently, these techniques have been
applied to analyze the dynamic behaviour of multi-use offshore platforms and manage
mooring loads. While ANNs are the focus of this study, other methods, such as genetic
algorithms, support vector machines, and hybrid artificial intelligence (AI) models, have
also shown promise in similar applications [15–19]. These computational tools allow for
accurate modelling and the control of complex structures facing varying environmental
forces, improving the safety and efficiency of renewable energy platforms. For instance,
combining Floating Offshore Wind Turbines (FOWTs) with Oscillating Water Columns
(OWCs) helps optimize energy absorption and reduce dynamic responses [20]. Neural
network controllers have also been applied to stabilize platforms against wave impacts,
showing significant improvements over traditional control methods [21].

There has also been progress in neural simulators for mooring system design, which
use historical environmental data and machine learning to improve design accuracy and
efficiency [22]. This approach is complemented by using Bayesian networks to enhance
the reliability analysis of mooring systems [23], and machine learning models to predict
significant wave heights, which is crucial for the operation and maintenance of offshore
energy farms [24].

These new approaches enhance the predictive capabilities of dynamic models and
support the development of adaptive control systems, improving platform stability and
efficiency in variable conditions. Together, these studies underline the key role of machine
learning and neural network technologies in advancing the design and functionality of
offshore renewable energy systems, promising a more resilient and efficient future for
multi-functional marine structures.

The objective of this article is to assess the reliability of an ANN-based algorithm for
predicting the mooring load on a multi-purpose floating platform exposed to random sea
waves. For achieving this objective, field data collected during an experimental campaign
in a natural basin are used. The following sections will provide a description of the
experimental activity and of the ANN architecture (Section 2), the results and discussion
with the limits of the proposed ANN-based procedure (Section 3), and concluding remarks
(Section 4).

2. Materials and Methods

The field experiment took place at the Natural Ocean Engineering Laboratory (NOEL)
at the Mediterranean University of Reggio Calabria, Italy. NOEL is known for allowing
real-time monitoring of natural sea conditions, which made it an ideal setting for this study.
Small, wind-driven sea states were observed with significant wave heights ranging from
0.20 m to 0.80 m and peak wave periods between 2.0 and 3.6 s, with characteristics similar
to JONSWAP spectra. The experiment ran from March 2021 to January 2022, with the most
focused data collection occurring between May and July 2021.

During the experiment, a 1:15-scaled prototype of a floating multi-use platform
(Figure 1) was equipped with an array of sensors. The platform was designed to combine an
automated offshore aquaculture plant with wave and wind energy harvesting technologies.
It was made up of a rectangular-shaped, steel, semi-submersible hull with a T-shaped cross
section. A scaled 10-MW wind turbine [25] and an array of U-shaped OWC [26] wave
energy converters were placed in the front side of the hull. The aquaculture cages were
instead hosted in the internal moonpool, to be protected from the incoming waves. The
scope of the experiment was to investigate the complex dynamic of the platform, consider-
ing various dynamic couplings, including those between the floater, the mooring system,
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the wind and wave energy converters, the internal moonpool, and the cages. Extensive
description of the activities can be found in [4,27].
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Figure 1. Photo of BGF platform installed at NOEL.

In this paper, a sample of 4458 data records is considered, collected between 26 May
and 6 July 2021. Each record is 10 min long and has a sampling frequency of 10 Hz,
compatible with the site wave properties [28] and with the dynamic characteristics of the
platform model. In more detail, previous experimental identification analyses (see, e.g., [4])
had shown that its natural frequencies lay approximately in the range of 0.12–0.15 rad/s
for the horizontal motions (surge, sway, yaw) and 1.35–1.62 rad/s for the vertical motions
(heave, roll, pitch). Specifically, the following sensors were used in this analysis:

• Load cells were placed at the fairleads of three out of four catenary mooring lines (i.e.,
South-East (SE), South-West (SW), and North-East (NE) corners) of the structure to
measure forces. AEP CTS1025TC25 load cells were used, with a nominal load of 5 tons.
These sensors have a combined error, non-repeatability, and creep at nominal load of
over 20–30 min, all under ±0.025%. Sensitivity tolerance is also within ±0.1%.

• Pressure transducers were used to measure the wave head of pressure in an undis-
turbed field. An STS ATM.1ST model was used, which operates in a range of
0.0–0.7 bar, making it suitable for both normal and extreme wave conditions at NOEL.
The sensor’s measurement uncertainty is within ±0.25%.

• Ultrasonic probes were used to measure the free-surface displacement. The FAE IRU-
2003 model provided direct measurements of the distance between the sensor and the
wave surface, which allowed for the determination of the wave profile. This sensor
has a default measurement range of 0.30–7.62 m, perfectly suited to the conditions
at NOEL.

• A Gill WindSonic M 2-D ultrasonic anemometer (Gill Instruments Limited, Lymington,
United Kingdom) was used to measure the wind velocity and direction in the horizon-
tal plane. The wind measurements were acquired independently from the wave ones,



J. Mar. Sci. Eng. 2024, 12, 2001 4 of 15

at a reduced sampling frequency of 4 Hz, consistently with sensor capability and local
wind dynamic properties.

It is worth noting that the pressure gauges and ultrasonic probes were used to quantify
sea state characteristics in undisturbed conditions, i.e., at a sufficient distance from the
structure to assume as negligible its diffraction/radiation effects. To achieve this, they were
installed far from the BGF structure on two ballasted vertical piles (Figure 2), at water
depths of 1.90 m and 3.70 m, respectively, and were spaced 2.75 m apart. This arrangement
followed the method developed by Boccotti et al. [29] to estimate the statistical and spectral
characteristics of the sea states. Also, the wind was measured in the undisturbed field.
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Figure 2. Geometrical characteristics of ballasted vertical piles installed nearshore (a) and offshore
(b). All lengths are provided in millimetres [mm].

These data offered an in-depth view of how the platform interacts with its environment,
highlighting the complex relationship between its structural dynamics and the wave climate.
This understanding is essential for improving the design and operational protocols of such
innovative marine multi-use structures.

In this study, ANNs were trained using a comprehensive set of variables that included
wave climate factors, as well as parameters representing the structural loads. The list of the
variables used is reported in Table 1.

The choice of the mooring loads (SW, SE, and NE cells) was driven by data availability,
as the NW cell had a disconnection period during the experiment. However, the data that
were used are deemed sufficient to preliminarily investigate the variability and peaks in the
mooring loads. The choice of the wave parameters was aimed to completely characterize
the wave properties, including magnitude, wave energy distribution in the frequency
domain, and direction. In particular, since bimodal spectra cannot be fully characterized
by synthetic variables such as mean and peak wave period, the ratio between wind-
generated (periods from T1 = 2π/ω1 = 3.0 s to T2 = 2π/ω2 =1.0 s) and swell (periods
from T3 = 2π/ω3 = 11.9 s to T1) spectral components (areas) has been introduced and is
defined as

Ratiow,swell =

∫ ω2
ω1

S(ω)dω∫ ω1
ω3

S(ω)dω
(1)

where S(ω) is the wave frequency spectrum and ω the frequency.
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Table 1. Variables used for training the ANNs, with corresponding symbols, sensors, and units;
d represents water depth.

Variable Symbol Sensor Units

Mooring loads
Load at the south-west fairlead TSW

Load cellsLoad at the south-east fairlead TSE [N]
Load at the north-east fairlead TNE

Surface wave

Significant height Hs (d = 3.70 m)
Hscoast (d = 1.90 m)

Ultrasonic probes

[m]

Peak period Tp1 (d = 1.90 m—left)
Tp2 (d = 1.90 m—right) [s]

Wind-generated/swell spectral area ratio Ratiow,swell [-]

Mean zero-up-crossing period Tz (d = 3.70 m)
Tzcoast (d = 1.90 m) [s]

Mean propagation direction θ (d = 3.70 m)
θcoast (d = 1.90 m)

[rad]

Head of pressure wave
Peak period TpPh2 (d = 1.90 m)

Pressure
transducers

[s]
Significant height HsPhcoast (d = 1.90 m) [m]

Mean zero-up-crossing period TzPhcoast (d = 1.90 m) [s]

Wind
Mean direction Dirw Anemometer

[rad]
Mean velocity uw [m/s]

The methodology that was employed focused on developing and refining ANNs to
predict the dynamic response of the floating multi-use offshore platform. Using the dataset
collected from the field experiment, this approach involved optimizing the ANN model
structure and investigating its predictive accuracy under various environmental conditions.

To build the final model, ANNs were developed and validated following a systematic
process:

• Data preparation: a cleaning process of the data was applied to remove any inconsis-
tencies and gaps, ensuring the dataset was reliable for further analysis.

• Dataset division: The cleaned dataset was then split into training and test sets, using
an 80–20% ratio. This split is commonly used in the field [30] to allow the model
to be evaluated on unseen data, ensuring its performance holds up in real-world
scenarios. From the training set, an additional 10% was further split off to serve as a
validation set.

• ANN architecture selection: different feed-forward Deep Neural Networks (DNNs)
were explored to find the best balance between complexity and learning efficiency.

• Robustness enhancement: to make the models more robust and reduce uncertainty, 10-fold
cross-validation was employed, with multiple realizations run for each configuration.

• Training data length optimization: the length of the training data was adjusted to en-
sure there was enough information for the model to learn from without overloading it.

• Hyperparameter tuning: the model’s hyperparameters were carefully adjusted to
improve its learning efficiency and overall predictive accuracy.

• Input variable assessment: the input variables were thoroughly evaluated to deter-
mine their significance, ensuring that only the most relevant factors were used in the
ANN models.

The data cleaning process involved discarding missing values to ensure only complete
data were used, detecting and removing outliers above the 99th percentile, and normalizing
the data. Most variables were scaled to the range [−1, 1] through min–max normaliza-
tion, while directional variables (i.e., θ, θcoast) were transformed using the trigonometric
functions (i.e., sinθ, cosθ, sinθcoast, cosθcoast) to account for their cyclical nature.

In this step, TensorFlow [31] in Python was used to build and train the neural networks.
The architectures varied in the following key parameters:

• Input layer: 17 features based on the training data.
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• Hidden layers: the number of hidden layers was dynamically adjusted between
1 and 5, there being a DNN when more than one layer was used.

• Units per layer: each hidden layer could have between 32 and 512 units, with the
specific number of units per layer being determined through hyperparameter tuning.

• Activation functions: both ‘ReLU’ and ‘tanh’ were explored as activation functions,
with ‘ReLU’ introducing non-linearity and ‘tanh’ providing bounded activation.

• Learning rate: the Adam optimizer was used with a learning rate dynamically tuned
between 1 × 10−5 and 1 × 10−2.

• Output: Each approach predicted three load cell-related features for the directions
SE, SW, and NE. The first approach focused on predicting the maximum, while the
second approach predicted the standard deviation of the load cell (max(TSE), max(TSW),
max(TNE) and σ(TSE), σ(TSW), σ(TNE)).

The hyperparameter optimization was conducted using the RandomSearch tuner
from TensorFlow’s Keras Tuner library. RandomSearch performed an initial broad search,
minimizing the validation mean squared error across 10 trials, with each trial executed
twice. The best hyperparameters identified during this process were then used to build and
train the final model on the training dataset for 50 epochs. The model’s performance was
subsequently validated on a separate dataset and evaluated on the test dataset using metrics
such as test loss, Root Mean Square Error (RMSE), and Normalized Root Mean Square Error
(NRMSE). In addition to RandomSearch, a Bayesian optimization and Hyperband meth-
ods [32,33] were utilized. Bayesian optimization fine-tuned high-performing parameters by
constructing a probabilistic model based on previous results, while Hyperband expedited
the process by adaptively allocating resources and using early stopping to focus on the
best-performing models. The optimization process was conducted in three stages across
three different ANNs: starting with a grid search, followed by Bayesian optimization, and
finally, the introduction of Hyperband. This sequential approach allowed us to compare
RMSEs and ultimately select the best-performing model.

The RMSE and NRMSE metrics were calculated between the predicted ( ypredicted

)
and

actual (y actual) values using the following formulas, where n is the number of observations,
and ymax and ymin represent the maximum and minimum values in the dataset, respectively:

RMSE =

√
1
n

n

∑
t=1

(
yt,predicted − yt,actual

)2
, (2)

NRMSE =
RMSE

ymax − ymin
· 100 (3)

To rigorously determine the impact of each input variable on the predictions made by
the ANNs, the permutation importance method [34,35] was used. This approach is crucial
for identifying the most influential features in the model, ensuring that only the most
relevant predictors are included. The method works by shuffling the values of each feature
while keeping the target values fixed, then measuring the decrease in model performance.
This decrease indicates the feature’s importance. The permutation process was repeated
10 times to account for random variations and ensure robustness. The importance of
each feature was quantified by the mean decrease in performance, resulting in unitless
scores that reflect the relative importance of each predictor. In this way, the methodology
enhances both the transparency of the predictive models and the optimization of the
network architecture and hyperparameter settings.

The standard deviation (σ(TSE), σ(TSW), σ(TNE)) and maximum (max(TSE), max(TSW),
max(TNE)) of load cell values for each record were selected as the primary output variables
for the ANNs. The standard deviation provides insights into the variability and stability
of the structure, while the maximum values highlight the peak load that the structure
can withstand. Two separate iterations of the ANNs were conducted, one focused on
predicting maximum values and the other on standard deviations. This dual approach
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captures different aspects of the mooring load dynamics under varying metocean condi-
tions, deepening the understanding of the relationship between environmental forces and
structural responses. In Figure 3, both output variables, as recorded before any processing,
are represented across the sampling period used in this work, illustrating the variations in
maximum and standard deviation load values over time.
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3. Results and Discussion

After applying ANNs to predict both the maximum and standard deviation of load
cell values in the SW, SE, and NW directions, the NRMSE for standard deviation was
observed as higher compared to that of the maximum values (Table 2). This higher NRMSE
indicates a greater difficulty in accurately predicting variability, which reflects the inherently
stochastic nature of marine environments more than peak loads. Given the importance of
standard deviation in capturing the variability and uncertainties in these conditions, this
work focused on its prediction.

Table 2. The errors (RMSE, NRMSE) of the predicted maximum and standard deviation of load cell
values through the ANNs.

max(TSE) max(TSW) max(TNE) σ(TSE) σ(TSW) σ(TNE)

RMSE 0.031 0.043 0.051 0.008 0.008 0.010
NRMSE% 3.776 5.307 3.865 6.016 7.098 3.467

Improving the accuracy of σ(TSE), σ(TSW), σ(TNE) predictions is a more technically
demanding but highly valuable task. This approach expands modelling capabilities and
enhances the structural resilience, enabling better adaptation to variable loads. Prioritizing
this focus is expected to significantly improve the reliability and predictive power of
the ANNs, which is especially important for dynamic and complex environments where
understanding variability is key to ensuring safety and optimizing performance.

To improve the predictive accuracy of the ANNs, a comprehensive analysis of in-
put variable importance was conducted, which revealed several variables with minimal
impact on model predictability (Figure 4). The feature importance was evaluated using
the permutation importance method [36] from Python’s Scikit-learn library [37]. This
method measures the impact of each feature by calculating the increase in the model’s error
when the values of the feature are randomly shuffled. The importance scores reflect the
corresponding changes in the performance of the model, with higher scores indicating
features that have a greater influence on the predictions. As a result, variables related to the
mean wave direction at both the available water depths ( cosθcoast, sinθcoast, cosθ , sinθ

)
and

to the mean wind direction ( σ(Dir W
)
) were excluded to streamline the model, reducing its

complexity and enhancing computational efficiency. This exclusion was based on current
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findings, though additional variables may be revised or excluded in future iterations as
part of ongoing optimizations.
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To evaluate the impact of this refinement, the RMSE and NRMSE metrics before and
after the variable exclusions were compared. The results, shown in Figure 5 along with
normalized values, indicate minimal differences in performance metrics post-exclusion.
This confirms that the streamlined model maintains its predictive accuracy while operating
with reduced input complexity. These findings suggest that excluding these variables
effectively simplifies the model without compromising its predictive capability, thereby
validating this approach to improve model performance by focusing on more impactful
variables.
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The model was further optimized using both Bayesian optimization and Hyperband
techniques in TensorFlow, with a focus on fine-tuning the hyperparameters to improve pre-
dictive accuracy. As shown in Table 3, the effectiveness of both optimization strategies was
assessed using RMSE and NRMSE values across the three directions (SE, SW, NE). Bayesian
optimization generally achieved slightly lower RMSE and NRMSE values compared to the
Hyperband approach. In particular, the SE and SW directions showed consistently lower
errors with Bayesian optimization, indicating a more accurate model fit. The stability of
the Bayesian approach was further validated through 10-fold cross-validation, confirming
its robustness across different data subsets. As a result, the ANN model refined using
Bayesian optimization was selected for final implementation due to its better performance
and reliability in predicting the standard deviation of load values.

Table 3. The errors (RMSE, NRMSE) of the predicted standard deviation loads through the ANNs.

σ(TSE) σ(TSW) σ(TNE)

RMSE
Bayesian 0.007 0.007 0.010

Hyperband 0.008 0.007 0.009

NRMSE (%)
Bayesian 5.416 6.518 3.210

Hyperband 5.795 6.570 2.898

The optimal ANN was used to make the final predictions of σ(TSE), σ(TSW), and
σ(TNE). Figure 6 shows a comparison between the actual and predicted standard deviations
for a randomly selected test dataset, demonstrating a close alignment between the two.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. Comparison of actual vs. predicted values through final ANN using Bayesian optimiza-
tion. 

 
Figure 7. Comparison of actual vs. predicted values through final ANN using Bayesian optimization 
after discarding outliers above 99th percentile. 

Table 4. The errors (RMSE, NRMSE) of the predicted standard deviation loads through the final 
ANN using Bayesian optimization after discarding the outliers. 

 σ(TSE) σ(TSW) σ(TNE) 
RMSE 0.006 0.005 0.005 

NRMSE (%) 4.441 4.720 1.767 

Further validation is presented in Figure 8, where a scatterplot between the predicted 
and actual standard deviations of load cells demonstrates a strong correlation, particularly 
in the SE and SW directions. This is evidenced by the close alignment of data points along 
the diagonal line, which indicates that the model’s predictions are highly accurate. 

Figure 6. Comparison of actual vs. predicted values through final ANN using Bayesian optimization.

However, spikes detected in Figure 6 revealed significant differences between the
predicted and actual values, leading to the consideration that discarding outliers above
the 99th percentile might be beneficial. Further investigation identified that these outliers
were caused by current-related phenomena occurring at the NOEL site, which are sporadic
and not representative of significant platform dynamics. These phenomena were not
consistently measured and do not reflect the platform’s typical behaviour.

By applying this threshold, only 79 values were discarded, representing less than 1%
of the dataset, without compromising the variability in the standard deviation. The removal
of these extreme values improved the model’s performance by reducing the influence of
unrepresentative spikes. Following this adjustment, the final ANN was retrained using
Bayesian optimization, and its accuracy was evaluated based on the new predictions
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(Figure 7). The RMSE and NRMSE values, shown in Table 4, indicate improved model
performance.
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Table 4. The errors (RMSE, NRMSE) of the predicted standard deviation loads through the final ANN
using Bayesian optimization after discarding the outliers.

σ(TSE) σ(TSW) σ(TNE)

RMSE 0.006 0.005 0.005
NRMSE (%) 4.441 4.720 1.767

Further validation is presented in Figure 8, where a scatterplot between the predicted
and actual standard deviations of load cells demonstrates a strong correlation, particularly
in the SE and SW directions. This is evidenced by the close alignment of data points
along the diagonal line, which indicates that the model’s predictions are highly accurate.
Although the NE direction exhibits slightly more variability, the overall alignment of points
highlights the ANN’s high predictive accuracy and efficiency across different directions.
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The residual plots in Figure 9 illustrate the difference between the predicted and actual
standard deviations of load cells across the SE, SW, and NE directions. For SE, a clear
negative monotonic trend is observed, where the error tends to increase with higher actual
standard deviation values, indicating the model under-predicts for larger load values in
this direction. SW shows a similar but less pronounced trend, while NE exhibits more
variability, with residuals spread more widely compared to other directions, and without a
clear pattern. This variability could suggest areas for further model refinement. Fine-tuning
the hyperparameters or incorporating additional training data for higher load cases could
enhance future model performance.
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To provide an additional layer of validation for the model’s accuracy and consistency,
the error distribution plot was examined. Figure 10 illustrates the spread of prediction
errors across the SE, SW, and NE directions. In all three directions, the distributions are
tightly centred around zero, indicating that the model does not exhibit significant bias in
over- or under-predicting the values. The distributions appear approximately symmetric
and normally distributed, though the slight negative trend in SE residuals observed in
Figure 8 is less obvious here. The error spread, typically ranging between −0.04 and 0.04,
indicates that the model’s predictions are generally close to the actual values. However,
minor variations in the spread may suggest that the model performs slightly differently
depending on the direction, with NE exhibiting a narrower error distribution and a slightly
higher peak frequency.
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To further assess the model’s robustness across varying environmental conditions,
the relationship between prediction errors and significant wave heights was analyzed. As
shown in Figure 11, the data do not suggest a strong correlation between higher prediction
errors and larger wave heights, indicating consistent model performance across the range
of conditions tested. The distribution of errors across the SE, SW, and NE directions
appears relatively symmetrical, suggesting that the model does not exhibit a systematic bias
toward overestimation or underestimation. This uniformity is encouraging, as it suggests
the model’s predictions are unbiased overall. However, although the model maintains
consistent performance, some outliers are present across a range of wave heights. These
outliers suggest that further refinements may be needed to improve predictive precision in
certain cases, although they do not seem to be linked to extreme wave conditions.
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4. Conclusions

In conclusion, this study proposed the application of ANNs for the prediction of the
mooring loads of a multi-purpose floating platform and demonstrated its effectiveness
based on the field data collected at the Natural Ocean Engineering Laboratory (NOEL)
of Mediterranea University of Reggio Calabria (Italy), on a 1:15-scaled prototype of the
structure. By using advanced optimization techniques, particularly Bayesian optimization,
the models were refined, resulting in reliable predictions under diverse environmental
conditions. The key outcomes of this study are outlined below:

• ANNs successfully captured the complex dynamics of offshore structures, proving
their potential as a valuable tool for predicting dynamic responses.

• Incorporating techniques like Bayesian optimization contributed to improved model
reliability, ensuring accurate dynamic response predictions for offshore platforms.

• Optimization techniques enhanced model performance, leading to reliable predictions
under a range of operational scenarios and highlighting the potential of ANNs in
managing offshore dynamics.

• Further investigation into data extremes, particularly under severe environmental
conditions, may be useful. Such analyses could identify additional variables that may
enhance model performance and offer valuable insights beyond average responses,
potentially enabling predictions of other response variables.

• Ongoing fine-tuning of ANNs is essential for optimizing model architecture and
hyperparameters, which will improve the model’s predictive power and ensure robust
performance in complex environments.

• Given that ANNs have shown effectiveness in this problem, investigating additional
techniques, such as genetic algorithms, support vector machines, or hybrid AI models,
which have already demonstrated value in similar applications, could further improve
model performance in future studies.
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• This research represents an important advancement in integrating AI with marine
engineering, particularly in the deployment of dynamic response predictions for
offshore platforms.

In summary, this study confirms the value of ANNs in addressing the challenges
of offshore platform dynamics. However, ongoing refinements—such as focused dataset
adjustments and the analysis of extremes—will be essential for improving predictive
accuracy. With continued improvements, ANNs have the potential to play a critical role in
the sustainable operation of marine infrastructure, representing a significant step forward
for renewable energy platforms.
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